1
|
Wilkinson LRB, Try H, Robertson SA, Brooks RC, Garratt M. Prior mating without fertilization increases subsequent litter size in mice. Biol Lett 2025; 21:20240659. [PMID: 40199343 PMCID: PMC11978440 DOI: 10.1098/rsbl.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Female exposure to seminal fluid influences multiple aspects of reproductive physiology. We tested the hypothesis that extended exposure to seminal fluid prior to pregnancy provides fertility benefits, as predicted from human studies linking seminal fluid exposure to a reduced incidence of pregnancy disorders. Female mice were co-housed for five months with either vasectomized males (producing seminal plasma but not sperm), vasectomized males without seminal vesicles (producing neither seminal plasma nor sperm), intact males or other females, before mating all females with intact males to assess pregnancy outcomes. We found an increase in litter size at birth in females previously exposed to vasectomized males that was not evident after mating with seminal vesicle-excised males, although the latter comparison had less power. However, postnatal loss of offspring led to similar litter sizes between groups at weaning. In a second study, we observed that females previously housed with vasectomized males and later mated to intact males maintained more fetuses compared with naive females in late pregnancy. Placental morphology was also altered with a significant decrease in the size of the labyrinthine zone, a sign of increased placental efficiency. These results provide experimental evidence that preconception seminal fluid exposure in the absence of conception can improve later pregnancy outcomes in mice.
Collapse
Affiliation(s)
| | - Heather Try
- Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah A. Robertson
- Robinson Research Institute and School of Bioscience, University of Adelaide, Adelaide, South Australia5005, Australia
| | - Robert C. Brooks
- Evolution and Ecology Research Centre, UNSW, Sydney, New South Wales, Australia
| | - Michael Garratt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Bayammagari GS, Yeddula SGR, Winuthayanon S, DeMayo FJ, Lydon JP, Spencer TE, Kelleher AM. Progesterone receptor in uterine glands is required for pregnancy establishment in mice. FASEB J 2025; 39:e70495. [PMID: 40123536 DOI: 10.1096/fj.202500166rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Embryo implantation is a critical event in the establishment of pregnancy, and implantation failure is a major cause of pregnancy loss in women. Coordinated, cell-type specific responses to the ovarian steroid hormones, estrogen, and progesterone, within the endometrium underlie successful embryo implantation and pregnancy establishment. In this study, we utilized a glandular epithelium (GE) specific Cre recombinase mouse line that is only active in the adult (Prss29-Cre) to determine the biological role of progesterone receptor (PGR) in uterine glands during pregnancy. Conditional ablation of PGR specifically in the GE compromised fertility due to defects in uterine receptivity and embryo implantation. Histological and transcriptomic analyses uncovered disruption of multiple PGR-regulated genes in the GE during the window of receptivity, including leukemia inhibitory factor (LIF), a cytokine produced specifically by the GE that is essential for embryo implantation. Interestingly, intraperitoneal injections of recombinant LIF in Pgr conditional knockout mice rescued embryo implantation and supported successful pregnancy to term. These findings underscore the vital role of PGR in regulating Lif expression in the GE, while suggesting that PGR in the glands of the uterus is unessential once pregnancy is established. Overall, these findings reveal a previously unrecognized role of PGR in uterine glands and support the hypothesis that glandular secretions, governed by PGR, are indispensable for pregnancy establishment.
Collapse
Affiliation(s)
| | | | - Sarayut Winuthayanon
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Kelleher
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Chan HY, Robertson SA. Seminal fluid effects on uterine receptivity to embryo implantation: transcriptomic strategies to define molecular mechanisms. Reprod Fertil Dev 2025; 37:RD24162. [PMID: 40100824 DOI: 10.1071/rd24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Embryo implantation requires both a developmentally competent embryo and a receptive uterus. Impaired uterine receptivity is a common constraint on implantation success and reproductive outcome. Ovarian steroid hormones oestrogen and progesterone play a central role in establishing uterine receptivity, but other factors also contribute. One additional regulating factor is male partner seminal fluid. However, the full physiological impacts of seminal fluid on uterine receptivity and the specific molecular pathways involved are not yet completely defined. New advances in RNA-sequencing technologies provide a powerful means to examine how uterine tissues and cells respond to seminal fluid contact. Findings utilising sequencing technology provide strong cellular and molecular evidence in humans and mice that seminal fluid contact around the time of ovulation drives immune and vascular changes with potential to affect endometrial receptivity in the peri-implantation phase. This approach has led to the discovery of novel mediators and regulatory factors subsequently shown to facilitate embryo implantation in genetic mouse models, enabling functional validation. Here, we summarise the evidence from recent microarray and RNA-sequencing findings that seminal fluid contact can directly and indirectly impact the transcriptional state of endometrial tissue during the implantation window in mice and also in humans. Progress in elucidating the female reproductive tract response to seminal fluid will improve understanding of male partner effects on endometrial receptivity, and the knowledge gained will have practical applications for achieving healthy pregnancy and offspring outcomes.
Collapse
Affiliation(s)
- Hon Y Chan
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
4
|
Akaeda S, Aikawa S, Hirota Y. Spatial and molecular anatomy of the endometrium during embryo implantation: a current overview of key regulators of blastocyst invasion. FEBS J 2024; 291:4206-4221. [PMID: 38348632 DOI: 10.1111/febs.17077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 10/04/2024]
Abstract
Embryo implantation is composed of three steps: blastocyst apposition, adhesion/attachment and invasion. Blastocyst invasion has been studied less extensively than the other two events. Historically, studies conducted using electron microscopy have shown the removal of epithelial cells in the vicinity of the attached blastocysts in rodents, although the underlying mechanisms have remained unclear. Here, we describe recent studies using mice with uterine-specific gene deletion that demonstrated important roles for nuclear proteins such as progesterone receptor, hypoxia inducible factor and retinoblastoma in the regulation of embryo invasion. In these mouse models, the detachment of the endometrial luminal epithelium, decidualization in the stroma, and the activation of trophoblasts have been found to be important in ensuring embryo invasion. This review summarizes the molecular signaling associated with these cellular events, mainly evidenced by mouse models.
Collapse
Affiliation(s)
- Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
5
|
Savolainen A, Kapiainen E, Ronkainen VP, Izzi V, Matzuk MM, Monsivais D, Prunskaite-Hyyryläinen R. 3DMOUSEneST: a volumetric label-free imaging method evaluating embryo-uterine interaction and decidualization efficacy. Development 2024; 151:dev202938. [PMID: 39023143 PMCID: PMC11385321 DOI: 10.1242/dev.202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.
Collapse
Affiliation(s)
- Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Emmi Kapiainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | | | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
6
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
7
|
Vedelek V, Bicskei P, Tábi M, Lajkó N, Ékes C, Bereczki K, Meixner-Csáti Z, Sinka R, Vágvölgyi A, Zádori J. Endometrium development patterns and BMI groups among in vitro fertilization patients; prognostic aspects. Front Endocrinol (Lausanne) 2024; 15:1379109. [PMID: 38737557 PMCID: PMC11082419 DOI: 10.3389/fendo.2024.1379109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction The impact of the obesity pandemic on female reproductive capability is a factor that needs to be investigated. In addition, the link between endometrial thickness and in vitro fertilization (IVF) outcomes is contentious. Goal Our goal was to analyze the association among endometrium development, hormone levels, embryo quality, clinical pregnancy, anamnestic parameters, and body mass index (BMI) in women receiving IVF treatment. Patients and methods 537 participants undergoing IVF/ICSI cycles with successful oocyte retrieval were enrolled. Subjects were divided into four BMI based groups: underweight (UW; n=32), normal weight (NW; n=324), overweight (OW; n= 115), obesity (OB; n=66). Anthropometric and anamnestic parameters, characteristics of stimulation, endometrial thickness on the day of hCG injection, at puncture, at embryo transfer, FSH, LH, AMH, partner's age and the semen analysis indicators, embryo quality, clinical pregnancy, were recorded and analyzed. Support Vector Machine (SVM) was built to predict potential pregnancies based on medical data using 22 dimensions. Results In accordance with BMI categories, when examining pregnant/non-pregnant division, the average age of pregnant women was significantly lower in the UW (30.9 ± 4.48 vs. 35.3 ± 5.49 years, p=0.022), NW (34.2 ± 4.25 vs. 36.3 ± 4.84 years, p<0.001), and OW (33.8 ± 4.89 vs. 36.3 ± 5.31 years, p=0.009) groups. Considering FSH, LH, and AMH levels in each BMI category, a statistically significant difference was observed only in the NW category FSH was significantly lower (7.8 ± 2.99 vs. 8.6 ± 3.50 IU/L, p=0.032) and AMH (2.87 ± 2.40 vs. 2.28 ± 2.01 pmol/L, p=0.021) was higher in pregnant women. There were no further statistically significant differences observed between the pregnant and non-pregnant groups across any BMI categories, especially concerning endometrial development. Surprisingly, BMI and weight correlated negatively with FSH (r=-0.252, p<0.001; r=-0.206, p<0.001, respectively) and LH (r= -0.213, p<0.001; r= -0.195, p<0.001) in the whole population. SVM model average accuracy on predictions was 61.71%. Discussion A convincing correlation between endometrial thickness development and patients' BMI could not be substantiated. However, FSH and LH levels exhibited a surprising decreasing trend with increasing BMI, supporting the evolutionary selective role of nutritional status. Our SVM model outperforms previous models; however, to confidently predict the outcome of embryo transfer, further optimization is necessary.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Petra Bicskei
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Mariann Tábi
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Noémi Lajkó
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Csaba Ékes
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Kristóf Bereczki
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Zsófia Meixner-Csáti
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Vágvölgyi
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Di X, Duan Z, Ma Y, Song X, Hao Y, Li G, Tan Z, Lou Y, Lin X. Jiawei Shoutai Pill promotes decidualization by regulating the SGK1/ENaC pathway in recurrent spontaneous abortion. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116939. [PMID: 37479068 DOI: 10.1016/j.jep.2023.116939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Shoutai Pill (JWSTW) is a traditional herbal formula for recurrent spontaneous abortion (RSA). Although JWSTW significantly improves the clinical symptoms of RSA patients, its molecular mechanism remains unclear. AIM OF STUDY This study evaluated the expression and function of the serum/glucocorticoid regulated kinase 1/epithelial sodium channel (SGK1/ENaC) pathway and decidualization level in RSA patients and mice. It also investigated the therapeutic effects and potential mechanisms of JWSTW. MATERIALS AND METHODS 30 early RSA patients and 30 normal pregnant women undergoing induced abortion during the same period were included in the study. Decidual tissues were collected, and HE staining, immunohistochemistry, Western blot, and RT-PCR were used to detect protein and mRNA expression levels of SGK1, ENaC-a, estrogen Rreceptor β (ERβ), and progesterone receptor (PR) in patients' decidual tissues. Protein expression levels of prolactin receptor (PRLR) and insulin-like growth factor binding protein 1 (IGFBP-1) were also detected. A classical RSA mouse model was constructed, and the mice were randomly divided into four groups: normal, model, dydrogesterone (DQYT) (0.33 g/kg/d), and JWSTW (1.66 g/kg/d). The normal and model groups received the same volume of distilled water by gavage for 8 and 14 days after pregnancy. On the 14th day of pregnancy, the embryonic loss rate of each group, the number of offspring born to naturally delivered mice, and the protein or mRNA expression levels of key factors of the SGK1/ENaC pathway (SGK1, ENaC-a, ERβ, and PR), decidual proliferation marker (Ki67), mesenchymal-epithelial transition (E-cadherin and Vimentin), and decidualization markers (PRLR and IGFBP-1) in mouse decidual tissue on the eighth day of pregnancy were observed. RESULTS The decidual tissue structure of RSA patients was abnormal. Immunohistochemical analysis revealed significantly reduced positive expression of SGK1, ENaC-a, ERβ, and PR proteins in the decidual tissue of RSA patients (P < 0.001). Western blot and RT-PCR analyses demonstrated significantly decreased protein and mRNA expression of SGK1, ENaC-a, ERβ, and PR in the decidual tissue of RSA patients (all P < 0.05). Additionally, protein expression of PRLR and IGFBP-1 was significantly reduced (both P < 0.001). The RSA mouse model exhibited a significant increase in embryo loss rate and decreased litter size (both P < 0.001). Treatment with DQYT and JWSTW rescued the embryo loss rate and litter size to varying extents (all P < 0.05). The protein or mRNA expression levels of SGK1, ENaC-a, ERβ, PR, Ki67, E-cadherin, vimentin, PRLR, and IGFBP-1 in RSA mice were improved to different degrees after treatment with DQYT and JWSTW (all P < 0.05). CONCLUSIONS Abnormal SGK1/ENaC signaling pathway regulation is closely associated with early endometrial damage in RSA patients. JWSTW promotes endometrial proliferation and mesenchymal-epithelial transition through the SGK1/ENaC signaling pathway, improving endometrial shedding. Consequently, JWSTW is a potential treatment for RSA.
Collapse
Affiliation(s)
- Xiaoqian Di
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Zibo Duan
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Xiaodan Song
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Yanzhi Hao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050091, China.
| | - Guolei Li
- Hebei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| | - Zhanwang Tan
- Hebei Medical University, Shijiazhuang, Hebei, 050011, China.
| | - Yingying Lou
- Hebei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| | - Xiaohua Lin
- Hebei Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
9
|
Aikawa S, Hirota Y. Roles of lipid mediators in early pregnancy events. Reprod Med Biol 2024; 23:e12597. [PMID: 39010880 PMCID: PMC11247399 DOI: 10.1002/rmb2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Background Early pregnancy events, including embryo implantation, are critical for maintaining a healthy pregnancy and facilitating childbirth. Despite numerous signaling pathways implicated in establishing early pregnancy, a comprehensive understanding of implantation remains elusive. Methods This paper provides a comprehensive review of the current research on lipids in the context of early pregnancy, with a particular focus on feto-maternal communications. Main Findings Embryo implantation entails direct interaction between uterine tissues and embryos. Introducing embryos triggers significant changes in uterine epithelial morphology and stromal differentiation, facilitating embryo implantation through communication with uterine tissue. Studies employing genetic models and chemical compounds targeting enzymes and receptors have elucidated the crucial roles of lipid mediators-prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and cannabinoids-in early pregnancy events. Conclusion Given the high conservation of lipid synthases and receptors across species, lipid mediators likely play pivotal roles in rodents and humans. Further investigations into lipids hold promise for developing novel diagnostic and therapeutic approaches for infertility in humans.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
10
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
11
|
Parks SE, Geng T, Monsivais D. Endometrial TGFβ signaling fosters early pregnancy development by remodeling the fetomaternal interface. Am J Reprod Immunol 2023; 90:e13789. [PMID: 38009061 PMCID: PMC10683870 DOI: 10.1111/aji.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/28/2023] Open
Abstract
The endometrium is a unique and highly regenerative tissue with crucial roles during the reproductive lifespan of a woman. As the first site of contact between mother and embryo, the endometrium, and its critical processes of decidualization and immune cell recruitment, play a leading role in the establishment of pregnancy, embryonic development, and reproductive capacity. These integral processes are achieved by the concerted actions of steroid hormones and a myriad of growth factor signaling pathways. This review focuses on the roles of the transforming growth factor β (TGFβ) pathway in the endometrium during the earliest stages of pregnancy through the lens of immune cell regulation and function. We discuss how key ligands in the TGFβ family signal through downstream SMAD transcription factors and ultimately remodel the endometrium into a state suitable for embryo implantation and development. We also focus on the key roles of the TGFβ signaling pathway in recruiting uterine natural killer cells and their collective remodeling of the decidua and spiral arteries. By providing key details about immune cell populations and TGFβ signaling within the endometrium, it is our goal to shed light on the intricate remodeling that is required to achieve a successful pregnancy.
Collapse
Affiliation(s)
- Sydney E. Parks
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Zhao W, Wang Y, Liu J, Yang Q, Zhang S, Hu X, Shi Z, Zhang Z, Tian J, Chu D, An L. Progesterone Activates the Histone Lactylation-Hif1α-glycolysis Feedback Loop to Promote Decidualization. Endocrinology 2023; 165:bqad169. [PMID: 37950883 DOI: 10.1210/endocr/bqad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Decidualization is a progesterone-dependent cellular differentiation process that is essential for establishing pregnancy. Robust activation of glycolysis and lactate synthesis during decidualization is remarkable, but their developmental functions remain largely unknown. Herein, we identify that endometrial lactate production plays a critical role in establishing local histone lactylation, a newly identified histone modification, and is important for ensuring normal decidualization. Enhanced endometrial glycolysis is the hallmark metabolic change and is tightly coupled with H4K12la during decidualization. Inhibition of histone lactylation impaired decidualization, in either physiological conception or in vivo and in vitro induced decidualization models. Mechanistic study based on CUT&Tag and ATAC-seq revealed that a transcriptional factor hypoxia-inducible factor 1 α (Hif1α) is the critical regulatory target of H4K12la, and in turn forms an H4K12la-Hif1α-glycolysis feedback loop to drive decidualization. Moreover, we demonstrate that the loop is directly activated by progesterone during decidualization. Our study not only advances the current knowledge of the role of lactate in regulating uterine function, but also establishes a novel functional link among the major endocrine factors, endometrial metabolic change, and epigenetic modification during endometrial remodeling. These findings present valuable clues to develop clinical intervention strategies to improve pregnancy outcomes following both natural conception and assisted reproduction.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Yue Wang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Juan Liu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Qianying Yang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Shuai Zhang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Xiao Hu
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Zhicheng Shi
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Zhenni Zhang
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| | - Dapeng Chu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 1000193, P.R. China
| |
Collapse
|
13
|
Zhang X, Cao Q, Rajachandran S, Grow EJ, Evans M, Chen H. Dissecting mammalian reproduction with spatial transcriptomics. Hum Reprod Update 2023; 29:794-810. [PMID: 37353907 PMCID: PMC10628492 DOI: 10.1093/humupd/dmad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Mammalian reproduction requires the fusion of two specialized cells: an oocyte and a sperm. In addition to producing gametes, the reproductive system also provides the environment for the appropriate development of the embryo. Deciphering the reproductive system requires understanding the functions of each cell type and cell-cell interactions. Recent single-cell omics technologies have provided insights into the gene regulatory network in discrete cellular populations of both the male and female reproductive systems. However, these approaches cannot examine how the cellular states of the gametes or embryos are regulated through their interactions with neighboring somatic cells in the native tissue environment owing to tissue disassociations. Emerging spatial omics technologies address this challenge by preserving the spatial context of the cells to be profiled. These technologies hold the potential to revolutionize our understanding of mammalian reproduction. OBJECTIVE AND RATIONALE We aim to review the state-of-the-art spatial transcriptomics (ST) technologies with a focus on highlighting the novel biological insights that they have helped to reveal about the mammalian reproductive systems in the context of gametogenesis, embryogenesis, and reproductive pathologies. We also aim to discuss the current challenges of applying ST technologies in reproductive research and provide a sneak peek at what the field of spatial omics can offer for the reproduction community in the years to come. SEARCH METHODS The PubMed database was used in the search for peer-reviewed research articles and reviews using combinations of the following terms: 'spatial omics', 'fertility', 'reproduction', 'gametogenesis', 'embryogenesis', 'reproductive cancer', 'spatial transcriptomics', 'spermatogenesis', 'ovary', 'uterus', 'cervix', 'testis', and other keywords related to the subject area. All relevant publications until April 2023 were critically evaluated and discussed. OUTCOMES First, an overview of the ST technologies that have been applied to studying the reproductive systems was provided. The basic design principles and the advantages and limitations of these technologies were discussed and tabulated to serve as a guide for researchers to choose the best-suited technologies for their own research. Second, novel biological insights into mammalian reproduction, especially human reproduction revealed by ST analyses, were comprehensively reviewed. Three major themes were discussed. The first theme focuses on genes with non-random spatial expression patterns with specialized functions in multiple reproductive systems; The second theme centers around functionally interacting cell types which are often found to be spatially clustered in the reproductive tissues; and the thrid theme discusses pathological states in reproductive systems which are often associated with unique cellular microenvironments. Finally, current experimental and computational challenges of applying ST technologies to studying mammalian reproduction were highlighted, and potential solutions to tackle these challenges were provided. Future directions in the development of spatial omics technologies and how they will benefit the field of human reproduction were discussed, including the capture of cellular and tissue dynamics, multi-modal molecular profiling, and spatial characterization of gene perturbations. WIDER IMPLICATIONS Like single-cell technologies, spatial omics technologies hold tremendous potential for providing significant and novel insights into mammalian reproduction. Our review summarizes these novel biological insights that ST technologies have provided while shedding light on what is yet to come. Our review provides reproductive biologists and clinicians with a much-needed update on the state of art of ST technologies. It may also facilitate the adoption of cutting-edge spatial technologies in both basic and clinical reproductive research.
Collapse
Affiliation(s)
- Xin Zhang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiqi Cao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shreya Rajachandran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward J Grow
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie Evans
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Tian J, Yang J, Chen T, Yin Y, Li N, Li Y, Luo X, Dong E, Tan H, Ma Y, Li T. Generation of Human Endometrial Assembloids with a Luminal Epithelium using Air-Liquid Interface Culture Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301868. [PMID: 37635169 PMCID: PMC10602567 DOI: 10.1002/advs.202301868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/30/2023] [Indexed: 08/29/2023]
Abstract
The endometrial lining of the uterus is essential for women's reproductive health and consists of several different types of epithelial and stromal cells. Although models such as gland-like structures (GLSs) and endometrial assembloids (EnAos) are successfully established, they lack an intact luminal epithelium, which makes it difficult to recapitulate endometrial receptivity. Here, a novel EnAo model (ALI-EnAo) is developed by combining endometrial epithelial cells (EnECs) and stromal cells (EnSCs) and using an improved matrix and air-liquid interface (ALI) culture method. ALI-EnAos exhibit intact EnSCs and glandular and luminal epithelia, which recapitulates human endometrium anatomy, cell composition, hormone-induced menstrual cycle changes, gene expression profiles, and dynamic ciliogenesis. The model suggests that EnSCs, together with the extracellular matrix and ALI culture conditions, contribute to EnAo phenotypes and characteristics reflective of the endometrial menstrual cycle. This enables to transcriptionally define endometrial cell subpopulations. It anticipates that ALI-EnAos will facilitate studies on embryo implantation, and endometrial growth, differentiation, and disease.
Collapse
Affiliation(s)
- Jiwen Tian
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Medical SchoolKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Jie Yang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yu Yin
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Nan Li
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Yunxiu Li
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Xingyu Luo
- Medical SchoolKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - E Dong
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| | - Haoyang Tan
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Yanping Ma
- Department of Reproductive MedicineThe First People's Hospital of Yunnan ProvinceKunmingYunnan650021China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnan650032China
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnan650500China
| |
Collapse
|
15
|
Kobayashi R, Kawabata-Iwakawa R, Terakawa J, Sugiyama M, Morita S, Horii T, Hatada I. Aberrant activation of estrogen receptor-α signaling in Mettl14-deficient uteri impairs embryo implantation. FASEB J 2023; 37:e23093. [PMID: 37440278 DOI: 10.1096/fj.202300735r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
The precise control of endometrial receptivity is crucial for successful embryo implantation, which is strictly regulated by the ovarian steroid hormones estrogen and progesterone. Despite our improved understanding of the genetic regulation of implantation downstream of the action of hormones, we do not know much about the epigenetic regulation that occurs during early pregnancy. To investigate the role of the N6-methyladenosine (m6A) RNA modification in embryo implantation, we generated mice with conditional deletion of Mettl14, a core component of the m6A writer complex, in the uterus. These mice were infertile due to implantation failure. We showed that Mettl14-deficient uteri had aberrant upregulation of estrogen receptor α (ERα) signaling and ERα phosphorylation, but progesterone receptor (PGR) signaling was largely unaffected. Additionally, Mettl14 deletion led to abnormal activation of the innate immune pathway in Mettl14-deficient uteri. This effect was accompanied by the infiltration of immune cells, such as macrophages and dendritic cells, into the basal region of the endometrial epithelium. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) showed that genes involved in the innate immune response had decreased m6A peaks in Mettl14-deficient mice. These results suggest that Mettl14 plays a crucial role in successful implantation by precisely regulating both ERα signaling and innate immunity in the uterus.
Collapse
Affiliation(s)
- Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Japan
| |
Collapse
|
16
|
Fukui Y, Hirota Y, Aikawa S, Sakashita A, Shimizu-Hirota R, Takeda N, Ishizawa C, Iida R, Kaku T, Hirata T, Hiraoka T, Akaeda S, Matsuo M, Osuga Y. The EZH2-PRC2-H3K27me3 axis governs the endometrial cell cycle and differentiation for blastocyst invasion. Cell Death Dis 2023; 14:320. [PMID: 37198149 DOI: 10.1038/s41419-023-05832-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Infertility occurs in 15% of couples worldwide. Recurrent implantation failure (RIF) is one of the major problems in in vitro fertilization and embryo transfer (IVF-ET) programs, and how to manage patients with RIF to achieve successful pregnancy outcomes remains unresolved. Here, a uterine polycomb repressive complex 2 (PRC2)-regulated gene network was found to control embryo implantation. Our RNA-seq analyses of the human peri-implantation endometrium obtained from patients with RIF and fertile controls revealed that PRC2 components, including its core enzyme enhancer of zeste homolog 2 (EZH2)-catalyzing H3K27 trimethylation (H3K27me3) and their target genes are dysregulated in the RIF group. Although fertility of uterine epithelium-specific knockout mice of Ezh2 (eKO mice) was normal, Ezh2-deleted mice in the uterine epithelium and stroma (uKO mice) exhibited severe subfertility, suggesting that stromal Ezh2 plays a key role in female fertility. The RNA-seq and ChIP-seq analyses revealed that H3K27me3-related dynamic gene silencing is canceled, and the gene expression of cell-cycle regulators is dysregulated in Ezh2-deleted uteri, causing severe epithelial and stromal differentiation defects and failed embryo invasion. Thus, our findings indicate that the EZH2-PRC2-H3K27me3 axis is critical to preparing the endometrium for the blastocyst invasion into the stroma in mice and humans.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Chihiro Ishizawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Rei Iida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
17
|
Li B, Yan YP, He YY, Liang C, Li MY, Wang Y, Yang ZM. IHH, SHH, and primary cilia mediate epithelial-stromal cross-talk during decidualization in mice. Sci Signal 2023; 16:eadd0645. [PMID: 36853961 DOI: 10.1126/scisignal.add0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The establishment of pregnancy depends on interactions between the epithelial and stromal cells of the endometrium that drive the decidual reaction that remodels the stroma and enables embryo implantation. Decidualization in mice also depends on ovarian hormones and the presence of a blastocyst. Hedgehog signaling is transduced by primary cilia in many tissues and is involved in epithelial-stromal cross-talk during decidualization. We found that primary cilia on mouse uterine stromal cells increased in number and length during early pregnancy and were required for decidualization. In vitro and in vivo, progesterone promoted stromal ciliogenesis and the production of Indian hedgehog (IHH) in the epithelium and Sonic hedgehog (SHH) in the stroma. Blastocyst-derived TNF-α also induced epithelial IHH, which stimulated the production of SHH in the stroma through a mechanism that may involve the release of arachidonic acid from epithelial cells. In the stroma, SHH activated canonical Hedgehog signaling through primary cilia and promoted decidualization through a mechanism that depended on interleukin-11 (IL-11) and primary cilia. Our findings identify a primary cilia-dependent network that controls endometrial decidualization and suggest primary cilia as a candidate therapeutic target for endometrial diseases.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ping Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
18
|
Tetruashvili N, Domar A, Bashiri A. Prevention of Pregnancy Loss: Combining Progestogen Treatment and Psychological Support. J Clin Med 2023; 12:jcm12051827. [PMID: 36902614 PMCID: PMC10003391 DOI: 10.3390/jcm12051827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
Pregnancy loss can be defined as a loss before either 20 or 24 weeks of gestation (based on the first day of the last menstrual period) or the loss of an embryo or fetus less than 400 g in weight if the gestation age is unknown. Approximately 23 million pregnancy losses occur worldwide every year, equating to 15-20% of all clinically recognized pregnancies. A pregnancy loss is usually associated with physical consequences, such as early pregnancy bleeding ranging in severity from spotting to hemorrhage. However, it can also be associated with profound psychological distress, which can be felt by both partners and may include feelings of denial, shock, anxiety, depression, post-traumatic stress disorder, and suicide. Progesterone plays a key part in the maintenance of a pregnancy, and progesterone supplementation has been assessed as a preventative measure in patients at increased risk of experiencing a pregnancy loss. The primary objective of this piece is to assess the evidence for various progestogen formulations in the treatment of threatened and recurrent pregnancy loss, postulating that an optimal treatment plan would preferably include a validated psychological support tool as an adjunct to appropriate pharmacological treatment.
Collapse
Affiliation(s)
- Nana Tetruashvili
- V.I. Kulakov Obstetrics, National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 117977 Moscow, Russia
| | - Alice Domar
- Inception Fertility, Houston, TX 77081, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Asher Bashiri
- Faculty of Health Science, Ben-Gurion University of the Negev, Be’er-Sheva 84101, Israel
- Maternity C Ward & Recurrent Pregnancy Loss Prevention Clinic, Maternal Fetal Medicine and Ultrasound, Soroka University Medical Center, Be’er-Sheva 84101, Israel
- Correspondence: ; Tel.: +972-08-6400842
| |
Collapse
|
19
|
Cheng J, Sha Z, Li J, Li B, Luo X, Zhang Z, Zhou Y, Chen S, Wang Y. Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization. Reprod Sci 2023; 30:1746-1757. [PMID: 36694081 DOI: 10.1007/s43032-023-01169-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Embryo implantation and decidualization are key steps in establishing a successful pregnancy. Defects in embryo implantation and decidualization can cause a series of adverse chain reactions which can contribute to harmful pregnancy outcomes, such as embryo growth retardation, preeclampsia, miscarriage, premature birth, and so on. Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Decidualization, characterized by proliferation and differentiation of uterine stromal cells, is one of the essential conditions for blastocyst implantation, placental formation, and maintenance of pregnancy and is indispensable for the establishment of pregnancy in many species. Embryo implantation and decidualization are closely regulated by estrogen and progesterone secreted by the ovaries. Many cellular events and molecular signaling network pathways are involved in this process. This article reviews the recent advances in the molecular mechanisms of estrogen- and progesterone-regulating uterine receptivity establishment, blastocyst implantation, and decidualization, in order to better understand the underlying molecular mechanisms of hormonal regulation of embryo implantation and to develop new strategies for preventing or treating embryo implantation defects and improving the pregnancy rate of women.
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Zizhuo Sha
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Junyang Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Bixuan Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Zhiming Zhang
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China. .,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China.
| |
Collapse
|
20
|
Namiki T, Terakawa J, Karakama H, Noguchi M, Murakami H, Hasegawa Y, Ohara O, Daikoku T, Ito J, Kashiwazaki N. Uterine epithelial Gp130 orchestrates hormone response and epithelial remodeling for successful embryo attachment in mice. Sci Rep 2023; 13:854. [PMID: 36646738 PMCID: PMC9842754 DOI: 10.1038/s41598-023-27859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice.
Collapse
Affiliation(s)
- Takafumi Namiki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan. .,Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Harumi Karakama
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Michiko Noguchi
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Laboratory of Theriogenology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hironobu Murakami
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Institute for Experimental Animals, Kanazawa University, Kanazawa, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan. .,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan. .,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan.
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| |
Collapse
|
21
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
22
|
Li R, Wang TY, Shelp-Peck E, Wu SP, DeMayo FJ. The single-cell atlas of cultured human endometrial stromal cells. F&S SCIENCE 2022; 3:349-366. [PMID: 36089208 PMCID: PMC9669198 DOI: 10.1016/j.xfss.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To systematically analyze the cell composition and transcriptome of primary human endometrial stromal cells (HESCs) and transformed human endometrial stromal cells (THESCs). DESIGN The primary HESCs from 3 different donors and 1 immortalized THESC were collected from the human endometrium at the midsecretory phase and cultured in vitro. SETTING Academic research laboratory. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Single-cell ribonucleic acid sequencing analysis. RESULT(S) We found the individual differences among the primary HESCs and bigger changes between the primary HESCs and THESCs. Cell clustering with or without integration identified cell clusters belonging to mature, proliferative, and active fibroblasts that were conserved across all samples at different stages of the cell cycles with intensive cell communication signals. All primary HESCs and THESCs can be correlated with some subpopulations of fibroblasts in the human endometrium. CONCLUSION(S) Our study indicated that the primary HESCs and THESCs displayed conserved cell characters and distinct cell clusters. Mature, proliferative, and active fibroblasts at different stages or cell cycles were detected across all samples and presented with a complex cell communication network. The cultured HESCs and THESCs retained the features of some subpopulations within the human endometrium.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Tian-Yuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Elinor Shelp-Peck
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina; The Biological Sciences Department, The Department of Chemistry, Physics, and Geosciences, Meredith College, Raleigh, North Carolina
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina.
| |
Collapse
|
23
|
Cariaco Y, Almeida MPO, Araujo ECB, Briceño MPP, Durán-Rodriguez AT, Franco RR, Espindola FS, Silva NM. Inhibition of Heme Oxygenase-1 by Zinc Protoporphyrin IX Improves Adverse Pregnancy Outcomes in Malaria During Early Gestation. Front Immunol 2022; 13:879158. [PMID: 35619717 PMCID: PMC9127164 DOI: 10.3389/fimmu.2022.879158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The enzyme heme oxygenase-1 (HO-1) has cytoprotective effects by catalyzing the degradation of heme to produce carbon monoxide, iron and biliverdin. Furthermore, HO-1 activity has been associated with successful pregnancy. On the other hand, in the context of certain inflammatory conditions, HO-1 can induce iron overload and cell death. To investigate the role of HO-1 in gestational malaria, pregnant BALB/c mice were infected with Plasmodium berghei ANKA in early, mid and late gestation. We found that malaria affected the pregnancy outcome in the three periods evaluated. However, only poor pregnancy outcomes in early pregnancy were related to HO-1 upregulation, iron overload, lipid peroxidation and necrosis of the decidua, which were prevented by HO-1 inhibition. In conclusion, HO-1 expression must be finely tuned in gestational malaria to avoid the deleterious effect of increased enzyme activity.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ester Cristina Borges Araujo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Rodrigo Rodrigues Franco
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Foued Salmen Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
24
|
Sun B, Yeh J. Non-Invasive and Mechanism-Based Molecular Assessment of Endometrial Receptivity During the Window of Implantation: Current Concepts and Future Prospective Testing Directions. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:863173. [PMID: 36303672 PMCID: PMC9580756 DOI: 10.3389/frph.2022.863173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Suboptimal endometrial receptivity and altered embryo-endometrial crosstalk account for approximately two-thirds of human implantation failures. Current tests of the window of implantation, such as endometrial thickness measurements and the endometrial receptivity assay, do not consistently improve clinical outcomes as measured by live birth rates. Understanding the mechanisms regulating the endometrial receptivity during the window of implantation is a critical step toward developing clinically meaningful tests. In this narrative review, the available literature is evaluated regarding mechanisms that regulate the endometrial receptivity during the window of implantation and the current tests developed. Overall, both animal and human studies point to five possible and interrelated mechanisms regulating the endometrial window of implantation: suitable synchrony between endometrial cells, adequate synchrony between the endometrium and the embryo, standard progesterone signaling and endometrial responses to progesterone, silent genetic variations, and typical morphological characteristics of the endometrial glands. The biological basis of current clinical markers or tests of window of implantation is poor. Future studies to elucidate the mechanisms shaping the window of implantation and to investigate the potential markers based on these mechanisms are required. In addition, molecular testing of the endometrium at single-cell resolution should be an initial step toward developing clinically meaningful tests for the optimal window of implantation. As understanding of the optimal window of implantation continues to evolve, one can envision the future development of non-invasive, mechanism-based testing of the window of implantation.
Collapse
Affiliation(s)
- Bei Sun
- Sackler Faculty of Medicine, Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv University, Tel Aviv, Israel
| | - John Yeh
- Reproductive Endocrinology and Infertility, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, United States
- *Correspondence: John Yeh
| |
Collapse
|
25
|
Li R, Wang TY, Xu X, Emery OM, Yi M, Wu SP, DeMayo FJ. Spatial transcriptomic profiles of mouse uterine microenvironments at pregnancy day 7.5†. Biol Reprod 2022; 107:529-545. [PMID: 35357464 PMCID: PMC9382390 DOI: 10.1093/biolre/ioac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tian-yuan Wang
- Integrative Bioinformatics Supportive Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Olivia M Emery
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - MyeongJin Yi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Correspondence: Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709, USA. Tel: +9842873987; E-mail:
| |
Collapse
|
26
|
Wang X, Hawkins SM. Using advanced spatial and single-cell transcriptomics to characterize the human endometrium. Nat Genet 2021; 53:1628-1630. [PMID: 34857955 PMCID: PMC8708200 DOI: 10.1038/s41588-021-00982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiyin Wang
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Shannon M Hawkins
- Department of Obstetrics and Gynecology, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Singh M, Acharya N, Shukla S, Shrivastava D, Sharma G. Comparative study of endometrial & subendometrial angiogenesis in unexplained infertile versus normal fertile women. Indian J Med Res 2021; 154:99-107. [PMID: 34782535 PMCID: PMC8715703 DOI: 10.4103/ijmr.ijmr_2331_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background & objectives: Local angiogenesis in endometrium has been shown to be an essential pre-requisite for endometrial receptivity needed for implantation and gestation. Recently, numerous diagnostic gears have been projected to ‘measure’ or ‘estimate’ the endometrial receptivity relying upon angiogenic factors helping throughout implantation. This study evaluated the endometrial and subendometrial blood flow and the local endometrial gland vascular endothelial growth factor (EG-VEGF) expression as markers of local angiogenesis. Methods: The present study was done to give quantitative assessment of endometrial thickness (ET), endometrial blood flow and subendometrial blood flow colour Doppler indices with endometrial vascular zones. Endometrial biopsy was taken and with VEGF stained and scored with immunohistochemistry. Results: The mean ET for fertile women was 9.41 mm, while in unexplained infertile women it was around 7.90 mm. Upon comparison of ET with EG-VEGF which is considered as a gold standard with correlation coefficient, the present study suggested a positive correlation of EG-VEGF with ET, endometrial pulsatility index (PI), and subendometrial PI also the vascular zones were considered as significant. However, a strong negative correlation was seen with subendometrial resistivity index and PI. Interpretation & conclusions: The present study suggests that uterine ultrasound, uterine colour Doppler and EG-VEGF are parameters which can be used as markers of local angiogenesis for endometrial receptivity in the evaluation of women with unexplained infertility.
Collapse
Affiliation(s)
- Monisha Singh
- Department of Obstetrics & Gynaecology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Neema Acharya
- Department of Obstetrics & Gynaecology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Samarth Shukla
- Department of Pathology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Deepti Shrivastava
- Department of Obstetrics & Gynaecology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Gaurav Sharma
- Department of Radiology, Datta Meghe Institute of Medical Sciences, Wardha, Maharashtra, India
| |
Collapse
|