1
|
Yang W, Lefebvre V. PTPN11 in cartilage development, adult homeostasis, and diseases. Bone Res 2025; 13:53. [PMID: 40379623 DOI: 10.1038/s41413-025-00425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 05/19/2025] Open
Abstract
The SH2 domain-containing protein tyrosine phosphatase 2 (SHP2, also known as PTP2C), encoded by PTPN11, is ubiquitously expressed and has context-specific effects. It promotes RAS/MAPK signaling downstream of receptor tyrosine kinases, cytokine receptors, and extracellular matrix proteins, and was shown in various lineages to modulate cell survival, proliferation, differentiation, and migration. Over the past decade, PTPN11 inactivation in chondrocytes was found to cause metachondromatosis, a rare disorder characterized by multiple enchondromas and osteochondroma-like lesions. Moreover, SHP2 inhibition was found to mitigate osteoarthritis pathogenesis in mice, and abundant but incomplete evidence suggests that SHP2 is crucial for cartilage development and adult homeostasis, during which its expression and activity are tightly regulated transcriptionally and posttranslationally, and by varying sets of functional partners. Fully uncovering SHP2 actions and regulation in chondrocytes is thus fundamental to understanding the mechanisms underlying both rare and common cartilage diseases and to designing effective disease treatments. We here review current knowledge, highlight recent discoveries and controversies, and propose new research directions to answer remaining questions.
Collapse
Affiliation(s)
- Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, USA.
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Kim DH, Yu JE, Lee DH, Kim MJ, Jeon SH, Yun J, Son DJ, Kim B, Yong YJ, Lim YS, Kim TH, Khalid AM, Han SB, Lee YS, Hong JT. Anti-arthritis Effect of Anti-chitinase-3-like 1 Antibody Through Inhibition of MMP3. Immune Netw 2025; 25:e5. [PMID: 40342842 PMCID: PMC12056290 DOI: 10.4110/in.2025.25.e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 05/11/2025] Open
Abstract
Chitinase-3-like 1 (CHI3L1) is a key factor in regulating inflammatory processes and development of rheumatoid arthritis (RA) since is highly produced by synoviocytes and macrophages in the development RA. Collagen-induced arthritis (CIA) model is the most widely used because its pathogenesis is similar to human RA. Thus, we aimed to investigate if anti-CHI3L1 antibody could reduce RA development in the CIA model. To induce CIA, DBA1/J mice were immunized with a type II bovine collagen emulsion in complete Freund's adjuvant, and boosted type II bovine collagen. THP-1 and MH7A cells were used for pro-inflammation responses. Anti-CHI3L1 Ab treatment reduced the RA clinical score and paw thickness of mice. Inflammation-induced matrix metalloproteinase 3 (MMP3) expression was reduced by inhibiting CHI3L1, and MMP3 knockdown suppressed the expression of RA-related inflammatory cytokines in LPS-treated THP-1 and MH7A cells. Our findings suggest that anti-CHI3L1 Ab showed significant anti-arthritic effects by inhibiting MMP3 expression.
Collapse
Affiliation(s)
- Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Min Ji Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | | | | | | | | | | | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea
| |
Collapse
|
3
|
Li S, Luo D, Liang Y, Zou Y, Pu H, Zheng M, Wang Y, Sun X, Zhu H, Zhu Y, Zhao L, Xiao J. BCLAF1 Regulates Osteoarthritic Cartilage Degradation Through Interaction with LAMTOR2. Int J Biol Sci 2025; 21:1666-1685. [PMID: 39990659 PMCID: PMC11844276 DOI: 10.7150/ijbs.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disorder with cartilage degradation as the primary cause of joint pain and loss of joint function. B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) is a key regulator of apoptosis and serves as a signal transducer of the NFκB and Hif-1α pathways, both of which are involved in osteoarthritic cartilage degradation. However, whether BCLAF1 contributes to the pathogenesis of OA remains unclear. The present study aims to elucidate the role of BCLAF1 in osteoarthritic cartilage degradation and the underlying mechanisms. We found that BCLAF1 levels were increased in cartilage tissue from OA patients, elder and surgery-induced OA mice, and primary chondrocytes treated with inflammatory cytokines. Knockdown of Bclaf1 in chondrocytes inhibited the expression of catabolic factors and apoptosis rate, while promoting the expression of anabolic factors and enhancing chondrocyte functions such as viability and migration. Conversely, overexpression of Bclaf1 produced the opposite effects. Furthermore, intra-articular injection of adenovirus containing shRNA targeting Bclaf1 attenuated cartilage degradation and osteophytosis in a mouse OA model, while overexpression of BCLAF1 further aggravated cartilage degradation and osteophytosis in vivo. Through immunoprecipitation and protein mass spectrometry, we identified LAMTOR2 as a key mediator of BCLAF1 by regulating the translocation of BCLAF1 into the nucleus. Our findings reveal the critical role and key mechanisms of BCLAF1 in regulating cartilage degradation, representing a novel molecular target for the therapeutic development of OA.
Collapse
Affiliation(s)
- Song Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danni Luo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Liang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zou
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongxu Pu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zheng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuying Sun
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Zhu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanli Zhu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Xiao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Wei K, Zhou C, Shu Z, Shang X, Zou Y, Zhou W, Xu H, Liang Y, Ma T, Sun X, Xiao J. MYSM1 attenuates osteoarthritis by recruiting PP2A to deubiquitinate and dephosphorylate RIPK2. Bone Res 2025; 13:3. [PMID: 39746943 PMCID: PMC11696715 DOI: 10.1038/s41413-024-00368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA), the most prevalent degenerative joint disease, is marked by cartilage degradation and pathological alterations in surrounding tissues. Currently, no effective disease-modifying treatments exist. This study aimed to elucidate the critical roles of Myb-like, SWIRM, and MPN domains 1 (MYSM1) and its downstream effector, Receptor-interacting protein kinase 2 (RIPK2), in OA pathogenesis and the underlying mechanisms. Our findings revealed reduced MYSM1 levels in the cartilage of OA patients and mouse models. Genetic or adenovirus-induced MYSM1 knockout exacerbated OA progression in mice, whereas MYSM1 overexpression mitigated it. Mechanistically, MYSM1 inhibited the NF-κB and MAPK signaling pathways. Conversely, downstream RIPK2 significantly increased OA-like phenotypes and activated the NF-κB and MAPK pathways. The Ripk2S176D mutation accelerated OA pathogenesis, while Ripk2 silencing or Ripk2S176A mutation deactivated NF-κB and MAPK pathways, counteracting the role of MYSM1. MYSM1 deubiquitinates and dephosphorylates RIPK2S176 by recruiting protein phosphatase 2 A (PP2A). These results suggest that targeting MYSM1 or downstream RIPK2 offers promising therapeutic potential for OA.
Collapse
Affiliation(s)
- Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingru Shang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Ossendorff R, Kurth S, Wang S, Jaenisch M, Assaf E, Scheidt S, Welle K, Burger C, Wirtz DC, Strauss AC, Schildberg FA. Comparison of Concentration- and Homology-Dependent Effects of the Proinflammatory Cytokine Interleukin-1β (IL-1β) in a Bovine Chondrocyte Inflammation Model. Cells 2024; 14:30. [PMID: 39791731 PMCID: PMC11719847 DOI: 10.3390/cells14010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture. Titration of IL-1β (100-0.1 ng/mL) was performed with both human and bovine recombinant protein in chondrocyte culture for 2 weeks. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP), proteoglycan-4 (PRG-4)), catabolic matrix metallo proteinases (MMP-3, MMP-13), dedifferentiation (collagen 1) markers and inflammatory cytokines IL-6 and IL-8 was determined. Analysis of the cell culture medium was performed for the inflammatory markers IL-6 and nitric oxide (NO). In general, the influence of IL-1β was shown by a decrease in the expression of anabolic markers (collagen 2, aggrecan, PRG-4), whereas the catabolic markers MMP-3 and MMP-13 as well as the inflammatory markers IL-6 and IL-8 were significantly increased. This was observed both at the early time point (day 4) and at the late time point (day 14). The described inflammatory effects were confirmed by increased concentration-dependent release of NO and IL-6. The threshold concentration for a detectable effect compared to control differed between groups, but was reached earlier by homologous application of IL-1β. This study provides a systematic evaluation of IL-1β-specific effects on chondrocytes in a 3D pellet culture model, which is highly relevant for comparisons of studies in OA-specific drug development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
6
|
Li Y, Zhao L, Liu Z, Chen Y, Li X, Zhu D, Liu L. Baliosperoid A attenuates lipopolysaccharide-induced acute lung injury by targeting SHP2 to inhibit inflammation and oxidative stress. Bioorg Chem 2024; 153:107982. [PMID: 39577153 DOI: 10.1016/j.bioorg.2024.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
Acute lung injury (ALI) remains a devastating clinical condition with limited therapeutic options. While Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) has emerged as a critical mediator in ALI pathogenesis, effective SHP2-targeting therapeutics remain largely elusive. Baliospermum solanifolium (Burm.) is a traditional medicine used to treat various diseases such as asthma, edema, bronchitis, jaundice, and constipation. Baliosperoid A (BA), a diterpenoid compound derived from Baliospermum solanifolium's roots, exhibits potent NO inhibitory activity in RAW264.7 cells. However, its anti-inflammatory activity and potential targets have never been reported. Here, we report BA acts as a selective SHP2 inhibitor with remarkable therapeutic potential against ALI. Through comprehensive molecular and functional analyses, we demonstrate that BA directly binds to and inhibits SHP2 phosphatase activity with high specificity (IC50 = 1.638 ± 0.324 μM). Mechanistically, BA orchestrates a dual-action therapeutic effect by simultaneously suppressing inflammatory cascades through SHP2-mediated MAPK and NF-κB pathway inhibition while activating the Nrf2-dependent antioxidant response. In preclinical models of ALI and sepsis, BA treatment significantly improved survival rates, preserved lung architecture, and prevented multi-organ dysfunction. Notably, BA demonstrated superior efficacy to the existing SHP2 inhibitor SHP099, particularly in sepsis survival outcomes (90 % vs 50 % survival at 24 h). Our findings not only identify BA as a promising therapeutic candidate for ALI but also establish a novel paradigm for targeting SHP2 in inflammatory diseases.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lirong Zhao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoqin Li
- National Key Laboratory of Chinese Medicine Modernization, Tasly Academy, Tasly Pharmaceutical Group Co., Ltd., Tianjin 300410, China
| | - Dongrong Zhu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Liren Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China.
| |
Collapse
|
7
|
Ahmed N, Tabassum N, Rashid PT, Deea BJ, Richi FT, Chandra A, Agarwal S, Mollick S, Dipto KZ, Mim SA, Alam S. Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies. Life (Basel) 2024; 14:1473. [PMID: 39598271 PMCID: PMC11595475 DOI: 10.3390/life14111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Clitoria ternatea L. (CT) is a perennial herbaceous plant with deep blue flowers native to tropical Asia. This work explores the endometrial pain (EP) regulation of CT flower through a multifaceted approach. Phytochemical screening unveiled the presence of alkaloids, steroids, flavonoids, glycosides, and tannins in CT flower methanolic extract (ME). In the in vitro membrane stabilizing experiment, the ME demonstrated 91.47% suppression of heat-induced hemolysis. Upon carrageenan-induced paw edema assay conducted on male Swiss albino mice at doses of 200 mg/kg and 400 mg/kg, 65.28% and 81.89% inhibition rates, respectively, of paw edema were reported. For the same doses, upon acetic acid-induced-writhing assay, 75.6% and 76.78% inhibition rates, respectively, were observed. For network pharmacology analyses, a protein-protein interaction network was constructed for 92 overlapping gene targets of CT and EP, followed by GO and KEGG pathway enrichment analyses. Network pharmacology-based investigation identified the anti-EP activity of CT to be mostly regulated by the proteins SRC homology, ESR1, and PI3KR1. Physicochemical, pharmacokinetic, and toxicity property predictions for the compounds with stable ligand-target interactions and a molecular dynamics simulation for the highest interacting complex further validated these findings. This work affirmed the anti-EP role of CT flower against EP, suggesting a probable molecular mechanism involved.
Collapse
Affiliation(s)
- Najneen Ahmed
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Nazifa Tabassum
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Parisa Tamannur Rashid
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Basrat Jahan Deea
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Fahmida Tasnim Richi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (A.C.); (S.A.)
| | - Shilpi Agarwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India; (A.C.); (S.A.)
| | - Saima Mollick
- Pharmaceutical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh;
| | - Kaushik Zaman Dipto
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Sadia Afrin Mim
- Department of Pharmacy, East West University, Dhaka 1212, Bangladesh; (N.T.); (P.T.R.); (B.J.D.); (K.Z.D.); (S.A.M.)
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Chemical Research Division, BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
8
|
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage 2024; 32:1220-1234. [PMID: 38876436 DOI: 10.1016/j.joca.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
9
|
Wang L, Yang H, Wang C, Wang M, Huang J, Nyunt T, Osorio C, Sun SY, Pacifici M, Lefebvre V, Moore DC, Wang S, Yang W. SHP2 ablation mitigates osteoarthritic cartilage degeneration by promoting chondrocyte anabolism through SOX9. FASEB J 2024; 38:e70013. [PMID: 39225365 PMCID: PMC11404350 DOI: 10.1096/fj.202400642r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Huiliang Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingliang Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiahui Huang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Thedoe Nyunt
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Camilo Osorio
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Véronique Lefebvre
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Moore
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Wentian Yang
- Department of Orthopaedic Surgery, Brown University Alpert Medical School, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
10
|
Hong Q, Liu ZX, Liang HF, Wu DG, Chen Y, Yu B. Inhibition of HOXD11 promotes cartilage degradation and induces osteoarthritis development. J Orthop Surg Res 2024; 19:111. [PMID: 38308324 PMCID: PMC10837984 DOI: 10.1186/s13018-024-04573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
The 5'-HOXD genes are important for chondrogenesis in vertebrates, but their roles in osteoarthritis (OA) are still ambiguous. In our study, 5'-HOXD genes involvement contributing to cartilage degradation and OA was investigated. In bioinformatics analysis of 5'-HOXD genes, we obtained the GSE169077 data set related to OA in the GEO and analyzed DEGs using the GEO2R tool attached to the GEO. Then, we screened the mRNA levels of 5'-HOXD genes by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). We discovered that OA chondrocyte proliferation was inhibited, and apoptosis was increased. Moreover, it was discovered that SOX9 and COL2A1 were downregulated at mRNA and protein levels, while matrix metalloproteinases (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs) were upregulated. According to the results of differentially expressed genes (DEGs) and qRT-PCR, we evaluated the protein level of HOXD11 and found that the expression of HOXD11 was downregulated, reversed to MMPs and ADAMTSs but consistent with the cartilage-specific factors, SOX9 and COL2A1. In the lentivirus transfection experiments, HOXD11 overexpression reversed the effects in OA chondrocytes. In human OA articular cartilage, aberrant subchondral bone was formed in hematoxylin-eosin (H&E) and Safranin O and fast green (SOFG) staining results. Furthermore, according to immunohistochemistry findings, SOX9 and HOXD11 expression was inhibited. The results of this study established that HOXD11 was downregulated in OA cartilage and that overexpression of HOXD11 could prevent cartilage degradation in OA.
Collapse
Affiliation(s)
- Quan Hong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
- Department of Orthopedics, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-Sen University), Jieyang, 522000, Guangdong, China
| | - Zhong-Xun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hai-Feng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - De-Guang Wu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
11
|
Song Y, Wu S, Zhang R, Zhong Q, Zhang X, Sun X. Therapeutic potential of hydrogen sulfide in osteoarthritis development. Front Pharmacol 2024; 15:1336693. [PMID: 38370481 PMCID: PMC10869529 DOI: 10.3389/fphar.2024.1336693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuanming Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Miao MZ, Su QP, Cui Y, Bahnson EM, Li G, Wang M, Yang Y, Collins JA, Wu D, Gu Q, Chubinskaya S, Diekman BO, Yamada KM, Loeser RF. Redox-active endosomes mediate α5β1 integrin signaling and promote chondrocyte matrix metalloproteinase production in osteoarthritis. Sci Signal 2023; 16:eadf8299. [PMID: 37906629 PMCID: PMC10666734 DOI: 10.1126/scisignal.adf8299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis. Using a fragment of the matrix protein fibronectin (FN) to activate the α5β1 integrin in primary human chondrocytes, we found that endocytosis of the integrin and FN fragment complex drove the production of the matrix metalloproteinase MMP-13. Activation of α5β1 by the FN fragment, but not by intact FN, was accompanied by reactive oxygen species (ROS) production initially at the cell surface, then in early endosomes. These ROS-producing endosomes (called redoxosomes) contained the integrin-FN fragment complex, the ROS-producing enzyme NADPH oxidase 2 (NOX2), and SRC, a redox-regulated kinase that promotes MMP-13 production. In contrast, intact FN was endocytosed and trafficked to recycling endosomes without inducing ROS production. Articular cartilage from patients with osteoarthritis showed increased amounts of SRC and the NOX2 complex component p67phox. Furthermore, we observed enhanced localization of SRC and p67phox at early endosomes, suggesting that redoxosomes could transmit and sustain integrin signaling in response to matrix damage. This signaling mechanism not only amplifies the production of matrix-degrading proteases but also establishes a self-perpetuating cycle that contributes to the ongoing degradation of cartilage matrix in osteoarthritis.
Collapse
Affiliation(s)
- Michael Z. Miao
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qian Peter Su
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yang Cui
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edward M. Bahnson
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Di Wu
- Division of Oral & Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, NC, 27599, USA
| | - Qisheng Gu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
- Department of Immunology, Université Paris Cité, Paris, 75006, France
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Brian O. Diekman
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenneth M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard F. Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Gu JY, Li FJ, Hou CZ, Zhang Y, Bai ZX, Zhang Q. Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method. Am J Transl Res 2023; 15:5071-5084. [PMID: 37692948 PMCID: PMC10492078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Icarin's mechanism of action in osteoarthritis (OA) was explored using network pharmacology and the GEO database, and then further validated using molecular docking. METHODS GEO database using network pharmacology identified differential genes in OA based on Icariin's possible targets predicted by pharmmapper database. Combining the differentially expressed genes in OA with the OA-related targets, the overlapping targets were removed. In order to determine what Icariin's core targets are for treating OA, PPI network analysis was performed using OA-related targets and possible Icariin targets. Furthermore, molecular docking was used to verify the chemical's binding to the targets. Final steps included Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Cytoscape was used to construct a network of compound-target-pathway-disease. RESULTS Protein-protein interactions between overlapping targets revealed 151 intersection targets based on a network analysis. The top ten targets with the highest enrichment scores were SRC, MAPK1, HSP90AA1, AKT1, PTPN11, ESR1, EGFR, RhoA, JAK2, and MAPK14. KEGG enrichment analysis showed that the pathways at which Icariin intervention occurs include the OA including FOXO signaling pathway, and estrogen signaling pathway. The GO analysis result showed that various biologic processes such as proteolysis, angiogenesis, innate immune response, and positive regulation of inflammatory response were involved in treatment. Molecular docking analysis confirmed that Icariin could bind well to the targets through intermolecular forces. CONCLUSION With its multi-targeting and multi-pathway characteristics, Icariin is a promising candidate drug for treating OA.
Collapse
Affiliation(s)
- Jin-Yu Gu
- Department of Orthopaedic, The Hospital of Xi YuanBeijing, China
| | - Fa-Jie Li
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Cheng-Zhi Hou
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Yue Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Zi-Xing Bai
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Qing Zhang
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
14
|
Wei K, Shu Z, Pu H, Xu H, Li S, Xiao J, Zhu Y, Ma T. Cystathionine-γ-lyase attenuates inflammatory response and pain of osteoarthritis. Int Immunopharmacol 2023; 120:110289. [PMID: 37182456 DOI: 10.1016/j.intimp.2023.110289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
The chronic articular disease osteoarthritis (OA) is characterized by osteophyte generation, subchondral bone remodeling, and cartilage deterioration. Low levels of H2S catalyzed by cystathionine-γ-lyase (CSE) encoded by Cthhas neuroprotective, cardioprotective, anti-apoptotic, and anti-inflammatory effects thus, Cth is being developed as a potential therapy for the management of the pathogenesis and symptoms of osteoarthritis. Single-cell RNA sequencing (scRNA-seq) and immunohistochemistry of human cartilage revealed that the expression of CTH was decreased in OA patients. We found that Cthoverexpression decrease IL-1β-induced overactivation of the NF-κB signaling pathway. In vivo, Cthoverexpression relieved pain response and cartilage damage in the anterior cruciate ligament transection (ACLT) rat model. In vitro, CSE alleviated chondrocytes catabolism, inflammation, apoptosis, and senescence, and suppressed the NF-κB pathway. We postulate that CSE has therapeutic effects in suppressing inflammation and degeneration in OA and should be further investigated clinically.
Collapse
Affiliation(s)
- Kang Wei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zixing Shu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Hongxu Pu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, 100, Xianggang Road, Wuhan 430000, China
| | - Song Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Yuanli Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Tian Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
15
|
Metformin Attenuates the Inflammatory Response via the Regulation of Synovial M1 Macrophage in Osteoarthritis. Int J Mol Sci 2023; 24:ijms24065355. [PMID: 36982442 PMCID: PMC10049635 DOI: 10.3390/ijms24065355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Osteoarthritis (OA), the most common chronic inflammatory joint disease, is characterized by progressive cartilage degeneration, subchondral bone sclerosis, synovitis, and osteophyte formation. Metformin, a hypoglycemic agent used in the treatment of type 2 diabetes, has been evidenced to have anti-inflammatory properties to treat OA. It hampers the M1 polarization of synovial sublining macrophages, which promotes synovitis and exacerbates OA, thus lessening cartilage loss. In this study, metformin prevented the pro-inflammatory cytokines secreted by M1 macrophages, suppressed the inflammatory response of chondrocytes cultured with conditional medium (CM) from M1 macrophages, and mitigated the migration of M1 macrophages induced by interleukin-1ß (IL-1ß)-treated chondrocytes in vitro. In the meantime, metformin reduced the invasion of M1 macrophages in synovial regions brought about by the destabilization of medial meniscus (DMM) surgery in mice, and alleviated cartilage degeneration. Mechanistically, metformin regulated PI3K/AKT and downstream pathways in M1 macrophages. Overall, we demonstrated the therapeutic potential of metformin targeting synovial M1 macrophages in OA.
Collapse
|
16
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
17
|
Ryan A, Janosko CP, Courtney TM, Deiters A. Engineering SHP2 Phosphatase for Optical Control. Biochemistry 2022; 61:2687-2697. [DOI: 10.1021/acs.biochem.2c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Taylor M. Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
18
|
Mo H, Yang S, Chen AM. Inhibition of GAB2 expression has a protective effect on osteoarthritis:An in vitro and in vivo study. Biochem Biophys Res Commun 2022; 626:229-235. [PMID: 36007472 DOI: 10.1016/j.bbrc.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1β (IL-1β) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haokun Mo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Min Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
20
|
Ding DF, Xue Y, Zhang JP, Zhang ZQ, Li WY, Cao YL, Xu JG. Similarities and differences between rat and mouse chondrocyte gene expression induced by IL-1β. J Orthop Surg Res 2022; 17:70. [PMID: 35120538 PMCID: PMC8815127 DOI: 10.1186/s13018-021-02889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background Osteoarthritis (OA) is the most prevalent degenerative joint disease. In vitro experiments are an intuitive method used to investigate its early pathogenesis. Chondrocyte inflammation models in rats and mice are often used as in vitro models of OA. However, similarities and differences between them in the early stages of inflammation have not been reported. Objective This paper seeks to compare the chondrocyte phenotype of rats and mice in the early inflammatory state and identify chondrocytes suitable for the study of early OA. Methods Under similar conditions, chondrocytes from rats and mice were stimulated using the same IL-1β concentration for a short period of time. The phenotypic changes of chondrocytes were observed under a microscope. The treated chondrocytes were subjected to RNA-seq to identify similarities and differences in gene expression. Chondrocytes were labelled with EdU for proliferation analysis. Cell proliferation-associated proteins, including minichromosome maintenance 2 (MCM2), minichromosome maintenance 5 (MCM5), Lamin B1, proliferating cell nuclear antigen (PCNA), and Cyclin D1, were analysed by immunocytochemical staining, cell immunofluorescence, and Western blots to verify the RNA-seq results. Results RNA-seq revealed that the expression patterns of cytokines, chemokines, matrix metalloproteinases, and collagen were similar between the rat and mouse chondrocyte inflammation models. Nonetheless, the expression of proliferation-related genes showed the opposite pattern. The RNA-seq results were further verified by subsequent experiments. The expression levels of MCM2, MCM5, Lamin B1, PCNA, and Cyclin D1 were significantly upregulated in rat chondrocytes (P < 0.05) and mouse chondrocytes (P < 0.05). Conclusions Based on the findings, the rat chondrocyte inflammation model may help in the study of the early pathological mechanism of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02889-2.
Collapse
Affiliation(s)
- Dao-Fang Ding
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, 201613, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Zeng-Qiao Zhang
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Yao Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue-Long Cao
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
21
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|