1
|
Lentini G, Querqui A, Giuliani A, Verna R, Bizzarri M. Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment. Biomolecules 2025; 15:451. [PMID: 40149987 PMCID: PMC11940430 DOI: 10.3390/biom15030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.
Collapse
Affiliation(s)
- Guglielmo Lentini
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Querqui
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Verna
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Mariano Bizzarri
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| |
Collapse
|
2
|
Abidin BM, Rios FJ, Montezano AC, Touyz RM. Transient receptor potential melastatin 7 cation channel, magnesium and cell metabolism in vascular health and disease. Acta Physiol (Oxf) 2025; 241:e14282. [PMID: 39801180 DOI: 10.1111/apha.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025]
Abstract
Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation. Metabolic alterations in VSMCs also contribute to vascular dysfunction in atherosclerosis and hypertension. Magnesium (Mg2+) is the second most abundant intracellular divalent cation and influences molecular processes that regulate vascular function, including vasodilation, vasoconstriction, and release of vasoactive substances. Mg2+ is critically involved in maintaining cellular homeostasis and metabolism since it is an essential cofactor for ATP, nucleic acids and hundreds of enzymes involved in metabolic processes. Low Mg2+ levels have been linked to endothelial dysfunction, increased vascular tone, vascular inflammation and arterial remodeling. Growing evidence indicates an important role for the transient receptor potential melastatin-subfamily member 7 (TRPM7) cation channel in the regulation of Mg2+ homeostasis in EC and VSMCs. In the vasculature, TRPM7 deficiency leads to impaired endothelial function, increased vascular contraction, phenotypic switching of VSMCs, inflammation and fibrosis, processes that characterize the vascular phenotype in hypertension. Here we provide a comprehensive overview on TRPM7/Mg2+ in the regulation of vascular function and how it influences EC and VSMC metabolism such as glucose and energy homeostasis, redox regulation, phosphoinositide signaling, and mineral metabolism. The putative role of TRPM7/Mg2+ and altered cellular metabolism in vascular dysfunction and hypertension is also discussed.
Collapse
Affiliation(s)
- Belma Melda Abidin
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisco J Rios
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Cardiovascular Health Across the Life Span, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Long P, Si J, Zhu Z, Jiang Y, Wang Y, Jiang Q, Li W, Xu X, You Y, Qu M, Wang H, Mo T, Liu K, Jiang J, Wang Q, Yu C, Guo Y, Millwood IY, Walters RG, He X, Yuan Y, Wang H, Zhang X, He M, Guo H, Chen Z, Li L, Lv J, Wang C, Wu T. Genome-wide DNA methylation profiling in blood reveals epigenetic signature of incident acute coronary syndrome. Nat Commun 2024; 15:7431. [PMID: 39198424 PMCID: PMC11358540 DOI: 10.1038/s41467-024-51751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [FDR] <0.05), including three mapped to known cardiovascular disease genes (PRKCZ, PRDM16, EHBP1L1) and four with causal evidence from Mendelian randomization (PRKCZ, TRIM27, EMC2, EHBP1L1). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (PIGG and EHBP1L1), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.
Collapse
Affiliation(s)
- Pinpin Long
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahui Si
- National Institute of Health Data Science at Peking University, Peking University, Beijing, China
| | - Ziwei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wending Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yutong You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minghan Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Mo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kang Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yu Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Tuersuntuoheti M, Peng F, Li J, Zhou L, Gao H, Gong H. PLCE1 enhances mitochondrial dysfunction to promote GSDME-mediated pyroptosis in doxorubicin-induced cardiotoxicity. Biochem Pharmacol 2024; 223:116142. [PMID: 38499110 DOI: 10.1016/j.bcp.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The therapeutic value and long-term application of doxorubicin (DOX) were hampered by its severe irreversible cardiotoxicity. Phospholipase C epsilon 1 (PLCE 1) was reported as a new member of the phospholipase C (PLC) family which controls the level of phosphoinositides in cells. Pyroptosis is a newly discovered inflammatory type of regulated cell death. Recent studies have consolidated that chemotherapeutic drugs lead to pyroptosis. Additionally, the phosphoinositide signaling system has remarkable effects on the execution of cell death. We aim to investigate the role of PLCE1 and the mechanism of pyroptosis from the context of DOX-induced cardiotoxicity. METHODS In the current study, in vitro and in vivo experiments were performed to dissect the underlying mechanism of cardiomyocyte pyroptosis during DOX-induced cardiac injury. The molecular mechanism of PLCE1 was identified by the human cardiomyocyte AC16 cell line and C57BL/6 mouse model. RESULTS The results here indicated that PLCE1 high expressed and pyroptotic cell death presented in cardiomyocytes after DOX application, which was negatively correlated to heart function. DOX-induced cell model disclosed pyroptosis mediated by Gasdermin E (GSDME) protein and involved in mitochondrial damage. Conversely, the deletion of PLCE1 ameliorated mitochondrial dysfunction by suppressing ROS accumulation and reversing mitochondrial membrane potential, and then increased cell viability effectively. More importantly, the in vivo experiment demonstrated that inhibition of PLCE1 reduced pyroptotic cell death and improved heart effect. CONCLUSIONS We discovered firstly that PLCE1 inhibition protected cardiomyocytes from DOX-induced pyroptotic injury and promoted cardiac function. This information offers a theoretical basis for promising therapy.
Collapse
Affiliation(s)
- Maierhaba Tuersuntuoheti
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hailan Gao
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ricci MMC, Orenberg A, Ohayon L, Gau D, Wills RC, Bae Y, Das T, Koes D, Hammond GRV, Roy P. Actin-binding protein profilin1 is an important determinant of cellular phosphoinositide control. J Biol Chem 2024; 300:105583. [PMID: 38141770 PMCID: PMC10826164 DOI: 10.1016/j.jbc.2023.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023] Open
Abstract
Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.
Collapse
Affiliation(s)
- Morgan M C Ricci
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew Orenberg
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee Ohayon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Science, University at Buffalo, Buffalo, New York, USA
| | - Tuhin Das
- Tavotek Biotherapeutics, Spring House, Pennsylvania, USA
| | - David Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
7
|
Somtua P, Jaikang C, Konguthaithip G, Intui K, Watcharakhom S, O’Brien TE, Amornlertwatana Y. Postmortem Alteration of Purine Metabolism in Coronary Artery Disease. Metabolites 2023; 13:1135. [PMID: 37999231 PMCID: PMC10673240 DOI: 10.3390/metabo13111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
A new approach for assisting in the diagnosis of coronary artery disease (CAD) as a cause of death is essential in cases where complete autopsy examinations are not feasible. The purine pathway has been associated with CAD patients, but the understanding of this pathway in postmortem changes needs to be explored. This study investigated the levels of blood purine metabolites in CAD after death. Heart blood samples (n = 60) were collected and divided into CAD (n = 23) and control groups (n = 37). Purine metabolites were measured via proton nuclear magnetic resonance. Guanosine triphosphate (GTP), nicotinamide adenine dinucleotide (NAD), and xanthine levels significantly decreased (p < 0.05); conversely, adenine and deoxyribose 5-phosphate levels significantly increased (p < 0.05) in the CAD group compared to the control group. Decreasing xanthine levels may serve as a marker for predicting the cause of death in CAD (AUC = 0.7). Our findings suggest that the purine pathway was interrupted by physiological processes after death, causing the metabolism of the deceased to differ from that of the living. Additionally, xanthine levels should be studied further to better understand their relationship with CAD and used as a biomarker for CAD diagnosis under decomposition and skeletonization settings.
Collapse
Affiliation(s)
- Phakchira Somtua
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanicnan Intui
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somlada Watcharakhom
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Timothy E. O’Brien
- Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Road, Chicago, IL 60660, USA;
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (C.J.); (G.K.); (K.I.); (S.W.)
- Metabolomic Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Zhang H, Bao M, Liao D, Zhang Z, Tian Z, Yang E, Luo P, Jiang X. Identification of INSRR as an immune-related gene in the tumor microenvironment of glioblastoma by integrated bioinformatics analysis. Med Oncol 2023; 40:161. [PMID: 37099121 DOI: 10.1007/s12032-023-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Gliomas are the most common malignant tumors in the central nervous system. The tumor microenvironment (TME) plays a crucial role in tumor proliferation, invasion, angiogenesis, and immune escape. However, little is known about TME in gliomas. The purpose of this study was to explore the biomarkers associated with TME in glioblastoma (GBM) to predict immunotherapy effectiveness and prognosis in patients. Based on RNA-seq transcriptome data and clinical features of 1222 samples (113 normal samples and 1109 tumor samples) in The Cancer Genome Atlas (TCGA) database, the ImmuneScore, StromalScore, and ESTIMATEScore were calculated by ESTIMATE algorithm. The differentially expressed genes (DEGs) and differentially mutated genes (DMGs) were determined in the TCGA GBM cohort. Furthermore, gene set enrichment analysis (GSEA) was used to investigate the enrichment pathways of INSRR genes with abnormal expression. The proportion of tumor-infiltrating immune cells (TIICs) was evaluated by CIBERSORT. Frequent mutations of TP53, EGFR, and PTEN occurred in high and low immune scores. The cross-analysis of DEGs and DMGs revealed that INSRR was an immune-related biomarker in the TCGA GBM cohort. According to GSEA, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway with INSRR abnormal expression were IgA-produced intestinal immune network and Alzheimer's disease, oxidative phosphorylation, and Parkinson's disease, respectively. Additionally, INSRR expression was correlated with dendritic cells activated, dendritic cells resting, T cells CD8, and T cell gamma delta. INSRR is associated with the immune microenvironment in GBM and is used as a biomarker to predict immune invasion.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, 710127, Shaanxi Province, China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
9
|
Poli A, Pennacchio FA, Ghisleni A, di Gennaro M, Lecacheur M, Nastały P, Crestani M, Pramotton FM, Iannelli F, Beznusenko G, Mironov AA, Panzetta V, Fusco S, Sheth B, Poulikakos D, Ferrari A, Gauthier N, Netti PA, Divecha N, Maiuri P. PIP4K2B is mechanoresponsive and controls heterochromatin-driven nuclear softening through UHRF1. Nat Commun 2023; 14:1432. [PMID: 36918565 PMCID: PMC10015053 DOI: 10.1038/s41467-023-37064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.
Collapse
Affiliation(s)
- Alessandro Poli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | | | - Andrea Ghisleni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Paulina Nastały
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdansk, Poland
| | - Michele Crestani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesca M Pramotton
- EMPA-Materials Science and Technology, Dubenforf, Switzerland
- Institute for Mechanical Systems, ETH, Zurich, Switzerland
| | - Fabio Iannelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | - Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Aldo Ferrari
- Institute for Mechanical Systems, ETH, Zurich, Switzerland
| | - Nils Gauthier
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Paolo Maiuri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
10
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Sebastian S, Weinstein LS, Ludwig A, Munroe P, Tinker A. Slowing Heart Rate Protects Against Pathological Cardiac Hypertrophy. FUNCTION 2022; 4:zqac055. [PMID: 36540889 PMCID: PMC9761894 DOI: 10.1093/function/zqac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
We aimed to determine the pathophysiological impact of heart rate (HR) slowing on cardiac function. We have recently developed a murine model in which it is possible to conditionally delete the stimulatory heterotrimeric G-protein (Gαs) in the sinoatrial (SA) node after the addition of tamoxifen using cre-loxP technology. The addition of tamoxifen leads to bradycardia. We used this approach to examine the physiological and pathophysiological effects of HR slowing. We first looked at the impact on exercise performance by running the mice on a treadmill. After the addition of tamoxifen, mice with conditional deletion of Gαs in the SA node ran a shorter distance at a slower speed. Littermate controls preserved their exercise capacity after tamoxifen. Results consistent with impaired cardiac capacity in the mutants were also obtained with a dobutamine echocardiographic stress test. We then examined if HR reduction influenced pathological cardiac hypertrophy using two models: ligation of the left anterior descending coronary artery for myocardial infarction and abdominal aortic banding for hypertensive heart disease. In littermate controls, both procedures resulted in cardiac hypertrophy. However, induction of HR reduction prior to surgical intervention significantly ameliorated the hypertrophy. In order to assess potential protein kinase pathways that may be activated in the left ventricle by relative bradycardia, we used a phospho-antibody array and this revealed selective activation of phosphoinositide-3 kinase. In conclusion, HR reduction protects against pathological cardiac hypertrophy but limits physiological exercise capacity.
Collapse
Affiliation(s)
- Sonia Sebastian
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Building 10, Room 8C101, Bethesda, MD 20892-1752, USA
| | - Andreas Ludwig
- Institut fuer Experimentelle und Klinische Pharmakologie und Toxikologie, Universitaet Erlangen-Nuernberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Patricia Munroe
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | |
Collapse
|
13
|
Lessen HJ, Sapp KC, Beaven AH, Ashkar R, Sodt AJ. Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures. Biophys J 2022; 121:3188-3199. [PMID: 35927953 PMCID: PMC9463698 DOI: 10.1016/j.bpj.2022.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane reshaping is an essential biological process. The chemical composition of lipid membranes determines their mechanical properties and thus the energetics of their shape. Hundreds of distinct lipid species make up native bilayers, and this diversity complicates efforts to uncover what compositional factors drive membrane stability in cells. Simplifying assumptions, therefore, are used to generate quantitative predictions of bilayer dynamics based on lipid composition. One assumption commonly used is that "per lipid" mechanical properties are both additive and constant-that they are an intrinsic property of lipids independent of the surrounding composition. Related to this is the assumption that lipid bulkiness, or "shape," determines its curvature preference, independently of context. In this study, all-atom molecular dynamics simulations on three separate multilipid systems were used to explicitly test these assumptions, applying methodology recently developed to isolate properties of single lipids or nanometer-scale patches of lipids. The curvature preference experienced by populations of lipid conformations were inferred from their redistribution on a dynamically fluctuating bilayer. Representative populations were extracted by both structural similarity and semi-automated hidden Markov model analysis. The curvature preferences of lipid dimers were then determined and compared with an additive model that combines the monomer curvature preference of both the individual lipids. In all three systems, we identified conformational subpopulations of lipid dimers that showed non-additive curvature preference, in each case mediated by a special chemical interaction (e.g., hydrogen bonding). Our study highlights the importance of specific chemical interactions between lipids in multicomponent bilayers and the impact of interactions on bilayer stiffness. We identify two mechanisms of bilayer softening: diffusional softening, driven by the dynamic coupling between lipid distributions and membrane undulations, and conformational softening, driven by the inter-conversion between distinct dimeric conformations.
Collapse
Affiliation(s)
- Henry J Lessen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Kayla C Sapp
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Andrew H Beaven
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
15
|
Simula L, Alifano M, Icard P. How Phosphofructokinase-1 Promotes PI3K and YAP/TAZ in Cancer: Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14102478. [PMID: 35626081 PMCID: PMC9139230 DOI: 10.3390/cancers14102478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We propose that PFK1 promotes a positive feedback loop with PI3K/AKT and YAP/TAZ signaling pathways in cancer cells. Therefore, targeting PFK1 (or its product F-1,6-BP) could improve the efficacy of PI3K and YAP/TAZ inhibitors currently tested in clinical trials. To this aim, we suggest the use of citrate, which is a physiologic and potent inhibitor of PFK1. Abstract PI3K/AKT is one of the most frequently altered signaling pathways in human cancers, supporting the activation of many proteins sustaining cell metabolism, proliferation, and aggressiveness. Another important pathway frequently altered in cancer cells is the one regulating the YAP/TAZ transcriptional coactivators, which promote the expression of genes sustaining aerobic glycolysis (such as WNT, MYC, HIF-1), EMT, and drug resistance. Of note, the PI3K/AKT pathway can also regulate the YAP/TAZ one. Unfortunately, although PI3K and YAP inhibitors are currently tested in highly resistant cancers (both solid and hematologic ones), several resistance mechanisms may arise. Resistance mechanisms to PI3K inhibitors may involve the stimulation of alternative pathways (such as RAS, HER, IGFR/AKT), the inactivation of PTEN (the physiologic inhibitor of PI3K), and the expression of anti-apoptotic Bcl-xL and MCL1 proteins. Therefore, it is important to improve current therapeutic strategies to overcome these limitations. Here, we want to highlight how the glycolytic enzyme PFK1 (and its product F-1,6-BP) promotes the activation of both PI3K/AKT and YAP/TAZ pathways by several direct and indirect mechanisms. In turn, PI3K/AKT and YAP/TAZ can promote PFK1 activity and F-1,6-BP production in a positive feedback loop, thus sustaining the Warburg effect and drug resistance. Thus, we propose that the inhibition of PFK1 (and of its key activator PFK2/PFKFB3) could potentiate the sensitivity to PI3K and YAP inhibitors currently tested. Awaiting the development of non-toxic inhibitors of these enzymes, we propose to test the administration of citrate at a high dosage, because citrate is a physiologic inhibitor of both PFK1 and PFK2/PFKFB3. Consistently, in various cultured cancer cells (including melanoma, sarcoma, hematologic, and epithelial cancer cells), this “citrate strategy” efficiently inhibits the IGFR1/AKT pathway, promotes PTEN activity, reduces Bcl-xL and MCL1 expression, and increases sensitivity to standard chemotherapy. It also inhibits the development of sarcoma, pancreatic, mammary HER+ and lung RAS-driven tumors in mice without apparent toxicities.
Collapse
Affiliation(s)
- Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, 75014 Paris, France;
| | - Marco Alifano
- INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France;
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
| | - Philippe Icard
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
- UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France
- Correspondence:
| |
Collapse
|
16
|
Singh SP, William M, Malavia M, Chu XP. Behavior of KCNQ Channels in Neural Plasticity and Motor Disorders. MEMBRANES 2022; 12:membranes12050499. [PMID: 35629827 PMCID: PMC9143857 DOI: 10.3390/membranes12050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023]
Abstract
The broad distribution of voltage-gated potassium channels (VGKCs) in the human body makes them a critical component for the study of physiological and pathological function. Within the KCNQ family of VGKCs, these aqueous conduits serve an array of critical roles in homeostasis, especially in neural tissue. Moreover, the greater emphasis on genomic identification in the past century has led to a growth in literature on the role of the ion channels in pathological disease as well. Despite this, there is a need to consolidate the updated findings regarding both the pharmacotherapeutic and pathological roles of KCNQ channels, especially regarding neural plasticity and motor disorders which have the largest body of literature on this channel. Specifically, KCNQ channels serve a remarkable role in modulating the synaptic efficiency required to create appropriate plasticity in the brain. This role can serve as a foundation for clinical approaches to chronic pain. Additionally, KCNQ channels in motor disorders have been utilized as a direction for contemporary pharmacotherapeutic developments due to the muscarinic properties of this channel. The aim of this study is to provide a contemporary review of the behavior of these channels in neural plasticity and motor disorders. Upon review, the behavior of these channels is largely dependent on the physiological role that KCNQ modulatory factors (i.e., pharmacotherapeutic options) serve in pathological diseases.
Collapse
|
17
|
Patteson AE, Asp ME, Janmey PA. Materials science and mechanosensitivity of living matter. APPLIED PHYSICS REVIEWS 2022; 9:011320. [PMID: 35392267 PMCID: PMC8969880 DOI: 10.1063/5.0071648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Living systems are composed of molecules that are synthesized by cells that use energy sources within their surroundings to create fascinating materials that have mechanical properties optimized for their biological function. Their functionality is a ubiquitous aspect of our lives. We use wood to construct furniture, bacterial colonies to modify the texture of dairy products and other foods, intestines as violin strings, bladders in bagpipes, and so on. The mechanical properties of these biological materials differ from those of other simpler synthetic elastomers, glasses, and crystals. Reproducing their mechanical properties synthetically or from first principles is still often unattainable. The challenge is that biomaterials often exist far from equilibrium, either in a kinetically arrested state or in an energy consuming active state that is not yet possible to reproduce de novo. Also, the design principles that form biological materials often result in nonlinear responses of stress to strain, or force to displacement, and theoretical models to explain these nonlinear effects are in relatively early stages of development compared to the predictive models for rubberlike elastomers or metals. In this Review, we summarize some of the most common and striking mechanical features of biological materials and make comparisons among animal, plant, fungal, and bacterial systems. We also summarize some of the mechanisms by which living systems develop forces that shape biological matter and examine newly discovered mechanisms by which cells sense and respond to the forces they generate themselves, which are resisted by their environment, or that are exerted upon them by their environment. Within this framework, we discuss examples of how physical methods are being applied to cell biology and bioengineering.
Collapse
Affiliation(s)
- Alison E. Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Merrill E. Asp
- Physics Department and BioInspired Institute, Syracuse University, Syracuse NY, 13244, USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering and Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia PA, 19104, USA
| |
Collapse
|
18
|
Wu Y, Wang M, Xu J, Wei J, Yang H. Signature network-based survey of the effects of a traditional Chinese medicine on heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114750. [PMID: 34662664 DOI: 10.1016/j.jep.2021.114750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Heart failure (HF) after myocardial infarction (MI) is one of the most common disabling and painful diseases. A traditional Chinese medicine (TCM) formula, Shengmaisan, is known as a multitarget medicine that is widely used clinically to treat heart failure (HF) in Asian countries. However, its mechanism has not been comprehensively demonstrated. AIM OF THE STUDY To use a prediction network to figure out which disease link SMZ mainly alleviates in HF and find biomarkers related to myocardial fibrosis in the serum for clinical reference. MATERIALS AND METHODS In this article, we collected a large amount of actual measurement data and our own proteomics data, along with the biomarkers of heart failure staging under study to establish a precise network. Then, we tested and verified the medicinal effect of SMZ in treatment of HF after MI by Measurement of left ventricular wall thickness and ejection fraction by echocardiography. Then we tested the serum level of the potential targets of SMZ predicting by the network we developed using ELISA. RESULTS the cardiac ejection fraction and retarding the thinning of the anterior wall of the left ventricle increased after treating with SMZ. The serum level of EGFR and MAPK1 decreased in the groups treated with SMZ. CONCLUSION SMZ can improve the cardiac function of rats with MI by increasing the cardiac ejection fraction and retarding the thinning of the anterior wall of the left ventricle. In addition, SMZ could delay heart failure mainly by inhibiting the progression of myocardial fibrosis through decreasing the EGFR and MAPK1 levels.
Collapse
Affiliation(s)
- Yue Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Menglan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
19
|
Blackburn NB, Meikle PJ, Peralta JM, Kumar S, Leandro AC, Bellinger MA, Giles C, Huynh K, Mahaney MC, Göring HHH, VandeBerg JL, Williams-Blangero S, Glahn DC, Duggirala R, Blangero J, Michael LF, Curran JE. Identifying the Lipidomic Effects of a Rare Loss-of-Function Deletion in ANGPTL3. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003232. [PMID: 33887960 DOI: 10.1161/circgen.120.003232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (β=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Nicholas B Blackburn
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia (N.B.B., J.M.P.)
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Ana C Leandro
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (P.J.M., C.G., K.H.)
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John L VandeBerg
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA (D.C.G.).,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT (D.C.G.)
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | - John Blangero
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| | | | - Joanne E Curran
- South Texas Diabetes and Obesity Institute (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX.,Department of Human Genetics (N.B.B., J.M.P., S.K., A.C.L., M.C.M., H.H.H.G., J.L.V., S.W.-B., R.D., J.B., J.E.C.), School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX
| |
Collapse
|