1
|
Sonar S, Das A, Yeong Zher L, Narayanan Ravi R, Zheng Kong EQ, Dhar R, Narayanan K, Gorai S, Subramaniyan V. Exosome-Based Sensor: A Landmark of the Precision Cancer Diagnostic Era. ACS APPLIED BIO MATERIALS 2025. [PMID: 40366154 DOI: 10.1021/acsabm.5c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Extracellular vesicles are nanoscale vesicles released by a diversity of cells that mediate intercellular communication by transporting an array of biomolecules. They are gaining increasing attention in cancer research due to their ability to carry specific biomarkers. This characteristic makes them potentially useful for highly sensitive, noninvasive diagnostic procedures and more precise prognostic assessments. Consequently, EVs are emerging as a transformative tool in cancer treatment, facilitating early detection and personalized medicine. Despite significant progress, clinical implementation is hindered by challenges in EV isolation, purification, and characterization. However, developing advanced biosensor technologies offers promising solutions to these obstacles. This review highlights recent progress in biosensors for EV detection and analysis, focusing on various sensing modalities including optical, electrochemical, microfluidic, nanomechanical, and biological sensors. We also explore techniques for EV isolation, characterization, and analysis, such as electron microscopy, atomic force microscopy, nanoparticle tracking analysis, and single-particle analysis. Furthermore, the review critically assesses the challenges associated with EV detection and put forward future directions, aiming to usher in a cutting-edge era of precision medicine through advanced, sensor-based, noninvasive early cancer diagnosis by detecting EV-carried biomarkers.
Collapse
Affiliation(s)
- Swarup Sonar
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Asmit Das
- Department of Oncology, Neuron Institute of Applied Research, Amravati, Maharashtra 444605, India
| | - Lee Yeong Zher
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Ram Narayanan Ravi
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Eason Qi Zheng Kong
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Rajib Dhar
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| | - Kumaran Narayanan
- Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, Faculty of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
2
|
XU K, HUANG Y, ZHAO R. [Research progress of peptide recognition-guided strategies for exosome isolation and enrichment]. Se Pu 2025; 43:446-454. [PMID: 40331609 PMCID: PMC12059989 DOI: 10.3724/sp.j.1123.2024.10015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes are bilayered vesicles derived from living cells and bacteria that are loaded with abundant biomolecules, such as proteins and nucleic acids. As an important medium of remote cell communication, exosomes are closely related to the occurrence and development of a number of diseases, including those involving tumors and inflammation. The isolation and enrichment of exosomes in complex biosystems is greatly significant for the diagnosis, prognosis, and detection of diseases, as well as in molecular-mechanism research. However, exosomes are usually nanoscale size distribution and widely existed in complex biological samples, including blood, tissue fluids, and urine, which bring difficulties and challenges to the isolation and enrichment of exosomes. To address this issue, several methods based on the physical properties of exosomes have been developed. For example, exosomes can be obtained by ultracentrifugation at high centrifugal force based on density differences; they can also be isolated and enriched by size-exclusion chromatography and ultrafiltration based on size heterogeneity. Exosomes can also be separated in high yields but with low purities using commercial polymer-coprecipitation-based isolation kits. While the abovementioned methods can be used to isolate and enrich exosomes in a highly efficient manner, accurately distinguishing interfering particles, including protein aggregates and microvesicles, in biosystems is still difficult, resulting in the poor purity of exosome isolation and enrichment. Affinity ligands are widely used during the affinity isolation and enrichment of exosomes. Antibodies exhibit high selectivity and affinity; consequently exosomes can be captured highly selectively by exploiting specific antigen/antibody interactions. However, antibodies also have some limitations, including complex preparation procedures, high costs, and poor stability. Chemical affinity ligands, such as aptamers, peptides, and small molecules, are also widely used to isolate and enrich exosomes. As a kind of molecular recognition tool, peptides contain a variety of amino acids and exhibit many advantages, including good biocompatibility, low immunogenicity, and design flexibility. Solid-phase synthesis strategies have rapidly developed, thereby providing a basis for automated and large-scale peptide synthesis. Affinity peptides have been widely used to recognize and analyze target biomolecules in complex physiological environments in a highly selective manner. A series of protein-targeting peptides has been reported based on the biomolecular characteristics of exosomes. These affinity peptides can be specifically anchored onto highly enriched transmembrane proteins on exosome surfaces, thereby enabling the efficient and highly selective isolation and enrichment of exosomes in complex systems. Additionally, exosomes contain stable bilayer membranes consisting of abundant and diverse phospholipid molecules. The development of phospholipid-molecule-targeting peptides is expected to effectively eliminate interference from protein aggregates and other particles. In addition to differences in the compositions of phospholipids in biofilms, exosomes are smaller and more curved than apoptotic bodies and microvesicles. A series of affinity peptides capable of inducing and sensing high membrane curvatures are widely used to isolate and enrich exosomes. The tumor microenvironment can produce and release tumor-derived exosomes that are buried in a large number of normal cell-derived exosomes. Accordingly, pH-responsive peptides have been designed and modified based on the acidic environments of tumor-derived exosomes, which were accurately and tightly anchored via peptide insertion and folding. Focusing on the current status of exosome research, this paper introduces and summarizes current and widely used methods for isolating and enriching exosomes. Various exosome-targeting peptide-design and screening principles are introduced based on the characteristics and advantages of peptides. The applications of these peptides to the isolation and enrichment of exosomes are also summarized, thereby providing strong guidance for the efficient and highly selective isolation and enrichment of exosomes in complex life-related systems.
Collapse
|
3
|
Rong J, Li YY, Wang X, Wang JN, Song M. Non-coding RNAs in adipose-derived stem cell exosomes: Mechanisms, therapeutic potential, and challenges in wound healing. World J Stem Cells 2025; 17:102917. [PMID: 40308889 PMCID: PMC12038460 DOI: 10.4252/wjsc.v17.i4.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
The treatment of complex wounds presents a significant clinical challenge due to the limited availability of standardized therapeutic options. Adipose-derived stem cell exosomes (ADSC-Exos) are promising for their capabilities to enhance angiogenesis, mitigate oxidative stress, modulate inflammatory pathways, support skin cell regeneration, and promote epithelialization. These exosomes deliver non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, which facilitate collagen remodeling, reduce scar formation, and expedite wound healing. This study reviews the mechanisms, therapeutic roles, and challenges of non-coding RNA-loaded ADSC-Exos in wound healing and identifies critical directions for future research. It aims to provide insights for researchers into the potential mechanisms and clinical applications of ADSC-Exos non-coding RNAs in wound healing.
Collapse
Affiliation(s)
- Jian Rong
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Yao-Yao Li
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Xin Wang
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jia-Ning Wang
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Mei Song
- Department of Burns and Plastic Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Plateau Medicine, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China.
| |
Collapse
|
4
|
Rawat S, Arora S, Dhondale MR, Khadilkar M, Kumar S, Agrawal AK. Stability Dynamics of Plant-Based Extracellular Vesicles Drug Delivery. J Xenobiot 2025; 15:55. [PMID: 40278160 PMCID: PMC12028407 DOI: 10.3390/jox15020055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Plant-based extracellular vesicles (PBEVs) have been recognized for their wide range of applications in drug delivery however, the extent of their medicinal applicability depends on how well they are preserved and stored. Assessing their physicochemical properties, such as size, particle concentration, shape, and the activity of their cargo, forms the foundation for determining their stability during storage. Moreover, the evaluation of PBEVs is essential to ensure both safety and efficacy, which are critical for advancing their clinical development. Maintaining the biological activity of EVs during storage is a challenging task, similar to the preservation of cells and other cell-derived products like proteins. However, despite limited studies, it is expected that storing drug-loaded EVs may present fewer challenges compared to cell-based therapies, although some limitations are inevitable. This article provides a comprehensive overview of current knowledge on PBEVs preservation and storage methods, particularly focusing on their role as drug carriers. PBEVs hold promise as potential candidates for oral drug administration due to their effective intestinal absorption and ability to withstand both basic and acidic environments. However, maintaining their preservation and stability during storage is critical. Moreover, this review centers on the isolation, characterization, and storage of PBEVs, exploring the potential advantages they offer. Furthermore, it highlights key areas that require further research to overcome existing challenges and enhance the development of effective preservation and storage methods for therapeutic EVs.
Collapse
Affiliation(s)
- Satyavati Rawat
- Department of Botany, Kurukshetra University, Kurukshetra 136119, Haryana, India;
| | - Sanchit Arora
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Madhukiran R. Dhondale
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Mansi Khadilkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| | - Sanjeev Kumar
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (S.A.); (M.R.D.); (M.K.)
| |
Collapse
|
5
|
Li C, Zeng A, Li L, Zhao W. Emerging Roles of Plant-Derived Extracellular Vesicles in Biotherapeutics: Advances, Applications, and Future Perspectives. Adv Biol (Weinh) 2025:e2500008. [PMID: 40197701 DOI: 10.1002/adbi.202500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles, which play an important role in intercellular communication through surface signaling and molecular cargo delivery (proteins, lipids, nucleic acids, etc.). Recently, plant-derived extracellular vesicles (PDVs) containing multiple biological activities have received increasing attention due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDVs are employed as cargo delivery vehicles, enabling diverse functionalities through engineering modification techniques. Nonetheless, there are certain issues with the study of PDVs, such as the lack of standardization in the identification and isolation criteria. This review provides a quick overview of the biogenesis, physicochemical properties, isolation techniques, and biomedical applications of PDVs in current studies, while critically analyzing the current challenges and opportunities. This paper is expected to provide some theoretical guidance for the development of PDVs and further biomedical applications.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Yaman S, Devoe T, Aygun U, Parlatan U, Bobbili MR, Karim AH, Grillari J, Durmus NG. EV-Lev: extracellular vesicle isolation from human plasma using microfluidic magnetic levitation device. LAB ON A CHIP 2025; 25:1439-1451. [PMID: 39918033 DOI: 10.1039/d4lc00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Biological nanomaterials have unique magnetic and density characteristics that can be employed to isolate them into subpopulations. Extracellular nanovesicles (EVs) are crucial for cellular communication; however, their isolation poses significant challenges due to their diverse sizes and compositions. We present EV-Lev, a microfluidic magnetic levitation technique for high-throughput, selective isolation of small EVs (<200 nm) from human plasma. EV-Lev overcomes the challenges posed by the subtle buoyancy characteristics of EVs, whose small size and varied densities complicate traditional magnetic levitation techniques. It employs antibody-coated polymer beads of varying densities, integrating immuno-affinity and microfluidics to isolate EVs from sub-milliliter plasma volumes efficiently. It facilitates rapid, simultaneous sorting of EV subpopulations based on surface markers, such as CD9, CD63, and CD81, achieving high yield and purity. Subsequent size and morphology analyses confirmed that the isolated EVs maintain their structural integrity. EV-Lev could help uncover the cargo and function of EV subpopulations associated with multiple diseases including cancer, infectious diseases and help to discover potential biomarkers in small volume samples, while offering a portable, cost-effective, and straightforward assay scheme.
Collapse
Affiliation(s)
- Sena Yaman
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305-5281, USA.
| | - Tessa Devoe
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305-5281, USA.
- Brown University, Providence, RI 02912, USA
| | - Ugur Aygun
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Stanford, CA 94304, USA
- Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkiye
| | - Ugur Parlatan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Stanford, CA 94304, USA
| | - Madhusudhan Reddy Bobbili
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Stanford, CA 94304, USA
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, 1190 Wien, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Wien, Austria
| | - Asma H Karim
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University, Stanford, CA 94304, USA
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, 1190 Wien, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Wien, Austria
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305-5281, USA.
| |
Collapse
|
7
|
Longfei H, Wenyuan H, Weihua F, Peng P, Sun L, Kun L, Mincong H, Fan Y, Wei H, Qiushi W. Exosomes in cartilage microenvironment regulation and cartilage repair. Front Cell Dev Biol 2025; 13:1460416. [PMID: 40109360 PMCID: PMC11919854 DOI: 10.3389/fcell.2025.1460416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Osteoarthritis (OA) is a debilitating disease that predominantly impacts the hip, hand, and knee joints. Its pathology is defined by the progressive degradation of articular cartilage, formation of bone spurs, and synovial inflammation, resulting in pain, joint function limitations, and substantial societal and familial burdens. Current treatment strategies primarily target pain alleviation, yet improved interventions addressing the underlying disease pathology are scarce. Recently, exosomes have emerged as a subject of growing interest in OA therapy. Numerous studies have investigated exosomes to offer promising therapeutic approaches for OA through diverse in vivo and in vitro models, elucidating the mechanisms by which exosomes from various cell sources modulate the cartilage microenvironment and promote cartilage repair. Preclinical investigations have demonstrated the regulatory effects of exosomes originating from human cells, including mesenchymal stem cells (MSC), synovial fibroblasts, chondrocytes, macrophages, and exosomes derived from Chinese herbal medicines, on the modulation of the cartilage microenvironment and cartilage repair through diverse signaling pathways. Additionally, therapeutic mechanisms encompass cartilage inflammation, degradation of the cartilage matrix, proliferation and migration of chondrocytes, autophagy, apoptosis, and mitigation of oxidative stress. An increasing number of exosome carrier scaffolds are under development. Our review adopts a multidimensional approach to enhance comprehension of the pivotal therapeutic functions exerted by exosomes sourced from diverse cell types in OA. Ultimately, our aim is to pinpoint therapeutic targets capable of regulating the cartilage microenvironment and facilitating cartilage repair in OA.
Collapse
Affiliation(s)
- Han Longfei
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hou Wenyuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fang Weihua
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lu Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin Kun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Mincong
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yang Fan
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Wei
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Qiushi
- Traumatology and Orthopedics Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopaedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Orthopaedic, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
9
|
Sha A, Luo Y, Xiao W, He J, Chen X, Xiong Z, Peng L, Zou L, Liu B, Li Q. Plant-Derived Exosome-like Nanoparticles: A Comprehensive Overview of Their Composition, Biogenesis, Isolation, and Biological Applications. Int J Mol Sci 2024; 25:12092. [PMID: 39596159 PMCID: PMC11593521 DOI: 10.3390/ijms252212092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plant-derived exosome-like nanoparticles (PELNs) are a type of membranous vesicle isolated from plant tissues. They contain proteins, lipids, nucleic acids, and other components. PELNs are involved in the defensive response to pathogen attacks by exerting anti-inflammatory, antiviral, antifibrotic, and antitumor effects through the substances they contain. Most PELNs are edible and can be used as carriers for delivering specific drugs without toxicity and side effects, making them a hot topic of research. Sources of PELNs are abundantly, and they can be produced in high yields, with a low risk of developing immunogenicity in vivo. This paper summarizes the formation, isolation, and purification methods; physical properties; and composition of PELNs through a comprehensive literature search. It also analyzes the biomedical applications of PELNs, as well as future research directions. This paper provides new ideas and methods for future research on PELNs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, No. 2025, Chengluo Avenue, Longquanyi District, Chengdu 610106, China; (A.S.); (Y.L.); (W.X.); (J.H.); (X.C.); (Z.X.); (L.P.); (L.Z.)
| |
Collapse
|
10
|
Matloob A, Gu X, Rehman Sheikh A, Javed M, Fang Z, Luo Z. Plant exosomes‐like nano‐vesicles: Characterization, functional food potential, and emerging therapeutic applications as a nano medicine. FOOD SAFETY AND HEALTH 2024; 2:429-450. [DOI: 10.1002/fsh3.12060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 01/05/2025]
Abstract
AbstractPlant cells release exosome‐like nanovesicles (PENVs), which are small, membrane‐bound vesicles secreted by cells for intercellular interactions. These vesicles, rich in biologically active substances, are crucial for information transmission, intercellular interaction, and organism homeostasis conservation. They can also be used for treating diseases as large‐scale drug carriers due to their vesicular architecture. This study explores the isolation, potential of nanovesicles in creating bio‐therapeutic and drug‐delivery nano‐platforms to address clinical challenges. The bio‐therapeutic roles of PENVs, include immunomodulation, antitumor, regenerative impacts, wound healing, anti‐fibrosis, whitening effects, and treatment of intestinal flora disorders. This study also deliberates the potential for designing these nanovesicles into effective, safe, and non‐immunogenic nano‐vectors to carry drugs. PENVs may offer a cutting‐edge platform for the creation of functional foods and nutraceuticals. They might be employed to encapsulate certain bioactive substances produced from plants, offering tailored health privileges. It also elucidates the potential for the development of therapeutic and provision nano‐platforms based on PENVs in clinical applications.
Collapse
Affiliation(s)
- Anam Matloob
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xinya Gu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Arooj Rehman Sheikh
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Miral Javed
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Zhongxiang Fang
- School of Agriculture, Food and Ecosystem Sciences Faculty of Science The University of Melbourne Melbourne Victoria Australia
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- Key Laboratory of Ago‐Products Postharvest Handing of Ministry of Agriculture and Rural Affairs Hangzhou China
| |
Collapse
|
11
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
12
|
Shi L, Zhou Y, Yin Y, Zhang J, Chen K, Liu S, Chen P, Jiang H, Liu J, Wu Y. Advancing Tissue Damage Repair in Geriatric Diseases: Prospects of Combining Stem Cell-Derived Exosomes with Hydrogels. Int J Nanomedicine 2024; 19:3773-3804. [PMID: 38708181 PMCID: PMC11068057 DOI: 10.2147/ijn.s456268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Geriatric diseases are a group of diseases with unique characteristics related to senility. With the rising trend of global aging, senile diseases now mainly include endocrine, cardiovascular, neurodegenerative, skeletal, and muscular diseases and cancer. Compared with younger populations, the structure and function of various cells, tissues and organs in the body of the elderly undergo a decline as they age, rendering them more susceptible to external factors and diseases, leading to serious tissue damage. Tissue damage presents a significant obstacle to the overall health and well-being of older adults, exerting a profound impact on their quality of life. Moreover, this phenomenon places an immense burden on families, society, and the healthcare system.In recent years, stem cell-derived exosomes have become a hot topic in tissue repair research. The combination of these exosomes with biomaterials allows for the preservation of their biological activity, leading to a significant improvement in their therapeutic efficacy. Among the numerous biomaterial options available, hydrogels stand out as promising candidates for loading exosomes, owing to their exceptional properties. Due to the lack of a comprehensive review on the subject matter, this review comprehensively summarizes the application and progress of combining stem cell-derived exosomes and hydrogels in promoting tissue damage repair in geriatric diseases. In addition, the challenges encountered in the field and potential prospects are presented for future advancements.
Collapse
Affiliation(s)
- Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yunjun Zhou
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yongkui Yin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jin Zhang
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, People’s Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Peijian Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Hua Jiang
- The Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, People’s Republic of China
| |
Collapse
|
13
|
Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci 2024; 47:e2300669. [PMID: 38651549 DOI: 10.1002/jssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dianbing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Research Center of Biomacromolecules, China Academy of Sciences, National Laboratory of Biomacromolecules, Beijing, China
| | - Chengyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Yuan C, Song W, Jiang X, Wang Y, Li C, Yu W, He Y. Adipose-derived stem cell-based optimization strategies for musculoskeletal regeneration: recent advances and perspectives. Stem Cell Res Ther 2024; 15:91. [PMID: 38539224 PMCID: PMC10976686 DOI: 10.1186/s13287-024-03703-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2025] Open
Abstract
Musculoskeletal disorders are the leading causes of physical disabilities worldwide. The poor self-repair capacity of musculoskeletal tissues and the absence of effective therapies have driven the development of novel bioengineering-based therapeutic approaches. Adipose-derived stem cell (ADSC)-based therapies are being explored as new regenerative strategies for the repair and regeneration of bone, cartilage, and tendon owing to the accessibility, multipotency, and active paracrine activity of ADSCs. In this review, recent advances in ADSCs and their optimization strategies, including ADSC-derived exosomes (ADSC-Exos), biomaterials, and genetic modifications, are summarized. Furthermore, the preclinical and clinical applications of ADSCs and ADSC-Exos, either alone or in combination with growth factors or biomaterials or in genetically modified forms, for bone, cartilage, and tendon regeneration are reviewed. ADSC-based optimization strategies hold promise for the management of multiple types of musculoskeletal injuries. The timely summary and highlights provided here could offer guidance for further investigations to accelerate the development and clinical application of ADSC-based therapies in musculoskeletal regeneration.
Collapse
Affiliation(s)
- Chenrui Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Song
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiping Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yifei Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chenkai Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Weilin Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Department of Orthopedics, Jinshan Branch of Shanghai Sixth People's Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201500, China.
| |
Collapse
|
15
|
Abeysinghe P, Turner N, Mitchell MD. A comparative analysis of small extracellular vesicle (sEV) micro-RNA (miRNA) isolation and sequencing procedures in blood plasma samples. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:119-137. [PMID: 39698410 PMCID: PMC11648519 DOI: 10.20517/evcna.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 12/20/2024]
Abstract
Aims Analysis of miRNA (18-23nt) encapsulated in small extracellular vesicles (sEVs) (diameter ~30-200 nm) is critical in understanding the diagnostic and therapeutic value of sEV miRNA. However, various sEV enrichment techniques yield different quantities and qualities of sEV miRNA. Here, we compare the efficacy of three sEV isolation techniques in four combinations for miRNA next-generation sequencing. Methods Blood plasma from four Holstein-Friesian dairy cows (Bos taurus) (n = 4) with similar genetic traits and physical characteristics were pooled to isolate sEV. Ultracentrifugation (UC) (100,000 × g, 2 h at 4 °C), size-exclusion chromatography (SEC) and ultrafiltration (UF) were used to design four groups of sEV isolations (UC+SEC, SEC+UC, SEC+UF and UC+SEC+UF). sEV miRNAs were isolated using a combination of TRIzol, Chloroform and miRNeasy mini kit (n = 4/each), later sequenced utilizing Novaseq S1 platform (single-end 100 bp sequencing). Results All four sEV methods yielded > 1,700 miRNAs and sEV miRNAs demonstrated a clear separation from control blood plasma circulating miRNA (PCA analysis). MiR-381-3p, miR-23-3p, and miR-18b-3p are among the 25 miRNAs unique to sEV, indicating potential sEV-specific miRNA markers. Further, those 25 miRNAs mostly regulate immune-related functions, indicating the value of sEV miRNA cargo in immunology. Conclusion The four sEV miRNA isolation methods employed in this study are valid techniques. The choice of method depends on the research question and study design. If purity is of concern, the UC+SEC method resulted in the best particles/µg protein ratio, which is often used as an indication of sample purity. These results could eventually establish sEV miRNAs as effective diagnostic and therapeutic tools of immunology.
Collapse
Affiliation(s)
- Pevindu Abeysinghe
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Natalie Turner
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
| | - Murray D. Mitchell
- Centre for Children’s Health Research, Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4101, Australia
| |
Collapse
|
16
|
Horiguchi Y, Yasuura M, Ashiba H, Tan ZL, Fukuda T. Simple Binding and Dissociation of a Sialoglycoprotein Using Boronic Acid-Modified Functional Interfaces on Microparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:1080. [PMID: 38400238 PMCID: PMC10891811 DOI: 10.3390/s24041080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid. In this study, we developed 5-boronopicolinic acid (5-BPA)-modified magnetic particles (BMPs) to selectively capture sialic acid biomolecules. We successfully captured fetuin, a well-known sialoglycoprotein, on BMPs at >104 molecules/particle using an acetate buffer (pH 5.0). Facile dissociation then occurred when the system was changed to a pH 7.6 phosphate buffer. This capture-and-release process could be repeated at least five times. Moreover, this system could enrich fetuin by more than 20 times. In summary, BMPs are functional particles for facile purification and concentration through the selective capture of sialic acid proteins and can improve detection sensitivity compared with conventional methods. This technology shows potential for the detection of sialic acid overexpression by biological particles.
Collapse
Affiliation(s)
- Yukichi Horiguchi
- Sensing System Research Center (SSRC), Department of Electronics and Manufacturing, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (M.Y.); (H.A.); (Z.L.T.); (T.F.)
| | | | | | | | | |
Collapse
|
17
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Liu C, Seneviratne CJ, Palma C, Rice G, Salomon C, Khanabdali R, Ivanovski S, Han P. Immunoaffinity-enriched salivary small extracellular vesicles in periodontitis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:698-712. [PMID: 39697803 PMCID: PMC11648426 DOI: 10.20517/evcna.2023.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/20/2024]
Abstract
Aim aliva extracellular vesicles (EVs) serve as a significant reservoir of biomarkers that may be of clinical use in disease diagnosis. Saliva, however, contains EVs of both host- and bacterial- origin. Identifying suitable EVs for disease diagnosis involves enriching host EVs and limiting non-host contamination with effective isolation methods. The objectives of this research were: (1) to evaluate the salivary EVs enrichment in 12 periodontally healthy patients by two different methods: size exclusion chromatography (SEC) and bead-based immunoaffinity capture (EXO-NET®); (2) to analyze the variance expression of inflammatory cytokines in EXO-NET-enriched EVs, comparing individuals with periodontitis (n = 20) to non-periodontitis (n = 12). Methods Whole unstimulated saliva samples were collected from 12 periodontally healthy and 20 periodontitis patients. EVs were isolated from the 12 non-periodontitis patients using SEC (referred to as SEC-EVs) and EXO-NET (referred to as EXO-NET EVs), after which their total protein content, 37 EV surface markers, and bacterial pathogens expression were compared. Subsequently, the inflammatory cytokines expression levels (interleukin-IL-6, IL-1β, IL-8, and IL-10) in EXO-NET EVs were measured for non-periodontitis and periodontitis. Results EXO-NET EVs contained more EV-specific protein and substantially higher expression of EV surface markers (CD9, CD81, CD63), but less pathogenic DNA was detected compared to that in SEC-EVs. Additionally, EXO-NET EVs from periodontitis patients contained higher amounts of IL-6 and IL-8, and decreased IL-10, compared to those from non-periodontitis patients. Conclusion The findings suggest that immunoaffinity capture (EXO-NET) is a dependable method for salivary EVs enrichment, resulting in a higher yield of host EVs with reduced bacterial DNA detection compared to SEC. Furthermore, the research proposes that immunoaffinity capture enriched EVs can function as biomarkers for periodontitis, demonstrated by an increased expression of proinflammatory cytokines from periodontitis patients.
Collapse
Affiliation(s)
- Chun Liu
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chaminda Jayampath Seneviratne
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Carlos Palma
- INOVIQ Limited, Notting Hill, VIC 3168, Australia
| | - Greg Rice
- INOVIQ Limited, Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Sašo Ivanovski
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Pingping Han
- Epigenetics nanodiagnostic and therapeutic group, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
19
|
Altıntaş Ö, Saylan Y. Exploring the Versatility of Exosomes: A Review on Isolation, Characterization, Detection Methods, and Diverse Applications. Anal Chem 2023; 95:16029-16048. [PMID: 37874907 DOI: 10.1021/acs.analchem.3c02224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are crucial mediators of intercellular communication and can be classified based on their physical properties, biomolecular structure, and origin. Among EVs, exosomes have garnered significant attention due to their potential as therapeutic and diagnostic tools. Exosomes are released via fusion of multivesicular bodies on plasma membranes and can be isolated from various biofluids using methods such as differential ultracentrifugation, immune affinity capture, ultrafiltration, and size exclusion chromatography. Herein, an overview of different techniques for exosome characterization and isolation, as well as the diverse applications of exosome detection, including their potential use in drug delivery and disease diagnosis, is provided. Additionally, we discuss the emerging field of exosome detection by sensors, which offers an up-and-coming avenue for point-of-care diagnostic tools development. Overall, this review aims to provide a exhaustive and up-to-date summary of the current state of exosome research.
Collapse
Affiliation(s)
- Özge Altıntaş
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Hacettepe University, Department of Chemistry, 06800 Ankara, Turkey
| |
Collapse
|
20
|
Yu L, Qin J, Xing J, Dai Z, Zhang T, Wang F, Zhou J, Zhang X, Chen X, Gu Y. The mechanisms of exosomes in diabetic foot ulcers healing: a detailed review. J Mol Med (Berl) 2023; 101:1209-1228. [PMID: 37691076 DOI: 10.1007/s00109-023-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
As time goes by, the morbidity of diabetes mellitus continues to rise, and the economic burden of diabetic foot ulcers as a common and serious complication of diabetes is increasing. However, currently there is no unified clinical treatment strategy for this complication, and the therapeutic efficacy is unsatisfactory. Recent studies have revealed that biological effects of exosomes involved in multiple stages of the process of wound closure are similar to source cells. Compared with source cells, exosomes possess lowly immunogenicity, highly stability and easily stored, etc. Accumulating evidence confirmed that exosomes promote diabetic wound healing through various pathways such as promoting angiogenesis, collagen fiber deposition, and inhibiting inflammation. The superior therapeutic efficacy of exosomes in accelerating diabetic cutaneous wound healing has attracted an increasing attention. Notably, the molecular mechanisms of exosomes vary among different sources in the chronic wound closure of diabetes. This review focuses on the specific roles and mechanisms of different cell- or tissue-derived exosomes relevant to wound healing. Additionally, the paper provides an overview of the current pre-clinical and clinical applications of exosomes, illustrates their special advantages in wound repair. Furthermore, we discuss the potential obstacles and various solutions for future research on exosomes in the management of diabetic foot ulcer. The aim is to offer novel insights and approaches for the treatment of diabetic foot ulcer.
Collapse
Affiliation(s)
- Lei Yu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jiajun Xing
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Zihao Dai
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Tingting Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Feng Wang
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jin Zhou
- Nantong Xingzhong Cell Engineering Co. LTD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaobai Zhang
- Department of Respiratory Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
21
|
Zhang L, Liu J, Zhou C. Current aspects of small extracellular vesicles in pain process and relief. Biomater Res 2023; 27:78. [PMID: 37563666 PMCID: PMC10416402 DOI: 10.1186/s40824-023-00417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
Small extracellular vesicles (sEVs) have been identified as a noteworthy paracrine mechanism of intercellular communication in diagnosing and managing neurological disorders. Current research suggests that sEVs play a pivotal role in the pathological progression of pain, emphasizing their critical function in the pathological progression of pain in acute and chronic pain models. By facilitating the transfer of diverse molecules, such as proteins, nucleic acids, and metabolites, sEVs can modulate pain signaling transmission in both the central and peripheral nervous systems. Furthermore, the unique molecules conveyed by sEVs in pain disorders indicate their potential as diagnostic biomarkers. The application of sEVs derived from mesenchymal stem cells (MSCs) in regenerative pain medicine has emerged as a promising strategy for pain management. Moreover, modified sEVs have garnered considerable attention in the investigation of pathological processes and therapeutic interventions. This review presents a comprehensive overview of the current knowledge regarding the involvement of sEVs in pain pathogenesis and treatment. Nevertheless, additional research is imperative to facilitate their clinical implementation. Schematic diagram of sEVs in the biogenesis, signal transmission, diagnosis, and treatment of pain disorders. Small extracellular vesicles (sEVs) are secreted by multiple cells, loading with various biomolecules, such as miRNAs, transmembrane proteins, and amino acids. They selectively target other cells and regulating pain signal transmission. The composition of sEVs can serve as valuable biomarkers for pain diagnosis. In particular, mesenchymal stem cell-derived sEVs have shown promise as regenerative medicine for managing multiple pain disorders. Furthermore, by modifying the structure or contents of sEVs, they could potentially be used as a potent analgesic method.
Collapse
Affiliation(s)
- Lanyu Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
23
|
Richards T, Patel H, Patel K, Schanne F. Endogenous Lipid Carriers-Bench-to-Bedside Roadblocks in Production and Drug Loading of Exosomes. Pharmaceuticals (Basel) 2023; 16:421. [PMID: 36986523 PMCID: PMC10058361 DOI: 10.3390/ph16030421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Exosomes are cell-derived, nano-sized extracellular vesicles comprising a lipid bilayer membrane that encapsulates several biological components, such as nucleic acids, lipids, and proteins. The role of exosomes in cell-cell communication and cargo transport has made them promising candidates in drug delivery for an array of diseases. Despite several research and review papers describing the salient features of exosomes as nanocarriers for drug delivery, there are no FDA-approved commercial therapeutics based on exosomes. Several fundamental challenges, such as the large-scale production and reproducibility of batches, have hindered the bench-to-bedside translation of exosomes. In fact, compatibility and poor drug loading sabotage the possibility of delivering several drug molecules. This review provides an overview of the challenges and summarizes the potential solutions/approaches to facilitate the clinical development of exosomal nanocarriers.
Collapse
Affiliation(s)
| | | | | | - Frank Schanne
- College of Pharmacy & Health Sciences, St. John’s University, Queens, NY 11439, USA
| |
Collapse
|