1
|
Luo M, Xing Z, Gou Y, Yang X, Zhang X, Yu W, Lv H. Associations Between the Gut Microbiota and Its Related Metabolic Pathways and Uveitis: A Bidirectional Two-Sample Mendelian Randomization Study. Transl Vis Sci Technol 2025; 14:15. [PMID: 40358579 DOI: 10.1167/tvst.14.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Affiliation(s)
- Maomei Luo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhen Xing
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yanhao Gou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianlin Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Wei Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Miller FW. Environment, Lifestyles, and Climate Change: The Many Nongenetic Contributors to The Long and Winding Road to Autoimmune Diseases. Arthritis Care Res (Hoboken) 2025; 77:3-11. [PMID: 39228044 PMCID: PMC11684977 DOI: 10.1002/acr.25423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/15/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
A critical unanswered question is what is causing the increase in the prevalence of autoimmunity and autoimmune diseases around the world. Given the rapidity of change, this is likely the result of major recent alterations in our exposures to environmental risk factors for these diseases. More evidence is becoming available that the evolution of autoimmune disease, years or even decades in the making, results from multiple exposures that alter susceptible genomes and immune systems over time. Exposures during sensitive phases in key developmental or hormonal periods may set the stage for the effects of later exposures. It is likely that synergistic and additive impacts of exposure mixtures result in chronic low-level inflammation. This inflammation may eventually pass thresholds that lead to immune system activation and autoimmunity, and with further molecular and pathologic changes, the complete clinical syndrome emerges. Much work remains to be done to define the mechanisms and risk and protective factors for autoimmune conditions. However, evidence points to a variety of pollutants, xenobiotics, infections, occupational exposures, medications, smoking, psychosocial stressors, changes in diet, obesity, exercise, and sleep patterns, as well as climate change impacts of increased heat, storms, floods, wildfires, droughts, UV radiation, malnutrition, and changing infections, as possible contributors. Substantial investments in defining the role of causal factors, in whom and when their effects are most important, the necessary and sufficient gene-environment interactions, improved diagnostics and therapies, and preventive strategies are needed now to limit the many negative personal, societal, and financial impacts that will otherwise occur.
Collapse
Affiliation(s)
- Frederick W. Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle ParkNorth Carolina
| |
Collapse
|
3
|
Liu Y, Zhang W, Wang H, Liu H, Yu Q, Luo X, Feng X, Yang P. Fine particulate matter potentiates Th17-cell pathogenicity in experimental autoimmune uveitis via ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116979. [PMID: 39232294 DOI: 10.1016/j.ecoenv.2024.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The effect of fine particulate matter (PM2.5) on the development of uveitis remains unclear. Therefore, this study was designed to investigate the role of PM2.5 in experimental autoimmune uveitis (EAU) and its potential mechanism. Our results showed that PM2.5 could exacerbate the activity of EAU, as evidenced by severer clinical and pathological changes, correlated with elevated Th17 cells frequency and IL-17A expression. Proteomic analysis revealed ferroptosis was the most significant pathway. In vivo, the levels of Fe2+, ROS, lipid ROS, and malondialdehyde, as well as the expression of TFRC, HMOX1, FTH1, and FTL1 in CD4+ T cells were increased, while GSH/GSSG ratio and the expression of ACSL1 and GPX4 were decreased after PM2.5 exposure. In vitro, the expression of TFRC and HMOX1 were increased, while the expression FTH1, FTL1, ACSL1, and GPX4 were decreased after PM2.5 exposure. Ferrostatin-1 effectively alleviated PM2.5-induced intraocular inflammation and suppressed the frequency of Th17 cells. These results suggest that PM2.5 could aggravate intraocular inflammation and immune response in EAU mice through ferroptosis. Ferroptosis could be a potential marker for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Yaning Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanyun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmiao Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyue Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Dellaripa PF, Sung LH, Bain PA, Lanata C, Blazar A, Miller FW, Feldman CH. American College of Rheumatology White Paper: The Effects of Climate Change on Rheumatic Conditions-An Evolving Landscape and a Path Forward. Arthritis Rheumatol 2024; 76:1459-1466. [PMID: 38751102 PMCID: PMC11498941 DOI: 10.1002/art.42919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Increases in global temperatures and extreme weather events associated with climate change have complex yet poorly understood detrimental impacts on human health. We reviewed the current published literature on climate change-related effects and rheumatic conditions. METHODS To summarize our current understanding of the likely effects of climate change, including increased air pollution, on rheumatic disease, we searched the published, peer-reviewed English-language literature from January 2000 to December 2022. Articles were reviewed by a team of rheumatologists and clinical and translational science researchers. Systematic review articles were not included but informed additional literature searches. RESULTS After extensive examination and adjudication, 88 articles met inclusion criteria and were selected for review. Much of the epidemiologic investigations assessed associations between air pollution and increased risk of development of rheumatoid arthritis, anti-citrullinated protein antibodies, flares of gout, and hospitalizations for systemic lupus erythematosus. Increased heat vulnerability was associated with higher odds of recurrent hospitalizations across rheumatic conditions. Mechanisms for observed associations are poorly understood but could include the effects of epigenetic changes, oxidative stress, and inflammatory cytokines. Studies had limitations, including restricted geography and populations studied without focus on historically marginalized communities at highest risk for adverse effects from pollution and climate change, the relative lack of mechanistic evaluations, and most with only indirect links to climate change. CONCLUSION To date, the published literature lacks studies that directly examine effects of climate change on rheumatic diseases. Collaborative translational and epidemiologic research is needed to enhance our understanding and awareness in this area.
Collapse
Affiliation(s)
- Paul F Dellaripa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Lily H Sung
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Paul A Bain
- Countway Library, Harvard Medical School, Boston, MA
| | - Cristina Lanata
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institution, NIH
| | | | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, NIH
| | - Candace H Feldman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | |
Collapse
|
5
|
Zheng Y, Mou Z, Tan S, Wang X, Yuan J, Li H. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway. Neurochem Int 2024; 178:105787. [PMID: 38830510 DOI: 10.1016/j.neuint.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To investigate the possible roles of Interleukin 17A (IL-17A) and IL-17A neutralizing antibodies (IL-17Ab) in glaucoma and the potential mechanisms. METHODS The two glaucoma animal models, chronic ocular hypertension (COH) and N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) damage, were established and treated with intravitreal injection of IL-17A or IL-17Ab. Intraocular pressure (IOP) was measured by a rebound tonometer. The retina and RGC injury were evaluated by HE staining, TUNLE assay and Brn3a immunofluorescence staining. The frequency of IL-17A+CD4+T cells in peripheral blood was detected by flow cytometry. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence staining, Western Blot and qPCR in retina. The RNA and protein expression of Act1/TRAF6/NF-κB were detected by Western Blot and qPCR in retina. RESULTS The expression of IL-17A increased in glaucoma models. After intravitreal injection of IL-17A, in the retina, the number of RGCs decreased, the apoptosis of RGCs increased, the Müller cell gliosis was more obvious. In addition, peripheral inflammation aggravated. Whereas the intravitreal injection of IL-17Ab alleviated the relevant manifestations and peripheral inflammation, reduced the gliosis of Müller cells. In the COH model, IOP increased after the injection of IL-17A, while the intravitreal injection of IL-17Ab led to a decrease in IOP. Furthermore, IL-17A promotes the apoptosis of RGCs by binding to IL-17A receptor, activating Act1/TRAF6/NF-κB pathways. CONCLUSION IL-17A plays a role in and aggravates RGC damage in glaucoma. IL-17Ab can neutralize the pro-inflammatory effect of IL-17A and have a protective function in glaucoma. These findings reveal the importance of IL-17A in the pathogenesis of glaucoma, which will shed light on a novel direction for the prevention and treatment of glaucoma, and also provide a reference for further research on other retinal diseases.
Collapse
Affiliation(s)
- Yunfan Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhenni Mou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jingchang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
6
|
Li H, Tan H, Liu Z, Pan S, Tan S, Zhu Y, Wang Q, Su G, Zhou C, Cao Q, Yang P. Succinic acid exacerbates experimental autoimmune uveitis by stimulating neutrophil extracellular traps formation via SUCNR1 receptor. Br J Ophthalmol 2023; 107:1744-1749. [PMID: 35346946 DOI: 10.1136/bjophthalmol-2021-320880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
AIMS To investigate the effect of succinic acid on the development of experimental autoimmune uveitis (EAU) and the underlying mechanism. METHODS Succinic acid was administrated intraperitoneally to evaluate its effects on immune response and EAU in mice. Intraocular inflammation was evaluated by histopathological scoring. Frequencies of Th1/Th17 cells were measured by flow cytometry. Concentrations of IFN-γ/IL-17A, neutrophil elastase (NE) and myeloperoxidase (MPO) were determined by enzyme-linked immunosorbent test. Infiltration of neutrophils and generation of neutrophil extracellular traps (NETs) within the eye were assessed by immumofluorescence. NETs formation in extracellular matrix was visualised by laser scanning confocal microscopy. Succinate receptor (SUCNR1) antagonist was used to investigate its effect on the generation of NETs. RESULTS Intraperitoneal injection of succinic acid exacerbated EAU severity as evidenced by severe histological changes in association with elevated frequencies of splenic Th1/Th17 cells, and upregulated levels of IFN-γ/IL-17A and NETs in plasma. In vitro experiments showed that succinic acid could promote the generation of NETs by neutrophils as shown by increased expression of NE and MPO.NETs could increase the frequencies of Th1/Th17 cells in CD4+ T cells and their expression of IFN-γ/IL-17A. In the experiment of receptor antagonism, the upregulatory effect of succinic acid on NETs could be significantly blocked by SUCNR1 antagonist. CONCLUSIONS Succinic acid could worsen EAU induced by IRBP in mice. This effect was possibly mediated by its upregulation on NETs generation and frequencies of Th1/Th17 cells in affiliation with increased production of IFN-γ/IL-17A through succinic acid-SUCNR1 axis.
Collapse
Affiliation(s)
- Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Handan Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyun Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Chang R, Ji Y, Xu J, Lai Y, Zhang H, Zhong Z, Su G, Yang P. Identification of FCER1G as a cyclosporin A plus corticosteroid sensitization gene in female patients with Vogt-Koyanagi-Harada disease. Clin Immunol 2023; 256:109800. [PMID: 37821074 DOI: 10.1016/j.clim.2023.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
The resistance development of the combination regimen of corticosteroids (CS) with cyclosporin A (CsA) leads to therapeutic failure of some patients with autoimmune diseases. In the male patients with Vogt-Koyanagi-Harada (VKH) disease, we have identified RPS4Y1 as an important resistance gene of the regimen and a functional mediator of chlorambucil (CLB). However, it remains unclear what is responsible for the resistance in female patients. In the present study, we performed RNA sequencing, tandem mass tag (TMT) proteomics, gain- and loss-of-function assays and rescue assays to screen and validate potential resistant mediators. The results showed that only Fc epsilon receptor Ig (FCER1G) exhibited significantly differential expression in CD4+ T cells among female CsA & CS resistant, sensitive and CLB & CsA & CS treated patients at transcription and protein levels. Inhibition of FCER1G was demonstrated to modulate CD4+ T cell resistance to CsA & CS in female patients. Importantly, the inhibition was mediated by elevated DNA methylation in the promoter region of the FCER1G gene. Moreover, we found that the salvage effect of CLB on CsA & CS resistance was mediated by an increased FCER1G expression via DNA demethylation in female patients. Taken together, the downregulation of FCER1G due to DNA hypermethylation is responsible for the resistance to CsA & CS and CLB reverses this resistance by inducing FCER1G expression via DNA demethylation in female patients. Modulation of FCER1G would be a promising sensitization strategy in female patients with resistance to CsA & CS.
Collapse
Affiliation(s)
- Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Yan Ji
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Yuxian Lai
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hang Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Cao F, Liu ZR, Ni QY, Zha CK, Zhang SJ, Lu JM, Xu YY, Tao LM, Jiang ZX, Pan HF. Emerging roles of air pollution and meteorological factors in autoimmune eye diseases. ENVIRONMENTAL RESEARCH 2023; 231:116116. [PMID: 37182831 DOI: 10.1016/j.envres.2023.116116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Autoimmune eye diseases (AEDs), a collection of autoimmune inflammatory ocular conditions resulting from the dysregulation of immune system at the ocular level, can target both intraocular and periorbital structures leading to severe visual deficit and blindness globally. The roles of air pollution and meteorological factors in the initiation and progression of AEDs have been increasingly attractive, among which the systemic and local mechanisms are both involved in. Exposure to excessive air pollution and extreme meteorological conditions including PM2.5/PM0.1, environmental tobacco smoke, insufficient sunshine, and high temperature, etc., can disturb Th17/Treg balance, regulate macrophage polarization, activate neutrophils, induce systemic inflammation and oxidative stress, decrease retinal blood flow, promote tissue fibrosis, activate sympathetic nervous system, adversely affect nutrients synthetization, as well as induce heat stress, therefore may together deteriorate AEDs. The crosstalk among inflammation, oxidative stress and dysregulated immune system appeared to be prominent. In the present review, we will concern and summarize the potential mechanisms underlying linkages of air pollution and meteorological factors to ocular autoimmune and inflammatory responses. Moreover, we concentrate on the specific roles of air pollutants and meteorological factors in several major AEDs including uveitis, Graves' ophthalmopathy (GO), ocular allergic disease (OAD), glaucoma, diabetic retinopathy (DR), etc.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhuo-Ran Liu
- Department of Ophthalmology, Ningbo Hospital, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1155 Binhaier Road, Ningbo, Zhejiang, China
| | - Qin-Yu Ni
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China; Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Chen-Kai Zha
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Jie Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jia-Min Lu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yue-Yang Xu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
9
|
Prednisone acetate modulates Th1/Th2 and Th17/Treg cell homeostasis in experimental autoimmune uveitis via orchestrating the Notch signaling pathway. Int Immunopharmacol 2023; 116:109809. [PMID: 36753985 DOI: 10.1016/j.intimp.2023.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Uveitis is an immune eye disease that can seriously impair vision. Glucocorticoids (GCS) have been extensively used to treat uveitis, though the mechanisms have not been fully elucidated. In this study, we investigated the regulatory effects of prednisone acetate (PA) on the Th1/Th2 and Th17/Treg balance in experimental autoimmune uveitis (EAU) through modulating the Notch signaling pathway. Briefly, Lewis rats were randomly divided into the normal control (NC), EAU, and EAU + PA groups. Rats in EAU and EAU + PA groups were induced EAU, while those in the EAU + PA group were treated with PA. Clinical and histopathological scores were employed to assess the progression of EAU. The expression levels of Notch signaling-related molecules (Notch1, Notch2, Dll3, Dll4, and Rbpj) and Th-associated cytokines (IFN-γ, IL-4, IL-10, and IL-17) were assessed via quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the frequencies of Th1, Th2, Th17 and Treg cells were detected by flow cytometry. These experimental results indicated that activation of the Notch signaling pathway occurred in EAU rats and resulted in a severe imbalance of the Th17/Treg and Th1/Th2 ratios. PA treatment significantly alleviated ocular inflammation, inhibited activation of the Notch signaling pathway, and declined Th1, and Th17 cell differentiation, thereby restoring the Th1/Th2 and Th17/Treg balance. Collectively, PA can positively enhance the systemic immune response and improve the intraocular microenvironmental homeostasis by inhibiting activation of the Notch signaling pathway and by restoring Th1/Th2 and Th17/Treg balance, thus achieving the goal of treating uveitis.
Collapse
|
10
|
Yang M, Yang Z, Huang J, Yu W, He X, Yuan M, Han W, Chen W. Optimization of determinant factors associated with the efficiency of experimental autoimmune uveitis induction in C57BL/6 mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1274. [PMID: 36618787 PMCID: PMC9816839 DOI: 10.21037/atm-22-2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022]
Abstract
Background Experimental autoimmune uveitis (EAU) is a widely used animal model for uveitis research. The C57BL/6 mouse strain is the most commonly used mouse strain in the research of genetic modification, but C57BL/6 mice are not sufficiently susceptible to EAU induction, partly due to experimental factors. This work aims to optimize relevant factors to improve the efficiency of EAU induction in C57BL/6 mice. Methods To induce EAU, mice were immunized via intraperitoneal injection with pertussis (PTX) and subcutaneous injection with interphotoreceptor retinoid-binding protein peptide 1-20 (IRBP1-20) emulsified with complete Freund's adjuvant (CFA). The severity of inflammation was assessed using several approaches. The relevant experimental factors were evaluated, including methods of emulsification and doses of peptide and PTX. Results Uveitis occurred at 8-12 days after immunization and reached its peak at 18-20 days, while T helper type 17 (Th17) cells peaked earlier at 14-18 days after immunization. Based on clinical and histological scores, 500 µg of IRBP peptide was the optimal dose required to induce EAU. The PTX dose demonstrated no influence on EAU incidence, but potentially affected the severity of uveitis. A single injection of 1,000 ng of PTX induced the most severe EAU and the highest proportion of Th17 cells. Compared to extruded emulsion, sonicated emulsion produced a higher incidence, higher histological score, and a 2-day-earlier onset of EAU. Electron microscopy showed a significantly different microstructure between the 2 emulsions. Conclusions This work optimized the protocols of EAU induction and obtained a high and stable induction rate with severe inflammation in the C57BL/6 mouse strain. Our results facilitate future experimental research involving uveitis.
Collapse
Affiliation(s)
- Ming Yang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zixuan Yang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Huang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangshu Yu
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoying He
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minjie Yuan
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Han
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Cao F, He YS, Xiang K, Wan CH, Liu W, Gui YC, Pan HF, Jiang ZX, Tao LM. Association between meteorological factors and hospital admissions for uveitis in Hefei, China: a time-series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45783-45792. [PMID: 35149948 DOI: 10.1007/s11356-022-19092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Meteorological variables are regarded as risk factors for inflammatory diseases, but their associations with uveitis, one of the leading causes accounting for blindness worldwide with an estimated prevalence of 38-714 cases/100,000 person-years, have not been thoroughly investigated. The present study explored the short-term association between meteorological variables and hospital admissions for uveitis in Hefei City, China. Daily data on uveitis hospital admissions and meteorological variables including mean temperature (MT) (°C), diurnal temperature range (DTR) (°C), and relative humidity (RH) (%), from 2014 to 2020, were collected. A time-series study using generalized linear model combined with distributed lag non-linear model was applied. Totally, 1911 admissions for uveitis including 894 first admissions and 1017 readmissions were reported during the study period. The associations of high percentile of MT (75th, 24.5℃) and low percentile of DTR (25th, 5.4℃) with uveitis admissions were observed to be statistically significant from lag9 (RR = 1.041, 95%CI: 1.002-1.081) to lag11 (RR = 1.053, 95%CI: 1.003-1.104) and lag4 (RR = 1.053, 95%CI: 1.019-1.088) to lag5 (RR = 1.052, 95%CI: 1.020-1.085), respectively. Moreover, a significant association between low percentile of RH (1th, 44%) and uveitis admissions appeared at lag0-8 (RR = 1.869, 95%CI: 1.017-3.434) and lasted until lag0-13 (RR = 2.539, 95%CI: 1.102-5.850) in the cumulative lag structure. Subgroup analyses indicated that males and the young seemed to be more sensitive to high MT exposure, while females appeared to be more vulnerable to low DTR exposure. Interestingly, both the young and the elderly are susceptible to low DTR and low RH exposure. Furthermore, high MT and low DTR exposure were associated with increased risk of first admission for uveitis. In summary, exposure to high-value of MT and low-value of DTR and RH may increase the hospital admissions for uveitis, especially for the status of first admission.
Collapse
Affiliation(s)
- Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230032, People's Republic of China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Cheng-Huan Wan
- Department of Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wei Liu
- Department of Pharmacology, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Yan-Chao Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230032, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230032, People's Republic of China.
| | - Li-Ming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
12
|
Li Y, Xie L, Song W, Huang M, Cheng Y, Chen S, Gao Y, Yan X. The Role of Neutrophil Extracellular Traps in the Ocular System. Curr Eye Res 2022; 47:1227-1238. [PMID: 35634655 DOI: 10.1080/02713683.2022.2079141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: Neutrophils remain at the top of congenital and adaptive immune systems. The past 20 years witnessed a steep rise in the interest in neutrophil extracellular traps (NETs), which are a novel type of anti-pathogen mechanism coordinated with neutrophils. However, accumulating data revealed that excessive NETs in the host were associated with exacerbated inflammation, thrombosis, and autoimmunity. Increasing evidence found the participation of NETs in the pathophysiological process of many infectious and sterile diseases in the ocular system. Therefore, we discussed the role of neutrophil extracellular traps in the ocular system in this review.Methods: Articles were searched on PubMed, Embase and Web of science up to December 2021.Results: In this review, we exhibited the protective role of neutrophils patrolling the ocular surface from invading pathogens and their contribution to exacerbated inflammation and thrombogenesis in some ocular diseases. We also discussed the physiological and pathological processes of NET generation to identify novel biomarkers and therapeutic targets to interrupt immoderate NET formation and alleviate NET-induced harmful effects.Conclusions: Neutrophils and NETs are quite important for immune responses in the ocular system, while their negative effects on ocular tissue should also be emphasized, which could serve as novel biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| |
Collapse
|