1
|
Hosseini K, Philippot G, Salomonsson SB, Cediel-Ulloa A, Gholizadeh E, Fredriksson R. Transcriptomic characterization of maturing neurons from human neural stem cells across developmental time points. IBRO Neurosci Rep 2025; 18:679-689. [PMID: 40336753 PMCID: PMC12056963 DOI: 10.1016/j.ibneur.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Neurodevelopmental studies employing animal models encounter challenges due to interspecies differences and ethical concerns. Maturing neurons of human origin, undergoing several developmental stages, present a powerful alternative. In this study, human embryonic stem cell (H9 cell line) was differentiated into neural stem cells and subsequently matured into neurons over 30 days. Ion AmpliSeq™ was used for transcriptomic characterization of human stem cell-derived neurons at multiple time points. Data analysis revealed a progressive increase of markers associated with neuronal development and astrocyte markers, indicating the establishment of a co-culture accommodating both glial and neurons. Transcriptomic and pathway enrichment analysis also revealed a more pronounced GABAergic phenotype in the neurons, signifying their specialization toward this cell type. The findings confirm the robustness of these cells across different passages and demonstrate detailed progression through stages of development. The model is intended for neurodevelopmental applications and can be adapted to investigate how genetic modifications or exposure to chemicals, pharmaceuticals, and other environmental factors influence neurons and glial maturation.
Collapse
Affiliation(s)
- Kimia Hosseini
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | - Gaëtan Philippot
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | | | | | - Elnaz Gholizadeh
- Department of Pharmaceutical Bioscience, Uppsala University, Sweden
| | | |
Collapse
|
2
|
Marjan T, Lafuente-Gómez N, Rampal A, Mooney DJ, Peyton SR, Qazi TH. Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Annu Rev Biomed Eng 2025; 27:185-209. [PMID: 39874600 PMCID: PMC12045723 DOI: 10.1146/annurev-bioeng-120823-020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases. In this review, we discuss advances in characterizing, mimicking, and harnessing biochemical signals in developing advanced engineered biomaterials. An overview of the diverse forms in which these biochemical signals exist and their effects on intracellular signal transduction is also provided. Finally, we highlight the application of biochemically complex biomaterials in the three broadly defined areas of tissue regeneration, immunoengineering, and organoid morphogenesis.
Collapse
Affiliation(s)
- Tuba Marjan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Nuria Lafuente-Gómez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Akaansha Rampal
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
3
|
Goodarzi K, Sarker P, Rao SS. Regulation of Brain Metastatic Breast Cancer Cell Dormancy versus Proliferation on Hyaluronic Acid Hydrogels via Laminin and Laminin-Derived Peptides. ACS APPLIED BIO MATERIALS 2025; 8:2824-2837. [PMID: 40083120 DOI: 10.1021/acsabm.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Among the secondary target organs for metastatic breast cancer, brain metastasis is extremely aggressive in nature, resulting in lower survival rates. These metastatic cancer cells have the potential to enter a dormant state in the brain, allowing them to survive for extended time periods. The brain microenvironment plays a key role in controlling the dormant phenotype, yet how various components of this microenvironment influence dormancy is not well understood. In this work, we employed hyaluronic acid (HA)-based hydrogels as a mimetic of the brain tissue environment to study the role of biochemical cues, specifically, the impact of laminin and laminin-derived peptides IKVAV and YIGSR on the regulation of brain metastatic breast cancer cell dormancy versus proliferation. We applied varying protein/peptide concentrations and confirmed functionalization on HA hydrogel surfaces. We then seeded 10,000 cancer cells on the hydrogel surface and cultured them for 5 days. We found that in the presence of laminin or IKVAV, MDA-MB-231Br cells transitioned from a rounded to a spread morphology and exhibited enhanced proliferation as the laminin/IKVAV concentration increased. In contrast, in hydrogels functionalized with YIGSR, these cells maintained a rounded morphology, with no impact on proliferation with varying YIGSR concentrations. We confirmed the involvement of αVβ3 integrin in mediating tumor cell phenotype in hydrogels functionalized with laminin. By evaluating known markers of dormancy and proliferation, we found a direct correlation between the presence of laminin and IKVAV and increased phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK) positivity, along with decreased phosphorylated p38 (p-p38) positivity, while in hydrogels functionalized with YIGSR, the levels of both p-ERK and p-p38 remained unaltered. Finally, we demonstrated that when cells were transferred from IKVAV-deficient to IKVAV-rich hydrogels, the hydrogel induced cellular dormancy was reversible. Collectively, our findings provide insights into how laminin and laminin-derived cues regulate brain metastatic breast cancer cell dormancy versus proliferation.
Collapse
Affiliation(s)
- Kasra Goodarzi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama United States
| | - Paromita Sarker
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama United States
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama United States
| |
Collapse
|
4
|
Korenić M, Korenić A, Stamenković V, Dučić T, Andjus P. SR-FTIR Biomolecular Characterization of the Hippocampus: The Role of Tenascin C in Adult Murine Neurogenesis in the Subgranular Zone. Cells 2025; 14:435. [PMID: 40136684 PMCID: PMC11941197 DOI: 10.3390/cells14060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
To better understand adult neurogenesis, the biomolecular specificity of the subgranular zone should be investigated in comparison to other layers of the hippocampus. Adult neurogenesis occurs at a reduced rate in adulthood compared to the period of development, but it can be increased with exposure to an enriched environment (EE). This can be used to investigate the regulatory role of molecules present in the extracellular matrix, such as tenascin C (TnC). This study, using Synchrotron radiation Fourier Transform Infrared spectroscopy (SR-FTIR), shows that the differences between the hippocampal layers in adolescence are maintained as subtle and significant in adulthood. The main difference in FTIR spectra was observed for nucleic acid and carbohydrate and for the comparison of the subgranular zone (SGZ) with hippocampal CA3. Moreover, we have detected changes in the protein and nucleic acid content of the SGZ that accompany the process of neurogenesis under the influence of an enriched environment. The latter effects are, however, lacking in mice with a gene ablation for tenascin C. Overall, these results show that observed discrete biomolecular differences in hippocampal layers follow the rate of neurogenesis that is enhanced by EE and dependent on TnC.
Collapse
Affiliation(s)
- Milena Korenić
- Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (A.K.)
| | - Andrej Korenić
- Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (A.K.)
| | - Vera Stamenković
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA;
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain;
| | - Pavle Andjus
- Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (A.K.)
| |
Collapse
|
5
|
Yang C, Lee GB, Hao L, Hu F. TMEM106B deficiency leads to alterations in lipid metabolism and obesity in the TDP-43 Q331K knock-in mouse model. Commun Biol 2025; 8:315. [PMID: 40011708 PMCID: PMC11865606 DOI: 10.1038/s42003-025-07752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/15/2025] [Indexed: 02/28/2025] Open
Abstract
The TMEM106B gene, encoding a lysosomal membrane protein, is closely linked with brain aging and neurodegeneration. TMEM106B has been identified as a risk factor for several neurodegenerative diseases characterized by aggregation of the RNA-binding protein TDP-43, including frontotemporal lobar degeneration (FTLD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). To investigate the role of TMEM106B in TDP-43 proteinopathy, we ablated TMEM106B in the TDP-43Q331K knock-in mouse line, which expresses an ALS-linked TDP-43 mutation at endogenous levels. We found that TMEM106B deficiency leads to glial activation, Purkinje cell loss, and behavioral deficits in TDP-43Q331K mice without inducing typical TDP-43 pathology. Interestingly, ablation of TMEM106B results in significant body weight gain, increased fat deposition, and hepatic triglyceride (TG) accumulation in TDP-43Q331K mice. In addition, lipidomic and transcriptome analysis shows a profound alteration in lipid metabolism in the liver of TDP-43Q331KTmem106b-/- mice. Our studies reveal a novel function of TMEM106B and TDP-43 in lipid metabolism and provide new insights into their roles in neurodegeneration.
Collapse
Affiliation(s)
- Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gwang Bin Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Ling Hao
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, US
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Ivanov MN, Stoyanov DS, Veleva LV, Mladenov AM, Pavlov SP, Yamashima T, Tonchev AB. TNC and GJA1 Are Putative Progenitor Markers That Are Localized in the Perivascular Adventitia of the Adult Monkey Brain Subventricular Niche. Int J Mol Sci 2025; 26:1397. [PMID: 40003865 PMCID: PMC11855557 DOI: 10.3390/ijms26041397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The largest area in the adult mammalian brain that contains stem and progenitor cells at different stages of differentiation is the subventricular zone located along the lateral wall of the lateral ventricle. We have previously shown in adult monkeys that transient global cerebral ischemia upregulates the expression of hundreds of genes in this zone, including genes known to be related to stemness in the rodent brain. Here, we analyzed the immunophenotype of two of these genes, TNC and GJA1, by co-expression experiments, applying a panel of known stem/progenitor-cell-related markers. We found that both TNC and GJA1 were expressed in the perivascular region. They were localized not to the endothelial cells but to the periendothelial adventitial cells, which was consistent with our previous electron-microscopic data suggesting periendothelial cells as a source of progenitors. We report that the expression of GJA1 was high in quiescent progenitors, while TNC was mostly present in progenitors in the transition from a quiescent to an active state. Our data suggest that TNC and GJA1 can be used as markers for stem/progenitor cells in the largest stem cell area of the adult primate brain.
Collapse
Affiliation(s)
- Martin N. Ivanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| | - Dimo S. Stoyanov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Lora V. Veleva
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Andon M. Mladenov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Stoyan P. Pavlov
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
| | - Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan;
| | - Anton B. Tonchev
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9000 Varna, Bulgaria; (D.S.S.); (L.V.V.); (A.M.M.); (S.P.P.)
- Department of Stem Cell Biology, Research Institute, Medical University, 9000 Varna, Bulgaria
| |
Collapse
|
7
|
Gan S, Macalinao DG, Shahoei SH, Tian L, Jin X, Basnet H, Bibby C, Muller JT, Atri P, Seffar E, Chatila W, Karacay A, Chanda P, Hadjantonakis AK, Schultz N, Brogi E, Bale TA, Moss NS, Murali R, Pe'er D, Massagué J. Distinct tumor architectures and microenvironments for the initiation of breast cancer metastasis in the brain. Cancer Cell 2024; 42:1693-1712.e24. [PMID: 39270646 DOI: 10.1016/j.ccell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/15/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Brain metastasis, a serious complication of cancer, hinges on the initial survival, microenvironment adaptation, and outgrowth of disseminated cancer cells. To understand the early stages of brain colonization, we investigated two prevalent sources of cerebral relapse, triple-negative (TNBC) and HER2+ (HER2BC) breast cancers. Using mouse models and human tissue samples, we found that these tumor types colonize the brain, with a preference for distinctive tumor architectures, stromal interfaces, and autocrine programs. TNBC models tend to form perivascular sheaths with diffusive contact with astrocytes and microglia. In contrast, HER2BC models tend to form compact spheroids driven by autonomous tenascin C production, segregating stromal cells to the periphery. Single-cell transcriptomics of the tumor microenvironment revealed that these architectures evoke differential Alzheimer's disease-associated microglia (DAM) responses and engagement of the GAS6 receptor AXL. The spatial features of the two modes of brain colonization have relevance for leveraging the stroma to treat brain metastasis.
Collapse
Affiliation(s)
- Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sayyed Hamed Shahoei
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xin Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Catherine Bibby
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James T Muller
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pranita Atri
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evan Seffar
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid Chatila
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ali Karacay
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pharto Chanda
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nelson S Moss
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
McCabe SM, Gardiner H, Mullen C, Wallace GQ, Shand NC, Mullen AB, Horan L, Graham D, Faulds K, Boyd M. Live chicken egg embryos as an alternative in vivo tumour model for deep surface enhanced Raman spectroscopy. Analyst 2024; 149:3513-3517. [PMID: 38842276 DOI: 10.1039/d4an00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Live chicken egg embryos offer new opportunities for evaluation and continuous monitoring of tumour growth for in vivo studies compared to traditional rodent models. Here, we report the first use of surface enhanced Raman scattering (SERS) mapping and surface enhanced spatially offset Raman scattering (SESORS) for the detection and localisation of targeted gold nanoparticles in live chicken egg embryos bearing a glioblastoma tumour.
Collapse
Affiliation(s)
- Samantha M McCabe
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
- The Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Hannah Gardiner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Calum Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Neil C Shand
- The Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Alexander B Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Linda Horan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
9
|
Suda K, Pignatelli J, Genis L, Fernandez AM, de Sevilla EF, de la Cruz IF, Pozo-Rodrigalvarez A, de Ceballos ML, Díaz-Pacheco S, Herrero-Labrador R, Aleman IT. A role for astrocytic insulin-like growth factor I receptors in the response to ischemic insult. J Cereb Blood Flow Metab 2024; 44:970-984. [PMID: 38017004 PMCID: PMC11318401 DOI: 10.1177/0271678x231217669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Increased neurotrophic support, including insulin-like growth factor I (IGF-I), is an important aspect of the adaptive response to ischemic insult. However, recent findings indicate that the IGF-I receptor (IGF-IR) in neurons plays a detrimental role in the response to stroke. Thus, we investigated the role of astrocytic IGF-IR on ischemic insults using tamoxifen-regulated Cre deletion of IGF-IR in glial fibrillary acidic protein (GFAP) astrocytes, a major cellular component in the response to injury. Ablation of IGF-IR in astrocytes (GFAP-IGF-IR KO mice) resulted in larger ischemic lesions, greater blood-brain-barrier disruption and more deteriorated sensorimotor coordination. RNAseq detected increases in inflammatory, cell adhesion and angiogenic pathways, while the expression of various classical biomarkers of response to ischemic lesion were significantly increased at the lesion site compared to control littermates. While serum IGF-I levels after injury were decreased in both control and GFAP-IR KO mice, brain IGF-I mRNA expression show larger increases in the latter. Further, greater damage was also accompanied by altered glial reactivity as reflected by changes in the morphology of GFAP astrocytes, and relative abundance of ionized calcium binding adaptor molecule 1 (Iba 1) microglia. These results suggest a protective role for astrocytic IGF-IR in the response to ischemic injury.
Collapse
Affiliation(s)
- Kentaro Suda
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Laura Genis
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana M Fernandez
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | | | | | - Maria L de Ceballos
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sonia Díaz-Pacheco
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Raquel Herrero-Labrador
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Huber RE, Babbitt C, Peyton SR. Heterogeneity of brain extracellular matrix and astrocyte activation. J Neurosci Res 2024; 102:e25356. [PMID: 38773875 DOI: 10.1002/jnr.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/01/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
From the blood brain barrier to the synaptic space, astrocytes provide structural, metabolic, ionic, and extracellular matrix (ECM) support across the brain. Astrocytes include a vast array of subtypes, their phenotypes and functions varying both regionally and temporally. Astrocytes' metabolic and regulatory functions poise them to be quick and sensitive responders to injury and disease in the brain as revealed by single cell sequencing. Far less is known about the influence of the local healthy and aging microenvironments on these astrocyte activation states. In this forward-looking review, we describe the known relationship between astrocytes and their local microenvironment, the remodeling of the microenvironment during disease and injury, and postulate how they may drive astrocyte activation. We suggest technology development to better understand the dynamic diversity of astrocyte activation states, and how basal and activation states depend on the ECM microenvironment. A deeper understanding of astrocyte response to stimuli in ECM-specific contexts (brain region, age, and sex of individual), paves the way to revolutionize how the field considers astrocyte-ECM interactions in brain injury and disease and opens routes to return astrocytes to a healthy quiescent state.
Collapse
Affiliation(s)
- Rebecca E Huber
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Jakovljević A, Stamenković V, Poleksić J, Hamad MIK, Reiss G, Jakovcevski I, Andjus PR. The Role of Tenascin-C on the Structural Plasticity of Perineuronal Nets and Synaptic Expression in the Hippocampus of Male Mice. Biomolecules 2024; 14:508. [PMID: 38672524 PMCID: PMC11047978 DOI: 10.3390/biom14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.
Collapse
Affiliation(s)
- Ana Jakovljević
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vera Stamenković
- Center for Integrative Brain Research, Seattle Children’s Research Institute, 1900 9th Ave, Seattle, WA 98125, USA;
| | - Joko Poleksić
- Institute of Anatomy “Niko Miljanic”, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Gebhard Reiss
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany;
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
13
|
Yu Y, Li X, Teng T, He Y, Jiang Y, Liu X, Zhou X, Luo Y, Xie P. Comparative analysis of the nucleus accumbens transcriptional features in multiple depressive animal models. Behav Brain Res 2024; 463:114890. [PMID: 38309372 DOI: 10.1016/j.bbr.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Chronic stress is deemed a significant clinical contributor to depression. The use of animal models of chronic stress can fully reveal the complex pathological mechanisms and their changing trends in the pathogenesis of depression, which is crucial for both disease prevention and therapy. It is also unknown how various forms of stress differ in their impact on animal physiology and behavior. The nucleus accumbens (NAc), an essential brain area for the pathophysiology of depression, and its underlying neural mechanisms remain unclear. Here, we systematically compared transcriptional signatures in the NAc of four chronic stress models in rats: chronic unpredictable mild stress (CUMS), chronic social defeat stress (CSDS), learned helplessness (LH), chronic restraint stress (CRS). The majority of differentially expressed genes (DEGs) were unique to a single depression model, while the rank-rank hypergeometric overlap analysis showed that the CSDS and CRS models had the greatest overlap, and the CRS and CUMS models had the least. Then, we performed pathway analysis of the differential genes and found that the neuroactive ligand-receptor interaction pathway was significantly enriched not only in the LH, CRS and CSDS stress models, but also significantly enriched in stress genes that were also altered in at least two stress models. Finally, we found three hub genes (Dcx, Tnc and Wdfy4) by constructing co-expression networks for stress genes. In summary, our research has the potential to offer fresh insights into the molecular mechanisms underlying depression induced by different types of stress, highlighting both their similarities and differences. It may provide valuable clues for understanding the pathogenesis of depression.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Kaps J, Georgieva VS, Oberholz L, Kribs A, Brachvogel B, Keller T. Human preterm colostrum stimulates outgrowth in neurogenic tissue. Pediatr Res 2023; 94:1906-1910. [PMID: 37433903 PMCID: PMC10665184 DOI: 10.1038/s41390-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND The olfactory bulb has a key role for nasal delivery of drugs to the brain by its access from the nasal mucosa and its connection to the subventricular zone. The aim of this study was to investigate the neuromodulatory capacity of human milk of premature infants on the olfactory bulb. METHODS Olfactory bulbs from P1 mice were embedded in a collagen I gel and incubated with DMEM supplemented with the aqueous phase of human colostrum (Col) of five mothers after very preterm birth, mature milk (Mat) of the same mothers or without supplement (Ctrl). After 7 days, the neurite outgrowth was quantified. Proteome analysis of the milk samples was performed using unlabeled mass spectrometry. RESULTS Outgrowth increased significantly in bulbs exposed to Col but not when exposed to Mat. Mass spectrometry revealed profound differences in the proteome of Col versus Mat. Among 21 upregulated proteins in Col were proteins involved in neurite outgrowth, axon guidance, neuromodulation and longevity. CONCLUSIONS A high bioactivity of human preterm colostrum on murine neonatal neurogenic tissue is demonstrated to be associated with a proteome profoundly differing from mature milk. IMPACT The hypothesis has been raised that neonatal brain damage in a preterm infant could potentially be ameliorated by intranasal application of maternal breast milk. In an in-vitro model using neonatal murine olfactory bulb explants a significant stimulatory effect by human preterm colostrum is observed. Proteomics reveals upregulated neuroactive proteins in human colostrum compared to mature milk. A confirmation of this exploratory study would indicate that preterm colostrum stimulates neurogenic tissue. Early intranasal colostrum application might attenuate perinatal loss of neurogenic tissue thereby contributing to reducing complications such as cerebral palsy.
Collapse
Affiliation(s)
- Julian Kaps
- Department of Pediatrics and Adolescent Medicine, Medical Faculty of the University of Cologne, Experimental Neonatology, Cologne, Germany
| | - Veronica S Georgieva
- Department of Pediatrics and Adolescent Medicine, Medical Faculty of the University of Cologne, Experimental Neonatology, Cologne, Germany
- Center for Biochemistry, Medical Faculty of the University of Cologne, Cologne, Germany
| | - Laura Oberholz
- Department of Pediatrics and Adolescent Medicine, Center for Neonatology and Pediatric Intensive Care Medicine, Medical Faculty of the University of Cologne, Cologne, Germany
| | - Angela Kribs
- Department of Pediatrics and Adolescent Medicine, Center for Neonatology and Pediatric Intensive Care Medicine, Medical Faculty of the University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty of the University of Cologne, Experimental Neonatology, Cologne, Germany
- Center for Biochemistry, Medical Faculty of the University of Cologne, Cologne, Germany
| | - Titus Keller
- Department of Pediatrics and Adolescent Medicine, Medical Faculty of the University of Cologne, Experimental Neonatology, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, Center for Neonatology and Pediatric Intensive Care Medicine, Medical Faculty of the University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Cigliola V, Shoffner A, Lee N, Ou J, Gonzalez TJ, Hoque J, Becker CJ, Han Y, Shen G, Faw TD, Abd-El-Barr MM, Varghese S, Asokan A, Poss KD. Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer. Nat Commun 2023; 14:4857. [PMID: 37567873 PMCID: PMC10421883 DOI: 10.1038/s41467-023-40486-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.
Collapse
Affiliation(s)
- Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, Nice, France
| | - Adam Shoffner
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nutishia Lee
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Trevor J Gonzalez
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaul Hoque
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Clayton J Becker
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yanchao Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, Jiangsu, China
| | - Grace Shen
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Timothy D Faw
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Shyni Varghese
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Marques BL, Maciel GF, Brito MR, Dias LD, Scalzo S, Santos AK, Kihara AH, da Costa Santiago H, Parreira RC, Birbrair A, Resende RR. Regulatory mechanisms of stem cell differentiation: Biotechnological applications for neurogenesis. Semin Cell Dev Biol 2023; 144:11-19. [PMID: 36202693 DOI: 10.1016/j.semcdb.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.
Collapse
Affiliation(s)
- Bruno L Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marcello R Brito
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Lucas D Dias
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Sérgio Scalzo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson K Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo C Parreira
- Centro Universitário de Mineiros - UNIFIMES, Campus Trindade, GO, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
McCabe SM, Wallace GQ, Sloan-Dennison S, Tipping WJ, Shand NC, Graham D, Boyd M, Faulds K. Evaluating nanoparticle localisation in glioblastoma multicellular tumour spheroids by surface enhanced Raman scattering. Analyst 2023. [PMID: 37366648 DOI: 10.1039/d3an00751k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Glioblastoma multiforme (GBM) is a particularly aggressive and high-grade brain cancer, with poor prognosis and life expectancy, in urgent need of novel therapies. These severe outcomes are compounded by the difficulty in distinguishing between cancerous and non-cancerous tissues using conventional imaging techniques. Metallic nanoparticles (NPs) are advantageous due to their diverse optical and physical properties, such as their targeting and imaging potential. In this work, the uptake, distribution, and location of silica coated gold nanoparticles (AuNP-SHINs) within multicellular tumour spheroids (MTS) derived from U87-MG glioblastoma cells was investigated by surface enhanced Raman scattering (SERS) optical mapping. MTS are three-dimensional in vitro tumour mimics that represent a tumour in vivo much more closely than that of a two-dimensional cell culture. By using AuNP-SHIN nanotags, it is possible to readily functionalise the inner gold surface with a Raman reporter, and the outer silica surface with an antibody for tumour specific targeting. The nanotags were designed to target the biomarker tenascin-C overexpressed in U87-MG glioblastoma cells. Immunochemistry indicated that tenascin-C was upregulated within the core of the MTS, however limitations such as NP size, quiescence, and hypoxia, restricted the penetration of the nanotags to the core and they remained in the outer proliferating cells of the spheroids. Previous examples of MTS studies using SERS demonstrated the incubation of NPs on a 2D monolayer of cells, with the subsequent formation of the MTS from these pre-incubated cells. Here, we focus on the localisation of the NPs after incubation into pre-formed MTS to establish a better understanding of targeting and NP uptake. Therefore, this work highlights the importance for the investigation and translation of NP uptake into these 3D in vitro models.
Collapse
Affiliation(s)
- Samantha M McCabe
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
- The Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - William J Tipping
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Neil C Shand
- The Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, SP4 0JQ, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
18
|
Sharma A, Hill KE, Schwarzbauer JE. Extracellular matrix composition affects outgrowth of dendrites and dendritic spines on cortical neurons. Front Cell Neurosci 2023; 17:1177663. [PMID: 37388410 PMCID: PMC10300442 DOI: 10.3389/fncel.2023.1177663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
The composition of the extracellular matrix (ECM) in nervous tissue plays an important role in controlling neuronal outgrowth and synapse development. Changes in both protein and glycosaminoglycan components of the ECM occur with tissue injury and may affect neuron growth. To investigate neuron responses to alterations in fibronectin (FN), a major component of the wound ECM, we grew cortical neurons on cell-derived decellularized matrices composed of wild type FN (FN+/+) or of a mutant form of FN (FNΔ/+) from which the III13 heparin-binding site had been deleted by CRISPR-Cas 9 gene editing. The most significant effect of the mutant FN was a reduction in dendrite outgrowth. Not only were dendrites shorter on mutant FNΔ/+-collagen (COL) matrix than on wild type (FN+/+-COL) matrix, but the number of dendrites and dendritic spines per neuron and the spine densities were also dramatically reduced on FNΔ/+-COL matrices. Mass spectrometry and immunostaining identified a reduction in tenascin-C (TN-C) levels in the mutant matrix. TN-C is an ECM protein that binds to the III13 site of FN and modulates cell-matrix interactions and has been linked to dendrite development. We propose that TN-C binding to FN in the wound matrix supports dendrite and spine development during repair of damaged neural tissue. Overall, these results show that changes in ECM composition can dramatically affect elaboration of neurites and support the idea that the ECM microenvironment controls neuron morphology and connectivity.
Collapse
Affiliation(s)
| | | | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
19
|
Sano F, Kikushima K, Benner S, Xu L, Kahyo T, Yamasue H, Setou M. Associations between prefrontal PI (16:0/20:4) lipid, TNC mRNA, and APOA1 protein in schizophrenia: A trans-omics analysis in post-mortem brain. Front Psychiatry 2023; 14:1145437. [PMID: 37143779 PMCID: PMC10151580 DOI: 10.3389/fpsyt.2023.1145437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Though various mechanisms have been proposed for the pathophysiology of schizophrenia, the full extent of these mechanisms remains unclear, and little is known about the relationships among them. We carried out trans-omics analyses by comparing the results of the previously reported lipidomics, transcriptomics, and proteomics analyses; all of these studies used common post-mortem brain samples. Methods We collected the data from three aforementioned omics studies on 6 common post-mortem samples (3 schizophrenia patients and 3 controls), and analyzed them as a whole group sample. Three correlation analyses were performed for each of the two of three omics studies in these samples. In order to discuss the strength of the correlations in a limited sample size, the p-values of each correlation coefficient were confirmed using the Student's t-test. In addition, partial correlation analysis was also performed for some correlations, to verify the strength of the impact of each factor on the correlations. Results The following three factors were strongly correlated with each other: the lipid level of phosphatidylinositol (PI) (16:0/20:4), the amount of TNC mRNA, and the quantitative signal intensity of APOA1 protein. PI (16:0/20:4) and TNC showed a positive correlation, while PI (16:0/20:4) and APOA1, and TNC and APOA1 showed negative correlations. All of these correlations reached at p < 0.01. PI (16:0/20:4) and TNC were decreased in the prefrontal cortex of schizophrenia samples, while APOA1 was increased. Partial correlation analyses among them suggested that PI (16:0/20:4) and TNC have no direct correlation, but their relationships are mediated by APOA1. Conclusion The current results suggest that these three factors may provide new clues to elucidate the relationships among the candidate mechanisms of schizophrenia, and support the potential of trans-omics analyses as a new analytical method.
Collapse
Affiliation(s)
- Fumito Sano
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
20
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
21
|
Solivan-Rivera J, Yang Loureiro Z, DeSouza T, Desai A, Pallat S, Yang Q, Rojas-Rodriguez R, Ziegler R, Skritakis P, Joyce S, Zhong D, Nguyen T, Corvera S. A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. eLife 2022; 11:e78945. [PMID: 36107478 PMCID: PMC9519151 DOI: 10.7554/elife.78945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3, and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.
Collapse
Affiliation(s)
- Javier Solivan-Rivera
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Zinger Yang Loureiro
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sabine Pallat
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Qin Yang
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pantos Skritakis
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shannon Joyce
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Denise Zhong
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tammy Nguyen
- Department of Surgery, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| |
Collapse
|
22
|
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Hernandez S, Serrano AG, Solis Soto LM. The Role of Nerve Fibers in the Tumor Immune Microenvironment of Solid Tumors. Adv Biol (Weinh) 2022; 6:e2200046. [PMID: 35751462 DOI: 10.1002/adbi.202200046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/12/2022] [Indexed: 01/28/2023]
Abstract
The importance of neurons and nerve fibers in the tumor microenvironment (TME) of solid tumors is now acknowledged after being unexplored for a long time; this is possible due to the development of new technologies that allow in situ characterization of the TME. Recent studies have shown that the density and types of nerves that innervate tumors can predict a patient's clinical outcome and drive several processes of tumor biology. Nowadays, several efforts in cancer research and neuroscience are taking place to elucidate the mechanisms that drive tumor-associated innervation and nerve-tumor and nerve-immune interaction. Assessment of neurons and nerves within the context of the TME can be performed in situ, in tumor tissue, using several pathology-based strategies that utilize histochemical and immunohistochemistry principles, hi-plex technologies, and computational pathology approaches to identify measurable histopathological characteristics of nerves. These features include the number and type of tumor associated nerves, topographical location and microenvironment of neural invasion of malignant cells, and investigation of neuro-related biomarker expression in nerves, tumor cells, and cells of the TME. A deeper understanding of these complex interactions and the impact of nerves in tumor biology will guide the design of better strategies for targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
25
|
Xia Y, Wang Y, Xiao Y. Commentary: Single-Cell Sequencing Analysis and Weighted Co-Expression Network Analysis Based on Public Databases Identified That TNC Is a Novel Biomarker for Keloid. Front Immunol 2022; 13:868685. [PMID: 35444665 PMCID: PMC9013962 DOI: 10.3389/fimmu.2022.868685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yingjie Xiao
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|