1
|
Gunes S, Mahmutoglu AM, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2025; 27:311-321. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Jiang D, Yang Y, Han X, Li Q, Ma Y, Jiao J, Chao L. Lipid metabolism-mediated fertility decline in male mice exposed to Fluorene-9-bisphenol: An integrated DNA methylation and transcriptomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118116. [PMID: 40168817 DOI: 10.1016/j.ecoenv.2025.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Fluorene-9-bisphenol (BHPF), a widely recognized alternative to bisphenol A (BPA), has been increasingly used in a wide range of industries. However, despite numerous studies, the direct mechanism underlying its male reproductive toxicity remains poorly understood. Here, a BHPF-exposed mouse model was established to evaluate the effect of BHPF on male fertility. The results showed that BHPF exposure induced reproductive dysfunction, including testis damage, spermatogenesis impairment, steroid hormone disruption and sperm quality degradation. Mechanistically, over 90,000 differentially methylated regions were identified and increased global testicular methylation levels indicated that DNA methylation may be associated with BHPF-induced testicular damage. Transcriptome analysis revealed 221 up-regulated genes and 227 down-regulated genes in BHPF-exposed mice, mainly enriched in the steroid biosynthetic pathway. Further combined methylome and transcriptome analysis revealed the critical methylated genes potentially involved in lipid metabolism. The differentially expressed genes (Cyp4a10 and Rdh1) were further confirmed to correlate with impaired male mouse fertility. Taken together, the results of this study provide a better understanding of the molecular mechanisms of toxicity effects induced by BHPF exposure from the perspective of methylome and transcriptome.
Collapse
Affiliation(s)
- Danni Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Xiaojuan Han
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Qianni Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Yingxiu Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Jun Jiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Sharifi S, Dursun M, Şahin A, Turan S, Altun A, Özcan Ö, Kalkanlı A, Çefle K, Öztürk Ş, Palanduz Ş, Kadıoğlu A. Genetic insights into non-obstructive azoospermia: Implications for diagnosis and TESE outcomes. J Assist Reprod Genet 2025; 42:1223-1237. [PMID: 39932629 PMCID: PMC12055743 DOI: 10.1007/s10815-025-03409-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is considered one of the most severe forms of male infertility. Despite the limited range of testicular phenotypes, NOA exhibits considerable genetic heterogeneity. The aim of this study was to uncover the etiopathogenesis of NOA and provide insights into the outcomes of testicular sperm extraction (TESE). MATERIAL METHOD To elucidate the potential causes of testicular pathogenesis, a cohort of 61 patients was analyzed. The genetic etiology was assessed using our developed gene panel, based on genes with prior functional studies conducted specifically in the context of testicular characterization. RESULTS Our analytical approach, built upon these findings, enabled us to explore the potential genetic causes of NOA and assess their relevance to TESE outcomes. A potential causal defect was identified in 14 genes across a total of 26 individuals (42%). Of these, three genes-MEIOB, TERB1, and USP26-had been previously described in men, while eight genes-SPO11, RBBP7, STS, RBMXL3, ZCCHC13, HUWE1, ESR1, and ABCD1-had been reported in prior studies. Additionally, three genes-CEP85, NAP1L3, and CENPI-had been previously described only in knockout (KO) phenotype studies, and this study represents the first identification of these genes in men. CONCLUSION Interestingly, the histological findings of meiotic arrest were strongly linked to genes involved in meiosis, reinforcing the clinical diagnosis of patients in this cohort. Additionally, our study underscores the importance of refining diagnostic strategies that focus on genes associated with testicular phenotypes, which could enhance the accuracy of TESE success predictions.
Collapse
Affiliation(s)
- Shahrashoub Sharifi
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey.
| | - Murat Dursun
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey.
| | - Ayla Şahin
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Serdar Turan
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| | - Ayşe Altun
- Department of Obstetrics and Gynecology, İstanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Özden Özcan
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Arif Kalkanlı
- Department of Urology, Medical Park Gebze Hospital, Gebze, Kocaeli, Turkey
| | - Kıvanç Çefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Öztürk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Şükrü Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Section of Andrology, Department of Urology, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
4
|
Latham KE. Paternal Effects in Mammalian Reproduction: Functional, Environmental, and Clinical Relevance of Sperm Components in Early Embryos and Beyond. Mol Reprod Dev 2025; 92:e70020. [PMID: 40123230 PMCID: PMC11931271 DOI: 10.1002/mrd.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
In addition to widely recognized contributions of the paternal genome, centriole, and oocyte-activation factors, sperm deliver a wide range of macromolecules to the fertilized embryo. The impacts of these factors on the embryo, progeny, and even subsequent generations have become increasingly apparent, along with an understanding of an extensive potential for male health and environmental exposures to exert both immediate and long-term impacts on mammalian reproduction. Available data reveal that sperm factors interact with and regulate the actions of oocyte factors as well as exerting additional direct effects on the early embryo. This review provides a summary of the nature and mechanisms of paternal effects in early mammalian embryos, long-term effects in progeny, susceptibility of sperm components to diverse environmental factors, and potential approaches to mitigate adverse effects of such exposures.
Collapse
Affiliation(s)
- Keith E. Latham
- Department of Animal ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of Obstetrics, Gynecology and Reproductive BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Moore JL, Parks SJ, James ER, Aston KI, Jenkins TG. The impact of air pollution on sperm DNA methylation. Reprod Toxicol 2025; 132:108850. [PMID: 39894374 DOI: 10.1016/j.reprotox.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
A number of environmental factors have been shown to impact the sperm epigenome. Air pollution is one of the largest health and environmental hazards in the world today and has been implicated in many modern diseases. Recently, air pollution has been shown to alter methylation signatures in some body tissues, indicating that air pollution may also affect the sperm epigenome. The present experiment was conducted to analyze how seasonal air pollution in the Salt Lake Valley may impact DNA methylation patterns in sperm and to establish a relationship between air pollution and sperm epigenetic health as measured by DNA methylation. Sperm DNA methylation patterns were assessed in 74 individuals, who presented at the University of Utah Andrology Clinic for semen analysis, using the Illumina Human MethylationEPIC BeadChip array. Each semen sample collected, as per the fifth edition of WHO reference values for human semen characterization, was deemed normal. Two sample groups from the Salt Lake Valley, Urban Winter (UW, n = 20), Urban Summer (US, n = 21), and two sample groups east of the Wasatch mountains, Rural Winter (RW, n = 19) and Rural Summer (RS, n = 14), were compared to assess the effect of air pollution on sperm DNA methylation patterns. Due to seasonal inversions, urban winters are characterized by increased air pollution compared to summer months. Therefore, the UW sample group was designated as treatment and the three remaining groups (US, RW, RS) were designated as control. We conducted multiple differential methylation analyses using a sliding window approach which utilized the USeq software package. A sliding window analysis of UW versus US was conducted first, followed by a confirmatory analysis comparing UW versus RW and RS. Outputs from the USeq analysis were assessed using several tools including the Stanford GREAT analysis and an analysis of methylation instability at key promoter regions in sperm. The sliding window analysis identified six differentially methylated regions (DMRs) between the UW and US groups (Wilcoxon FDR ≥ 40, corresponding p-value of ∼0.0001). Three of these six regions were confirmed with the second confirmatory analysis of UW versus RS/RW (Wilcoxon FDR ≥ 20, p-value<0.01). According to a GREAT analysis, each of the identified regions exhibited multiple gene ontology associations. Air pollution subtly alters DNA methylation in sperm, indicating that certain regions of the sperm epigenome may be susceptible to air pollution-induced modification with possible implications for reproductive and offspring health.
Collapse
Affiliation(s)
- Jordan L Moore
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| | - Seth J Parks
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| | - Emma R James
- University of Utah School of Medicine, Department of Surgery, Division of Urology, 30 N Mario Capecchi Drive, Salt Lake City, UT 84112, United States
| | - Kenneth I Aston
- University of Utah School of Medicine, Department of Surgery, Division of Urology, 30 N Mario Capecchi Drive, Salt Lake City, UT 84112, United States.
| | - Timothy G Jenkins
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| |
Collapse
|
6
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2025; 31:81-101. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
7
|
Khambata K, Raut S, Parte P, Balasinor NH. Estrogen Receptor Signaling Alters Sperm DNA Methylation Landscape in Adult Male Rats. Endocrinology 2025; 166:bqaf017. [PMID: 39865879 DOI: 10.1210/endocr/bqaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Because the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing in caudal sperm DNA was performed. The differentially methylated CpG (DMC) sites were validated by pyrosequencing, and the expression of differentially methylated genes (DMGs) was evaluated in testis by quantitative RT-PCR. Activation of ERα signaling brought about large-scale changes in the sperm DNA methylome compared to ERβ. There were 28074 DMCs and 5189 DMGs obtained after ERα agonist 4,4',4''-(4-Propyl-[1H] pyrazole-1,3,5-triyl) (PPT) treatment, whereas 1492 DMCs and 336 DMGs for ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). In genic regions, most of the DMCs were intronic, followed by promoter and upstream regions. DMCs were distributed around the transcription start site and in transcription factor-binding regions, implicating their plausible role in gene expression regulation. Genes important for spermatogenesis were identified and validated which showed a similar trend of differential methylation as obtained by whole genome-bisulfite sequencing. The expression of the DMGs was also found to be altered in the testis. There was a considerable overlap (14% to 50%) of PPT DMGs with the DMGs reported to be affected in clinical conditions of male infertility. This study highlights the role of ERs in shaping the sperm epigenome and that aberrant estrogen signaling could be a contributing factor in clinical conditions of male infertility.
Collapse
Affiliation(s)
- Kushaan Khambata
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Sanketa Raut
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Priyanka Parte
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| | - Nafisa H Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai 400012, India
| |
Collapse
|
8
|
Sutter C, Marti Y, Haas C, Neubauer J. Methylation-based forensic age estimation in blood, buccal cells, saliva and semen: A comparison of two technologies. Forensic Sci Int 2025; 367:112325. [PMID: 39667189 DOI: 10.1016/j.forsciint.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Forensic age estimation of stain donors through DNA methylation has been intensively studied in recent years. To date, there are many published age estimation tools which are based on technologies including pyrosequencing, minisequencing, or MPS. With the implementation of such tools into routine forensic casework in many laboratories worldwide, there is a need for thorough evaluation and performance comparison. In this study, we tested published age estimation tools that are based on either minisequencing or MPS on four body fluids (blood, saliva, buccal cells and semen). All samples were analyzed with both technologies and the age estimates were compared. Biological replicates were taken from ten (blood, saliva, buccal cells) or 12 individuals (semen) to assess the reproducibility of each tool. Our study demonstrates high accuracy in estimating chronological age for various body fluids using both technologies, except for semen. The mean absolute errors (MAEs) ranged from three to five years for blood, saliva and buccal cells, while semen exhibited a higher MAE of seven to eight years. Despite the overall good performance for blood, saliva, and buccal cells, significant discrepancies were observed for some individuals both between the two technologies or when compared to their chronological age. Conclusively, we demonstrated that forensic age estimation tools based on two different technologies are similarly accurate for blood, saliva and buccal cells, while the semen tools need some adjustments before implementation into forensic casework. Our results could be helpful in the decision-making process for laboratories seeking to newly establish an age estimation workflow.
Collapse
Affiliation(s)
- Charlotte Sutter
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Yael Marti
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Cordula Haas
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| | - Jacqueline Neubauer
- University of Zurich, Zurich Institute of Forensic Medicine, Winterthurerstrasse 190, Zürich CH-8057, Switzerland.
| |
Collapse
|
9
|
Leggio L, Paternò G, Cavallaro F, Falcone M, Vivarelli S, Manna C, Calogero AE, Cannarella R, Iraci N. Sperm epigenetics and sperm RNAs as drivers of male infertility: truth or myth? Mol Cell Biochem 2025; 480:659-682. [PMID: 38717684 PMCID: PMC11835981 DOI: 10.1007/s11010-024-04962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2025]
Abstract
Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also trying to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm maturation, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well as the impact of RNA players, will help to tackle infertility.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Fabrizio Cavallaro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125, Messina, Italy
| | - Claudio Manna
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- Biofertility IVF and Infertility Center, Rome, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.
| |
Collapse
|
10
|
López-Catalina A, Ragab M, Reverter A, González-Recio O. A Recursive Model Approach to Include Epigenetic Effects in Genetic Evaluations Using Simulated DNA Methylation Effects. J Anim Breed Genet 2025. [PMID: 39868874 DOI: 10.1111/jbg.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals. The liability to methylation was treated as an additive trait, while a trait moderated by methylation effects was also simulated. A multiomic model (GOBLUP) was adapted to incorporate methylation data in genomic and genetic evaluations, using the traditional BLUP method as a benchmark. The GOBLUP accurately recovered heritability estimates for the liability to methylation in all low, medium and high heritability scenarios and was consistent at estimating the heritability for the epigenetics-moderated trait of interest at a low-medium heritability of 0.14. The genetic variance recovered by the BLUP model was influenced by the h2 of the liability to methylation, and a part of the methylation variance for the phenotypic trait was captured as additive. The h2 of the phenotypic trait partially relies on the h2 value for the methylation windows in the traditional model. A newly proposed estimated epigenetic value (EEV) combines the traditional additive genetic information from genotyping arrays with epigenetic information. The correlation between the traditional estimated breeding value (EBV) and EEV was high (0.92-0.99 depending on the scenario), but the correlation of the EEV with the true breeding value was higher than the correlation between the traditional EBV and the TBV (0.85 vs. 0.75, 0.71 vs. 0.66 and 0.61 vs. 0.62 depending on the scenario). This study demonstrates that the GOBLUP multiomic recursive model can effectively separates additive and epigenetic variances, enabling improved breeding decisions by accounting for genetic liability to DNA methylation. This enables more informed breeding decisions, optimising selection for desired traits. Emerging sequencing techniques offer new opportunities for cost-effective simultaneous acquisition of genetic and epigenetic data, further enhancing breeding accuracy.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Mohamed Ragab
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| |
Collapse
|
11
|
Yang B, Xia L, Deng R, Wu L, Zhang Z, Wu X, Ding T, Zhao Y, Huang J, Huang Z. Impact of sperm DNA fragmentation index on assisted reproductive outcomes: a retrospective analysis. Front Endocrinol (Lausanne) 2025; 15:1530972. [PMID: 39906032 PMCID: PMC11790627 DOI: 10.3389/fendo.2024.1530972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
Background The role of sperm DNA fragmentation index (DFI) in fertility remains controversial. Herein, we analyzed its association with semen parameters, embryonic development, and pregnancy outcomes after in vitro fertilization (IVF) treatment. Additionally, we assessed whether DFI had a potential impact on long-term maternal and neonatal complications. Methods A total of 5,271 women who underwent IVF treatment for the first time between October 1, 2020, and July 31, 2023, were included from an academic fertility center. Participants were categorized into three groups based on sperm DFI: DFI < 15%, 15 ≤ DFI < 30%, and DFI ≥ 30%. We collected data on patient demographics, semen parameters, embryonic development, clinical outcomes, maternal and infant complications. Multivariate logistic regression analyses were conducted to control for potential confounders. Results The DFI value was negatively correlated with semen quality in males. High DFI affected the blastocyst formation rate (56.44%, 55.32%, 53.72%, respectively; P=0.045) and the rate of transferable embryos (3.97 ± 2.71, 3.90 ± 2.7, 3.38 ± 2.4, respectively; P<0.001); however, no significant difference in pregnancy outcomes was observed among the three groups. Elevated DFI did not contribute to clinically relevant adverse maternal events during pregnancy, but it was associated with an increased risk of low birth weight (3.9%, 6.6%, 10.1%, respectively; P=0.006) in newborns. Conclusions Sperm DFI could influence embryonic development, with a higher risk of low birthweight infants in the high DFI group. However, it does not appear to affect clinical outcomes or other perinatal complications. The role of DFI as a predictive factor in assisted reproduction, especially regarding offspring outcomes, requires further investigation with larger sample sizes.
Collapse
Affiliation(s)
- Bin Yang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Leizhen Xia
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Rufei Deng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liping Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Zhiqin Zhang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Tao Ding
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yan Zhao
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
- Bright Prosperity Research Center, Hangzhou, China
| | - Zhihui Huang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Ou K, Zhang S, Lei X, Liu X, Zhang N, Wang C, Yuan X. Prenatal exposure to environmentally relevant levels of PAHs inhibits spermatogenesis in adult mice and the mechanism involved. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124914. [PMID: 39245200 DOI: 10.1016/j.envpol.2024.124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of contaminants that cannot be banned. Exposure to PAHs has been reported to alter spermatogenesis in mammals, but little is known about prenatal exposure to a mixture of PAHs on the reproductive toxicity of adult offspring. In this study, we investigated the associations between prenatal exposure to environmentally relevant levels of PAHs in mice and testicular dysfunction, including impaired spermatogenesis and steroid hormone dysfunction in male offspring on postnatal day 180. The percentage of testicular apoptotic cells was significantly increased, which was further verified by the up-regulated BAX protein. The expression of Ar and the Leydig cell marker Cyp11a1 was down-regulated, suggesting an impairment in the synthesis of steroid hormones. DNA hypermethylation of the Tnp1 and Sohlh2 promoters suppresses transcriptional expression, consequently altering the sperm production process. This study shows that prenatal exposure to PAHs may induce long-term reproductive toxicity.
Collapse
Affiliation(s)
- Kunlin Ou
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Siqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Xinxing Lei
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiao Liu
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Ningfang Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
13
|
Vaiarelli A, Cimadomo D, Rucci C, Innocenti F, Taggi M, Pittana E, Fiorentino G, Petrone P, Soscia DM, Fabozzi G, Mazzilli R, Rienzi L, Ubaldi FM, Nappi RE, Gennarelli G. ICSI and PGT-A in PCOS phenotype-D patients: a matched case-control study versus idiopathic infertile women. J Assist Reprod Genet 2024; 41:3423-3432. [PMID: 39495342 PMCID: PMC11707217 DOI: 10.1007/s10815-024-03299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE To assess oocyte competence and embryo chromosomal constitution in phenotype-D PCOS women undergoing ICSI for PGT-A at the blastocyst stage. METHODS Retrospective study at a private IVF center. In the period 2013-2021, 58 naïve phenotype-D PCOS women (i.e., oligomenorrhea, ovarian PCO-morphology, and absence of hyperandrogenism) underwent ICSI with ejaculated sperm for PGT-A. These cases were matched to 58 controls selected from 2211 naïve women with idiopathic infertility planned for the same treatment in the same period. The matching variables were age (≈ 36 years), BMI (≈ 22), cumulus oocyte complexes (COCs) retrieved (≈ 21-23), and sperm quality (≈ 43-45% men with all sperm parameters > 5th percentile). The primary outcome was euploid blastocyst rate (EBR) per cohort of inseminated oocytes. RESULTS Maturation rates per COCs and euploidy per biopsied blastocysts were similar. PCOS patients with phenotype-D showed higher fertilization per inseminated oocytes and higher blastulation per zygotes. This resulted into a higher EBR per inseminated oocytes and more euploid blastocysts available for transfer, although these differences adjusted for confounders were not significant. The live birth rate per first euploid transfers was comparable, so were all other outcomes considered. CONCLUSIONS Oocyte competence was not compromised in phenotype-D PCOS women, while good prognosis idiopathic infertile women might have unknown oocyte issues. In case of repeated failures after intrauterine insemination, a timely referral to IVF might represent an efficient strategy, in line with the "one-and-done" approach fulfilling a family planning perspective. Indeed, 22% of the phenotype-D PCOS women had 2 singleton LBs and 76% had surplus oocytes/euploid blastocysts after achieving ≥ 1 live birth.
Collapse
Affiliation(s)
- Alberto Vaiarelli
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy.
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
| | - Cecilia Rucci
- Department of Surgical Sciences, Gynecologic Unit, University of Rome Tor Vergata, Rome, Italy
| | - Federica Innocenti
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
| | - Erika Pittana
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
- Department of Surgical Sciences, Gynecologic Unit, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Fiorentino
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', Laboratory of Biology and Biotechnology of Reproduction, University of Pavia, Pavia, Italy
| | - Pasquale Petrone
- Department of Surgical Sciences, Gynecologic Unit, University of Rome Tor Vergata, Rome, Italy
| | - Daria Maria Soscia
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Gemma Fabozzi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
- IVIRMA Global Research Alliance, B-Woman, Rome, Italy
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Rossella Mazzilli
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
- Department of Clinical and Molecular Medicine, University "Sapienza" of Rome, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
- Dipartimento Di Scienze Biomolecolari, Università Di Urbino "Carlo Bo", Urbino, Italia
| | - Filippo Maria Ubaldi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Via G. De Notaris 2B, Rome, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, I.R.C.C.S. Matteo Foundation, Pavia, Italy
| | - Gianluca Gennarelli
- IVIRMA Global Research Alliance, Livet, Turin, Italy
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Khatib H, Townsend J, Konkel MA, Conidi G, Hasselkus JA. Calling the question: what is mammalian transgenerational epigenetic inheritance? Epigenetics 2024; 19:2333586. [PMID: 38525788 DOI: 10.1080/15592294.2024.2333586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
While transgenerational epigenetic inheritance has been extensively documented in plants, nematodes, and fruit flies, its existence in mammals remains controversial. Several factors have contributed to this debate, including the lack of a clear distinction between intergenerational and transgenerational epigenetic inheritance (TEI), the inconsistency of some studies, the potential confounding effects of in-utero vs. epigenetic factors, and, most importantly, the biological challenge of epigenetic reprogramming. Two waves of epigenetic reprogramming occur: in the primordial germ cells and the developing embryo after fertilization, characterized by global erasure of DNA methylation and remodelling of histone modifications. Consequently, TEI can only occur if specific genetic regions evade this reprogramming and persist through embryonic development. These challenges have revived the long-standing debate about the possibility of inheriting acquired traits, which has been strongly contested since the Lamarckian and Darwinian eras. As a result, coupled with the absence of universally accepted criteria for transgenerational epigenetic studies, a vast body of literature has emerged claiming evidence of TEI. Therefore, the goal of this study is to advocate for establishing fundamental criteria that must be met for a study to qualify as evidence of TEI. We identified five criteria based on the consensus of studies that critically evaluated TEI. To assess whether published original research papers adhere to these criteria, we examined 80 studies that either claimed or were cited as supporting TEI. The findings of this analysis underscore the widespread confusion in this field and highlight the urgent need for a unified scientific consensus on TEI requirements.
Collapse
Affiliation(s)
- Hasan Khatib
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Jessica Townsend
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Melissa A Konkel
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Gabi Conidi
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Julia A Hasselkus
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
15
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Garrido N, Castilla JA, Gonzalvo MC, Clavero A, Molina M, Luján S, Santos-Ribeiro S, Vilches MÁ, Espuch A, Maldonado V, Galiano-Gutiérrez N, Santamaría-López E, González-Ravina C, Quintana-Ferraz F, Gómez S, Amorós D, Martínez-Granados L, Ortega-González Y, Burgos M, Pereira-Caetano I, Bulbul O, Castellano S, Romano M, Albani E, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L. A comprehensive study of common and rare genetic variants in spermatogenesis-related loci identifies new risk factors for idiopathic severe spermatogenic failure. Hum Reprod Open 2024; 2024:hoae069. [PMID: 39678461 PMCID: PMC11645127 DOI: 10.1093/hropen/hoae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY QUESTION Can genome-wide genotyping data be analysed using a hypothesis-driven approach to enhance the understanding of the genetic basis of severe spermatogenic failure (SPGF) in male infertility? SUMMARY ANSWER Our findings revealed a significant association between SPGF and the SHOC1 gene and identified three novel genes (PCSK4, AP3B1, and DLK1) along with 32 potentially pathogenic rare variants in 30 genes that contribute to this condition. WHAT IS KNOWN ALREADY SPGF is a major cause of male infertility, often with an unknown aetiology. SPGF can be due to either multifactorial causes, including both common genetic variants in multiple genes and environmental factors, or highly damaging rare variants. Next-generation sequencing methods are useful for identifying rare mutations that explain monogenic forms of SPGF. Genome-wide association studies (GWASs) have become essential approaches for deciphering the intricate genetic landscape of complex diseases, offering a cost-effective and rapid means to genotype millions of genetic variants. Novel methods have demonstrated that GWAS datasets can be used to infer rare coding variants that are causal for male infertility phenotypes. However, this approach has not been previously applied to characterize the genetic component of a whole case-control cohort. STUDY DESIGN SIZE DURATION We employed a hypothesis-driven approach focusing on all genetic variation identified, using a GWAS platform and subsequent genotype imputation, encompassing over 20 million polymorphisms and a total of 1571 SPGF patients and 2431 controls. Both common (minor allele frequency, MAF > 0.01) and rare (MAF < 0.01) variants were investigated within a total of 1797 loci with a reported role in spermatogenesis. This gene panel was meticulously assembled through comprehensive searches in the literature and various databases focused on male infertility genetics. PARTICIPANTS/MATERIALS SETTING METHODS This study involved a European cohort using previously and newly generated data. Our analysis consisted of three independent methods: (i) variant-wise association analyses using logistic regression models, (ii) gene-wise association analyses using combined multivariate and collapsing burden tests, and (iii) identification and characterisation of highly damaging rare coding variants showing homozygosity only in SPGF patients. MAIN RESULTS AND THE ROLE OF CHANCE The variant-wise analyses revealed an association between SPGF and SHOC1-rs12347237 (P = 4.15E-06, odds ratio = 2.66), which was likely explained by an altered binding affinity of key transcription factors in regulatory regions and the disruptive effect of coding variants within the gene. Three additional genes (PCSK4, AP3B1, and DLK1) were identified as novel relevant players in human male infertility using the gene-wise burden test approach (P < 5.56E-04). Furthermore, we linked a total of 32 potentially pathogenic and recessive coding variants of the selected genes to 35 different cases. LARGE SCALE DATA Publicly available via GWAS catalog (accession number: GCST90239721). LIMITATIONS REASONS FOR CAUTION The analysis of low-frequency variants presents challenges in achieving sufficient statistical power to detect genetic associations. Consequently, independent studies with larger sample sizes are essential to replicate our results. Additionally, the specific roles of the identified variants in the pathogenic mechanisms of SPGF should be assessed through functional experiments. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight the benefit of using GWAS genotyping to screen for both common and rare variants potentially implicated in idiopathic cases of SPGF, whether due to complex or monogenic causes. The discovery of novel genetic risk factors for SPGF and the elucidation of the underlying genetic causes provide new perspectives for personalized medicine and reproductive counselling. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Spanish Ministry of Science and Innovation through the Spanish National Plan for Scientific and Technical Research and Innovation (PID2020-120157RB-I00) and the Andalusian Government through the research projects of 'Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020)' (ref. PY20_00212) and 'Proyectos de Investigación aplicada FEDER-UGR 2023' (ref. C-CTS-273-UGR23). S.G.-M. was funded by the previously mentioned projects (ref. PY20_00212 and PID2020-120157RB-I00). A.G.-J. was funded by MCIN/AEI/10.13039/501100011033 and FSE 'El FSE invierte en tu futuro' (grant ref. FPU20/02926). IPATIMUP integrates the i3S Research Unit, which is partially supported by the Portuguese Foundation for Science and Technology (FCT), financed by the European Social Funds (COMPETE-FEDER) and National Funds (projects PEstC/SAU/LA0003/2013 and POCI-01-0145-FEDER-007274). S.S. is supported by FCT funds (10.54499/DL57/2016/CP1363/CT0019), ToxOmics-Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, and is also partially supported by the Portuguese Foundation for Science and Technology (UIDP/00009/2020 and UIDB/00009/2020). S. Larriba received support from Instituto de Salud Carlos III (grant: DTS18/00101), co-funded by FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) and from 'Generalitat de Catalunya' (grant 2021SGR052). S. Larriba is also sponsored by the 'Researchers Consolidation Program' from the SNS-Dpt. Salut Generalitat de Catalunya (Exp. CES09/020). All authors declare no conflict of interest related to this study.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), CSIC, Granada, Spain
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - José A Castilla
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - M Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Marta Molina
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Granada, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Ángel Vilches
- Ovoclinic & Ovobank, Clínicas de Reproducción Asistida y Banco de óvulos, Marbella, Málaga, Spain
| | - Andrea Espuch
- Hospital Universitario Torrecárdenas, Unidad de Reproducción Humana Asistida, Almería, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | | | | | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Fernando Quintana-Ferraz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Susana Gómez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - David Amorós
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
| | - Ozgur Bulbul
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Massimo Romano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Fertility Center, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisbon, Portugal
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M Lopes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
16
|
Hu T, Zhang J, Wei Y, Zhang L, Wu Q. Enhanced endoplasmic reticulum stress signaling disrupts porcine sertoli cell function in response to Bisphenol A exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122908. [PMID: 39405871 DOI: 10.1016/j.jenvman.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA), a pervasive substance in our daily lives and livestock excreta, poses significant threats due to its infiltration into foods and water sources. BPA has adverse impacts on male reproductive function, particularly affecting the critical Sertoli (ST) cells that play a pivotal role in the process of spermatogonia differentiating into spermatozoa. In this study, we examined the prevalence of BPA within the pig industry and delved into the impact of BPA exposure on the motility of boar sperm, the function of pig ST cells, as well as the underlying molecular mechanisms involved. This study revealed spatial disparities in the global distribution of BPA and its analogue contamination, utilizing data compiled from 130 comprehensive studies. The average concentration of BPA found in pig feed ranges from 9.7 to 47.9 μg/kg, while in serum, it averages between 55.1 and 75.6 ng/L. The BPA concentration in feed exhibits a negative correlation with sperm viability and the percentage of progressive motile spermatozoa. Exposure to BPA reduced sperm motility in boar and ST cell activity at both 6 and 24 h. The transcriptome analysis revealed that, compared to untreated control cells, endoplasmic reticulum stress (ERS)-related genes were upregulated in ST cells exposed to BPA at 6 and 24 h. This activation of ERS in ST cells was mediated by receptor protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring protein-1α (IRE1α), and activating transcription factor 6 (ATF6). Additionally, BPA exposure triggered oxidative stress and a proinflammatory response mediated by the transcription factor NF-κB, accompanied by an increase in downstream proinflammatory cytokines. BPA exposure also led to apoptosis in ST cells and upregulated the expression levels of pro-apoptosis proteins. However, inhibiting ERS activity with 4-PBA attenuated the BPA-induced inflammatory response and apoptosis in ST cells. Our findings suggest that BPA induced apoptosis and inflammatory response in porcine ST cells through persistent activation of ERS, thereby compromising the normal function of these cells.
Collapse
Affiliation(s)
- Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Yuxuan Wei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China.
| |
Collapse
|
17
|
Moustakli E, Gkountis A, Dafopoulos S, Zikopoulos A, Sotiriou S, Zachariou A, Dafopoulos K. Comparative Analysis of Fluorescence In Situ Hybridization and Next-Generation Sequencing in Sperm Evaluation: Implications for Preimplantation Genetic Testing and Male Infertility. Int J Mol Sci 2024; 25:11296. [PMID: 39457078 PMCID: PMC11508275 DOI: 10.3390/ijms252011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or congenital anomalies may be candidates for PGT. Preimplantation genetic testing for aneuploidies (PGT-A) enables the selection and transfer of euploid embryos, significantly enhancing implantation rates in assisted reproduction. Fluorescence in situ hybridization (FISH) is the preferred method for analyzing biopsied cells to identify these abnormalities. While FISH is a well-established method for identifying sperm aneuploidy, NGS offers a more comprehensive assessment of genetic material, potentially enhancing our understanding of male infertility. Chromosomal abnormalities, arising during meiosis, can lead to aneuploid sperm, which may hinder embryo implantation and increase miscarriage rates. This review provides a comparative analysis of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) in sperm evaluations, focusing on their implications for preimplantation genetic testing. This analysis explores the strengths and limitations of FISH and NGS, aiming to elucidate their roles in improving ART outcomes and reducing the risk of genetic disorders in offspring. Ultimately, the findings will inform best practices in sperm evaluations and preimplantation genetic testing strategies.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Antonios Gkountis
- Genesis Athens Thessaly, Centre for Human Reproduction, 41335 Larissa, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| | | | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
18
|
Nowak K, Oluwayiose OA, Houle E, Maxwell DL, Sawant S, Paskavitz A, Ford JB, Minguez-Alarcon L, Calafat AM, Hauser R, Pilsner JR. Urinary concentrations of phthalate and phthalate alternative metabolites and sperm DNA methylation: A multi-cohort and meta-analysis of men in preconception studies. ENVIRONMENT INTERNATIONAL 2024; 192:109049. [PMID: 39393261 DOI: 10.1016/j.envint.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Phthalates are ubiquitous pollutants in the environment; however, the mechanisms of phthalate-associated reproductive disorders in men are not fully understood. The aim of this study is to investigate associations between urinary phthalate metabolite concentrations and sperm DNA methylation. The study was conducted on 697 men from three prospective pregnancy cohorts: Longitudinal Investigation of Fertility and the Environment (LIFE) Study, Sperm Environmental Epigenetics and Development Study (SEEDS), and Environment and Reproductive Health (EARTH) Study. Eighteen phthalate and two phthalate alternative metabolites were quantified by mass spectrometry in preconception urinary samples and sperm DNA methylation was measured via Illumina EPIC Array (v1). Regional methylation analyses were conducted to identify cohort-specific loci associated with urinary phthalate metabolites. Models were adjusted for age, body mass index (BMI), race, smoking status, urinary creatinine/specific gravity, and analytical batch for phthalate measurements. The cohort-specific results were meta-analyzed using METAL. Participants had an average age of 30 years, most (79.6 %) of whom had BMI>25 kg/m2 and were non-smokers (90.1 %). A total of 7,979 differentially methylated regions (DMRs; 7,979 LIFE-specific DMRs, 72 SEEDS-specific DMRs, and 23 EARTH-specific DMRs) were associated with urinary MBzP, MiBP, MMP, MCNP, MCPP, MBP, and MCOCH. Meta-analysis identified fewer DMRs than cohort-specific models: 946 DMRs were associated with MBzP, 27 DMRs associated with MiBP, and 1 DMR associated with MEHP. The majority of cohort-specific and meta-analysis-derived DMRs displayed a positive association with phthalate metabolite concentrations and were enriched in genes associated with spermatogenesis, response to hormones and their metabolism, embryonic organ development and developmental growth. In conclusion, several preconception urinary phthalate metabolites were associated with increased DNA methylation patterns in sperm. These findings provide an epigenetic pathway by which environmental phthalate exposures can impact couples' reproductive outcomes.
Collapse
Affiliation(s)
- Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Amanda Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jennifer B Ford
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Minguez-Alarcon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
19
|
Hunt BJ, Pegoraro M, Marshall H, Mallon EB. A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure. INSECT MOLECULAR BIOLOGY 2024; 33:481-492. [PMID: 38348493 DOI: 10.1111/imb.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 08/20/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
Collapse
Affiliation(s)
- Ben J Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Zhao CC, Scott M, Eisenberg ML. Male Fertility as a Proxy for Health. J Clin Med 2024; 13:5559. [PMID: 39337044 PMCID: PMC11432267 DOI: 10.3390/jcm13185559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Male fertility is affected by a wide range of medical conditions that directly and indirectly affect spermatogenesis. As such, it can be useful as both an indicator of current health and a predictive factor for future health outcomes. Herein, we discuss the current literature regarding the association between male fertility and systemic health conditions and exposures. We review the connection between male fertility and genetics, medications, diet, and environmental pollutants, as well as its effects on future oncologic, cardiovascular, and autoimmune conditions. Understanding this interplay will allow more health care providers to engage in health counseling that will not only improve men's reproductive outcomes but also their overall health.
Collapse
Affiliation(s)
- Calvin C Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Scott
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Stigliani S, Amaro A, Reggiani F, Maccarini E, Massarotti C, Lambertini M, Anserini P, Scaruffi P. The storage time of cryopreserved human spermatozoa does not affect pathways involved in fertility. Basic Clin Androl 2024; 34:15. [PMID: 39285325 PMCID: PMC11406918 DOI: 10.1186/s12610-024-00231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Cryopreservation of human spermatozoa is a widely used technique in the assisted reproduction technology laboratory for the storage of gametes for later use, for the fertility preservation and for sperm donation programs. Cryopreservation can cause damage to membrane, cytoskeletal, acrosome and increased oxidative stress, sperm DNA damage and transcriptome changes. To assess the impact of storage time on the transcriptome of frozen human spermatozoa, semen samples were collected from 24 normospermic donors of whom 13 had cryostored semen for a short-time (1 week) and 11 had cryostored semen for a long-time (median 9 years). RESULTS RNA was extracted from each frozen-thawed sperm sample, randomized in pools, and analyzed by microarrays. Five transcripts were in higher abundance in the long-time respect to the short-time storage group. Functional annotation enrichment disclosed that that the length of cryostorage has no effect on critical pathways involved in sperm physiology and function. CONCLUSIONS The storage time of cryopreserved human spermatozoa does not affect pathways involved in fertility.
Collapse
Affiliation(s)
- Sara Stigliani
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Adriana Amaro
- SSD Regolazione dell'Espressione Genica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Reggiani
- SSD Regolazione dell'Espressione Genica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Elena Maccarini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia Massarotti
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Health (DiNOGMI), University of Genova, Genova, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Sciences (DiMI), University of Genova, Genova, Italy
- UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Anserini
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Scaruffi
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- SS Physiopathology of Human Reproduction, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 10, Genova, 16132, Italy.
| |
Collapse
|
22
|
Chen X, Zhang X, Jiang T, Xu W. Klinefelter syndrome: etiology and clinical considerations in male infertility†. Biol Reprod 2024; 111:516-528. [PMID: 38785325 DOI: 10.1093/biolre/ioae076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent chromosomal disorder occurring in males. It is defined by an additional X chromosome, 47,XXY, resulting from errors in chromosomal segregation during parental gametogenesis. A major phenotype is impaired reproductive function, in the form of low testosterone and infertility. This review comprehensively examines the genetic and physiological factors contributing to infertility in KS, in addition to emergent assisted reproductive technologies, and the unique ethical challenges KS patients face when seeking infertility treatment. The pathology underlying KS is increased susceptibility for meiotic errors during spermatogenesis, resulting in aneuploid or even polyploid gametes. Specific genetic elements potentiating this susceptibility include polymorphisms in checkpoint genes regulating chromosomal synapsis and segregation. Physiologically, the additional sex chromosome also alters testicular endocrinology and metabolism by dysregulating interstitial and Sertoli cell function, collectively impairing normal sperm development. Additionally, epigenetic modifications like aberrant DNA methylation are being increasingly implicated in these disruptions. We also discuss assisted reproductive approaches leveraged in infertility management for KS patients. Application of assisted reproductive approaches, along with deep comprehension of the meiotic and endocrine disturbances precipitated by supernumerary X chromosomes, shows promise in enabling biological parenthood for KS individuals. This will require continued multidisciplinary collaboration between experts with background of genetics, physiology, ethics, and clinical reproductive medicine.
Collapse
Affiliation(s)
- Xinyue Chen
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xueguang Zhang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Jiang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Chengdu 610041, China
| |
Collapse
|
23
|
Saftić Martinović L, Mladenić T, Lovrić D, Ostojić S, Dević Pavlić S. Decoding the Epigenetics of Infertility: Mechanisms, Environmental Influences, and Therapeutic Strategies. EPIGENOMES 2024; 8:34. [PMID: 39311136 PMCID: PMC11417785 DOI: 10.3390/epigenomes8030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Infertility is a complex condition caused by a combination of genetic, environmental, and lifestyle factors. Recent advances in epigenetics have highlighted the importance of epigenetic changes in fertility regulation. This review aims to provide a comprehensive overview of the epigenetic mechanisms involved in infertility, with a focus on DNA methylation, histone modification, and non-coding RNAs. We investigate the specific epigenetic events that occur during gametogenesis, with a focus on spermatogenesis and oogenesis as distinct processes. Furthermore, we investigate how environmental factors such as diet, stress, and toxin exposure can influence these epigenetic changes, potentially leading to infertility. The second part of the review explores epigenetic changes as therapeutic targets for infertility. Emerging therapies that modulate epigenetic marks present promising opportunities for fertility restoration, particularly in spermatogenesis. By summarizing current research findings, this review emphasizes the importance of understanding epigenetic contributions to infertility. Our discussion aims to lay the groundwork for future research directions and clinical applications in reproductive health.
Collapse
Affiliation(s)
- Lara Saftić Martinović
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Tea Mladenić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Dora Lovrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia;
| | - Saša Ostojić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| | - Sanja Dević Pavlić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (L.S.M.); (T.M.); (S.O.)
| |
Collapse
|
24
|
Ozkocer SE, Guler I, Ugras Dikmen A, Bozkurt N, Varol N, Konac E. Male infertility is associated with differential DNA methylation signatures of the imprinted gene GNAS and the non-imprinted gene CEP41. J Assist Reprod Genet 2024; 41:2289-2300. [PMID: 39017772 PMCID: PMC11405554 DOI: 10.1007/s10815-024-03202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE To investigate whether the DNA methylation profiles of GNAS(20q13.32), MEST(7q32.2), MESTIT1(7q32.2), IGF2(11p15.5), H19 (7q32.2), and CEP41(7q32.2) genes are related to the transcriptomic and epigenomic etiology of male infertility. METHODS The DNA methylation levels of spermatozoa were obtained from fertile (n = 30), oligozoospermic (n = 30), and men with normal sperm count (n = 30). The methylation status of each CpG site was categorized as hypermethylated or hypomethylated. Expression levels of target gene transcripts were determined using real-time PCR. RESULTS The oligozoospermia showed a higher frequency of hypermethylation at GNASAS 1st, 3rd, and 5th CpG dinucleotides (66.7%, 73.3%, 73.3%) compared to the fertile group (33.3%, 33.3%, 40%, respectively). The normal sperm count exhibited a higher frequency of hypermethylation at the 3rd CpG of CEP41 (46.7%) than the fertile group (16.7%). Normal sperm count was predicted by CEP41 hypermethylation (OR = 1.750, 95%CI 1.038-2.950) and hypermethylation of both CEP41 and GNASAS (OR = 2.389, 95%CI 1.137-5.021). Oligozoospermia was predicted solely by GNASAS hypermethylation (OR = 2.460, 95%CI 1.315-4.603). In sperms with decreased IGF2 expression in the fertile group, we observed hypomethylation in the 2nd CpG of IGF2 antisense (IFG2AS), and hypermethylation in the 1st, 2nd, and 4th CpGs of H19. No significant relationship was found between IGF2 expression and methylation status of IGF2AS and H19 in infertile groups. CONCLUSION The disappearance of the relationship between IGF2 expression and IGF2AS and H19 methylations in the infertile group provides new information regarding the disruption of epigenetic programming during spermatogenesis. A better understanding of sperm GNASAS and CEP41 hypermethylation could advance innovative diagnostic markers for male infertility.
Collapse
Affiliation(s)
- Suheyla Esra Ozkocer
- Department of Medical Biology and Genetics, Institute of Health Sciences, Gazi University, Kavaklıdere Çankaya, 06540, Ankara, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Ismail Guler
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Asiye Ugras Dikmen
- Department of Public Health, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Nuray Bozkurt
- Department of Obstetrics and Gynecology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Nuray Varol
- Department of Medical Biology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Institute of Health Sciences, Gazi University, Kavaklıdere Çankaya, 06540, Ankara, Turkey.
- Department of Medical Biology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey.
| |
Collapse
|
25
|
Xie Z, Liu K, Zhang S, Gong Y, Wang Z, Lu P. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms in andrology-a narrative review. Transl Androl Urol 2024; 13:1592-1601. [PMID: 39280663 PMCID: PMC11399056 DOI: 10.21037/tau-24-153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism and one-carbon metabolism. MTHFR gene polymorphism affects enzyme activity. MTHFR gene polymorphism is closely related to many human diseases, such as cardiocerebrovascular diseases, diabetes, neural tube defects (NTDs), tumors, and so on. In the field of Andrology, MTHFR gene polymorphism may be associated with male infertility and erectile dysfunction (ED), and there is a possibility of treating male infertility and ED by supplementing with folic acid. However, its exact pathophysiologic mechanism is not fully understood. We sought to obtain a robust understanding of the interactions between MTHFR gene polymorphism, oxidative stress, DNA methylation, hyperhomocysteinemia (HHcy), male infertility, and ED. Methods We performed a non-systematic literature review using the PubMed database to identify articles specifically related to MTHFR, male infertility and ED. Key Content and Findings Our literature review on MTHFR gene polymorphism in male infertility patients indicates a significant association between C677T gene polymorphism and male infertility. There is limited literature on the correlation between ED and MTHFR gene polymorphism, and there are two different conclusions, related and unrelated. More clinical data are needed to clarify the conclusion. There is a possibility of using folic acid supplementation to treat male infertility and ED, especially for patients with thymine-thymine (TT) genotype. Future research is necessary to further understand the relationship between MTHFR gene polymorphism and male infertility and ED. Conclusions Our literature review on MTHFR gene polymorphism in male infertility patients indicates a significant association between C677T gene polymorphism and male infertility. Folic acid supplementation can improve sperm quality. The correlation between MTHFR gene polymorphisms and ED is questionable and needs to be confirmed by more clinical data. MTHFR gene polymorphisms are associated with homocysteine (Hcy) levels, which affects vascular endothelial function and may be related to the development of vascular ED (VED). Folic acid supplementation improves International Index for Erectile Function (IIEF) questionnaire scores in ED patients in whom phosphodiesterase 5 inhibitor (PDE5i) alone is ineffective.
Collapse
Affiliation(s)
- Zisong Xie
- Department of Andrology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, Yangzhou, China
| | - Kaifeng Liu
- Department of Andrology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, Yangzhou, China
| | - Shengmin Zhang
- Department of Andrology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yongzhan Gong
- Department of Andrology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, Yangzhou, China
| | - Zihao Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| | - Pengjie Lu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
| |
Collapse
|
26
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
27
|
Wu B, Sheng Y, Yu W, Ruan L, Geng H, Xu C, Wang C, Tang D, Lv M, Hua R, Li K. Differential methylation patterns in paternally imprinted gene promoter regions in sperm from hepatitis B virus infected individuals. BMC Mol Cell Biol 2024; 25:19. [PMID: 39090552 PMCID: PMC11295637 DOI: 10.1186/s12860-024-00515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.
Collapse
Affiliation(s)
- Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yuying Sheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Wenwei Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Rong Hua
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
28
|
Karami Hezarcheshmeh F, Yaghmaei P, Hayati Roodbari N, Yari K. Methylation Status of cAMP-responsive Element Modulator (CREM) Gene in Infertile Men and Its Association with Sperm Parameters. Reprod Sci 2024; 31:2001-2008. [PMID: 38499948 DOI: 10.1007/s43032-024-01510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The methylation pattern of non-imprinting genes was little studied, although it is widely known that the abnormal methylation levels of imprinting genes are associated with different forms of male infertility. The purpose of this research was to assess the CREM gene's methylation status and seminal characteristics in infertile individuals who were potential intracytoplasmic sperm injection (ICSI) candidates. A total of 45 semen samples (15 normospermia, 15 asthenospermia, and 15 oligoasthenoteratospermia) were examined. Using aniline blue (AB) staining, we carried out conventional semen analysis, chromatin quality, and sperm maturity testing. DNA was taken from semen samples, and all isolated DNA was assessed using Nanodrop and gel electrophoresis. A quantitative methylation-specific polymerase chain reaction (Q-MSP) approach was used to quantify the methylation at the DMRs of the CREM gene. According to our findings, sperm count (P=0.012), concentration (P= 0.019), motility (P=0.006), progression (P=0.006), and normal morphology (P=0.004) were all inversely correlated with abnormal sperm chromatin condensation. Additionally, we noted that the methylation level of the CREM gene was considerably more significant in the oligoasthenoteratospermia group compared to the asthenospermia and normospermia groups (P<0.05). Additionally, sperm count (P=0.043), progression (P=0.026), and normal morphology (P=0.024) were all inversely linked with CREM methylation. Overall, the abnormal CREM methylation patterns have a negative impact on sperm parameters. Additionally, the CREM gene's DNA methylation status may serve as an epigenetic indicator of male infertility.
Collapse
Affiliation(s)
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Zhang J, Li X, Wang R, Feng X, Wang S, Wang H, Wang Y, Li H, Li Y, Guo Y. DNA methylation patterns in patients with asthenospermia and oligoasthenospermia. BMC Genomics 2024; 25:602. [PMID: 38886667 PMCID: PMC11181631 DOI: 10.1186/s12864-024-10491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Spermatogenesis is a highly regulated and complex process in which DNA methylation plays a crucial role. This study aimed to explore the differential methylation profiles in sperm DNA between patients with asthenospermia (AS) and healthy controls (HCs), those with oligoasthenospermia (OAS) and HCs, and patients with AS and those with OAS. RESULTS Semen samples and clinical data were collected from five patients with AS, five patients with OAS, and six age-matched HCs. Reduced representation bisulfite sequencing (RRBS) was performed to identify differentially methylated regions (DMRs) in sperm cells among the different types of patients and HCs. A total of 6520, 28,019, and 16,432 DMRs were detected between AS and HC, OAS and HC, and AS and OAS groups, respectively. These DMRs were predominantly located within gene bodies and mapped to 2868, 9296, and 9090 genes in the respective groups. Of note, 12, 9, and 8 DMRs in each group were closely associated with spermatogenesis and male infertility. Furthermore, BDNF, SMARCB1, PIK3CA, and DDX27; RBMX and SPATA17; ASZ1, CDH1, and CHDH were identified as strong differentially methylated candidate genes in each group, respectively. Meanwhile, the GO analysis of DMR-associated genes in the AS vs. HC groups revealed that protein binding, cytoplasm, and transcription (DNA-templated) were the most enriched terms in the biological process (BP), cellular component (CC), and molecular function (MF), respectively. Likewise, in both the OAS vs. HC and AS vs. OAS groups, GO analysis revealed protein binding, nucleus, and transcription (DNA-templated) as the most enriched terms in BP, CC, and MF, respectively. Finally, the KEGG analysis of DMR-annotated genes and these genes at promoters suggested that metabolic pathways were the most significantly associated across all three groups. CONCLUSIONS The current study results revealed distinctive sperm DNA methylation patterns in the AS vs. HC and OAS vs. HC groups, particularly between patients with AS and those with OAS. The identification of key genes associated with spermatogenesis and male infertility in addition to the differentially enriched metabolic pathways may contribute to uncovering the potential pathogenesis in different types of abnormal sperm parameters.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaogang Li
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rongrong Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xinxin Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Siyu Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hai Wang
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yutao Wang
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjun Li
- Department of Urology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
30
|
Tiwari P, Yadav A, Kaushik M, Dada R. Cancer risk and male Infertility: Unravelling predictive biomarkers and prognostic indicators. Clin Chim Acta 2024; 558:119670. [PMID: 38614420 DOI: 10.1016/j.cca.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In recent years, there has been a global increase in cases of male infertility. There are about 30 million cases of male infertility worldwide and male reproductive health is showing rapid decline in last few decades. It is now recognized as a potential risk factor for developing certain types of cancer, particularly genitourinary malignancies like testicular and prostate cancer. Male infertility is considered a potential indicator of overall health and an early biomarker for cancer. Cases of unexplained male factor infertility have high levels of oxidative stress and oxidative DNA damage and this induces both denovo germ line mutations and epimutations due to build up of 8-hydroxy 2 deoxygunaosine abase which is highly mutagenic and also induces hypomethylation and genomic instability. Consequently, there is growing evidence to explore the various factors contributing to an increased cancer risk. Currently, the available prognostic and predictive biomarkers associated with semen characteristics and cancer risk are limited but gaining significant attention in clinical research for the diagnosis and treatment of elevated cancer risk in the individual and in offspring. The male germ cell being transcriptionally and translationally inert has a highly truncated repair mechanism and has minimal antioxidants and thus most vulnerable to oxidative injury due to environmental factors and unhealthy lifestyle and social habits. Therefore, advancing our understanding requires a thorough evaluation of the pathophysiologic mechanisms at the DNA, RNA, protein, and metabolite levels to identify key biomarkers that may underlie the pathogenesis of male infertility and associated cancer. Advanced methodologies such as genomics, epigenetics, proteomics, transcriptomics, and metabolomics stand at the forefront of cutting-edge approaches for discovering novel biomarkers, spanning from infertility to associated cancer types. Henceforth, in this review, we aim to assess the role and potential of recently identified predictive and prognostic biomarkers, offering insights into the success of assisted reproductive technologies, causes of azoospermia and idiopathic infertility, the impact of integrated holistic approach and lifestyle modifications, and the monitoring of cancer susceptibility, initiation and progression. Comprehending these biomarkers is crucial for providing comprehensive counselling to infertile men and cancer patients, along with their families.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Anjali Yadav
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
31
|
Barakat R, Lin PCP, Bunnell M, Oh JE, Rattan S, Arnieri C, Flaws JA, Ko CJ. Prenatal exposure to Di(2-ethylhexyl) phthalate and high-fat diet synergistically disrupts gonadal function in male mice†. Biol Reprod 2024; 110:1025-1037. [PMID: 38381622 PMCID: PMC11094389 DOI: 10.1093/biolre/ioae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Prenatal exposure to Di (2-ethylhexyl) phthalate (DEHP) impairs the reproductive system and causes fertility defects in male offspring. Additionally, high-fat (HF) diet is a risk factor for reproductive disorders in males. In this study, we tested the hypothesis that prenatal exposure to a physiologically relevant dose of DEHP in conjunction with HF diet synergistically impacts reproductive function and fertility in male offspring. Female mice were fed a control or HF diet 7 days prior to mating and until their litters were weaned on postnatal day 21. Pregnant dams were exposed to DEHP or vehicle from gestational day 10.5 until birth. The male offspring's gross phenotype, sperm quality, serum hormonal levels, testicular histopathology, and testicular gene expression pattern were analyzed. Male mice born to dams exposed to DEHP + HF had smaller testes, epididymides, and shorter anogenital distance compared with those exposed to HF or DEHP alone. DEHP + HF mice had lower sperm concentration and motility compared with DEHP mice. Moreover, DEHP + HF mice had more apoptotic germ cells, fewer Leydig cells, and lower serum testosterone levels than DEHP mice. Furthermore, testicular mRNA expression of Dnmt1 and Dnmt3a was two to eight-fold higher than in DEHP mice by qPCR, suggesting that maternal HF diet and prenatal DEHP exposure additively impact gonadal function by altering the degree of DNA methylation in the testis. These results suggest that the combined exposure to DEHP and high-fat synergistically impairs reproductive function in male offspring, greater than exposure to DEHP or HF diet alone.
Collapse
Affiliation(s)
- Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, Egypt
| | - Po-Ching Patrick Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Mary Bunnell
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Ji-Eun Oh
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Cyrus Arnieri
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
32
|
Yang Q, Xie Y, Pan B, Cheng Y, Zhu Y, Fei X, Li X, Yu J, Chen Z, Li J, Xiong X. The Expression and Epigenetic Characteristics of the HSF2 Gene in Cattle-Yak and the Correlation with Its Male Sterility. Animals (Basel) 2024; 14:1410. [PMID: 38791628 PMCID: PMC11117389 DOI: 10.3390/ani14101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Aberrant expression of the heat shock proteins and factors was revealed to be closely associated with male reproduction. Heat shock factor 2 (HSF2) is a transcription factor that is involved in the regulation of diverse developmental pathways. However, the role and the corresponding molecular mechanism of HSF2 in male cattle-yak sterility are still poorly understood. Therefore, the aim of this study was to obtain the sequence and the biological information of the cattle-yak HSF2 gene and to investigate the spatiotemporal expression profiles of the locus during the development of cattle-yak testes. Additionally, the differential expression was analyzed between the cattle-yak and the yak, and the methylation of corresponding promoter regions was compared. Our results showed an additional 54 bp fragment and a missense mutation (lysine to glutamic acid) were presented in the cattle-yak HSF2 gene, which correlated with enriched expression in testicular tissue. In addition, the expression of the HSF2 gene showed dynamic changes during the growth of the testes, reaching a peak in adulthood. The IHC indicated that HSF2 protein was primarily located in spermatocytes (PS), spermatogonia (SP), and Sertoli cells (SC) in cattle-yak testes, compared with the corresponding cells of cattle and the yak. Furthermore, bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the promoter region of the cattle-yak HSF2 were more numerous than in the yak counterpart, which suggests hypermethylation of this region in the cattle-yak. Taken together, the low expression abundance and hypermethylation of HSF2 may underpin the obstruction of spermatogenesis, which leads to male cattle-yak infertility. Our study provided a basic guideline for the HSF2 gene in male reproduction and a new insight into the mechanisms of male cattle-yak sterility.
Collapse
Affiliation(s)
- Qinhui Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Yuying Cheng
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xupeng Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jun Yu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Zhuo Chen
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
| | - Jian Li
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| | - Xianrong Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (Q.Y.); (Y.X.); (Y.C.); (Y.Z.); (X.L.); (Z.C.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (B.P.); (X.F.); (J.Y.)
| |
Collapse
|
33
|
Cheung S, Ng L, Xie P, Kocur O, Elias R, Schlegel P, Rosenwaks Z, Palermo GD. Genetic profiling of azoospermic men to identify the etiology and predict reproductive potential. J Assist Reprod Genet 2024; 41:1111-1124. [PMID: 38403804 PMCID: PMC11052749 DOI: 10.1007/s10815-024-03045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
PURPOSE To identify germline mutations related to azoospermia etiology and reproductive potential of surgically retrieved spermatozoa, and to investigate the feasibility of predicting seminiferous tubule function of nonobstructive azoospermic men by transcriptomic profiling of ejaculates. MATERIALS AND METHODS Sperm specimens were obtained from 30 men (38.4 ± 6 years) undergoing epididymal sperm aspiration for obstructive azoospermia (OA, n = 19) acquired by vasectomy, or testicular biopsy for nonobstructive azoospermia (NOA, n = 11). To evaluate for a correlation with azoospermia etiology, DNAseq was performed on surgically retrieved spermatozoa, and cell-free RNAseq on seminal fluid (n = 23) was performed to predict spermatogenesis in the seminiferous tubule. RESULTS Overall, surgically retrieved sperm aneuploidy rates were 1.7% and 1.8% among OA and NOA cohorts, respectively. OA men carried housekeeping-related gene mutations, while NOA men displayed mutations on genes involved in crucial spermiogenic functions (AP1S2, AP1G2, APOE). We categorized couples within each cohort according to ICSI clinical outcomes to investigate genetic causes that may affect reproductive potential. All OA-fertile men (n = 9) carried mutations in ZNF749 (sperm production), whereas OA-infertile men (n = 10) harbored mutations in PRB1, which is essential for DNA replication. NOA-fertile men (n = 8) carried mutations in MPIG6B (stem cell lineage differentiation), whereas NOA-infertile individuals (n = 3) harbored mutations in genes involved in spermato/spermio-genesis (ADAM29, SPATA31E1, MAK, POLG, IFT43, ATG9B) and early embryonic development (MBD5, CCAR1, PMEPA1, POLK, REC8, REPIN1, MAPRE3, ARL4C). Transcriptomic assessment of cell-free RNAs in seminal fluid from NOA men allowed the prediction of residual spermatogenic foci. CONCLUSIONS Sperm genome profiling provides invaluable information on azoospermia etiology and identifies gene-related mechanistic links to reproductive performance. Moreover, RNAseq assessment of seminal fluid from NOA men can help predict sperm retrieval during testicular biopsies.
Collapse
Affiliation(s)
- Stephanie Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Lily Ng
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Olena Kocur
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Rony Elias
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Peter Schlegel
- Department of Urology, James Buchanan Brady Foundation and Cornell Reproductive Medicine Institute, Weill Cornell Medicine, New York, NY, USA
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, 1305 York Avenue, Y720, New York, NY, 10021, USA.
| |
Collapse
|
34
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
35
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
36
|
Usman M, Li A, Wu D, Qinyan Y, Yi LX, He G, Lu H. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res 2024; 9:165-177. [PMID: 38075201 PMCID: PMC10709095 DOI: 10.1016/j.ncrna.2023.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 04/26/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted significant scientific attention due to their central role in regulating gene expression and their profound impact on the intricate mechanisms of ovarian function. These versatile molecules exert their influence through various mechanisms, including the coordination of transcription processes, modulation of post-transcriptional events, and the shaping of epigenetic landscapes. Furthermore, lncRNAs function as competitive endogenous RNAs (ceRNAs), engaging in intricate interactions with microRNAs (miRNAs) to finely adjust the expression of target genes. The intricate lncRNA-miRNA-mRNA network serves as a crucial determinant in governing the multifaceted physiological functions of the ovaries. It holds substantial potential in unraveling the causes and progression of reproductive disorders and, importantly, in identifying new therapeutic targets and diagnostic markers for these conditions. A comprehensive comprehension of lncRNAs and their ceRNA activities within the domain of ovarian biology could potentially lead to groundbreaking advancements in clinical interventions and management strategies. This exploration of lncRNAs and their intricate involvement in the regulatory framework provides an extensive platform for deciphering the complex nature of ovarian physiology and pathology. The ongoing progress in this field, which encompasses in-depth investigations into the functional roles of specific lncRNAs, the elucidation of their complex interactions with miRNAs, and the comprehensive profiling of their expression patterns, holds the promise of making significant contributions to our understanding of ovarian biology and reproductive disorders. Ultimately, these breakthroughs will have wide-ranging translational implications, paving the way for the development of precision therapies and personalized medicine strategies to address the myriad challenges in the realm of reproductive health.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Plastic and Reconstructive Surgery, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Ai Li
- Department of Postdoctoral Research Workstation, The Seventh People's Hospital of Chongqing, Chongqing, PR China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yang Qinyan
- Department of Anesthesia, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Lin Xiao Yi
- Department of Radiology, The Chenjiaqiao Hospital of Shapingba District of Chongqing, PR China
| | - Guiqiong He
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| |
Collapse
|
37
|
Hossain MN, Gao Y, Hatfield MJ, de Avila JM, McClure MC, Du M. Cold exposure impacts DNA methylation patterns in cattle sperm. Front Genet 2024; 15:1346150. [PMID: 38444759 PMCID: PMC10912962 DOI: 10.3389/fgene.2024.1346150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024] Open
Abstract
DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.
Collapse
Affiliation(s)
- Md Nazmul Hossain
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
- Department of Livestock Production and Management, Faculty of Veterinary, Animal, and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yao Gao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Michael J. Hatfield
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Jeanene M. de Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | | | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
38
|
Kimmins S, Anderson RA, Barratt CLR, Behre HM, Catford SR, De Jonge CJ, Delbes G, Eisenberg ML, Garrido N, Houston BJ, Jørgensen N, Krausz C, Lismer A, McLachlan RI, Minhas S, Moss T, Pacey A, Priskorn L, Schlatt S, Trasler J, Trasande L, Tüttelmann F, Vazquez-Levin MH, Veltman JA, Zhang F, O'Bryan MK. Frequency, morbidity and equity - the case for increased research on male fertility. Nat Rev Urol 2024; 21:102-124. [PMID: 37828407 DOI: 10.1038/s41585-023-00820-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Currently, most men with infertility cannot be given an aetiology, which reflects a lack of knowledge around gamete production and how it is affected by genetics and the environment. A failure to recognize the burden of male infertility and its potential as a biomarker for systemic illness exists. The absence of such knowledge results in patients generally being treated as a uniform group, for whom the strategy is to bypass the causality using medically assisted reproduction (MAR) techniques. In doing so, opportunities to prevent co-morbidity are missed and the burden of MAR is shifted to the woman. To advance understanding of men's reproductive health, longitudinal and multi-national centres for data and sample collection are essential. Such programmes must enable an integrated view of the consequences of genetics, epigenetics and environmental factors on fertility and offspring health. Definition and possible amelioration of the consequences of MAR for conceived children are needed. Inherent in this statement is the necessity to promote fertility restoration and/or use the least invasive MAR strategy available. To achieve this aim, protocols must be rigorously tested and the move towards personalized medicine encouraged. Equally, education of the public, governments and clinicians on the frequency and consequences of infertility is needed. Health options, including male contraceptives, must be expanded, and the opportunities encompassed in such investment understood. The pressing questions related to male reproductive health, spanning the spectrum of andrology are identified in the Expert Recommendation.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- The Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- The Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Christopher L R Barratt
- Division of Systems Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, University Hospital, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sarah R Catford
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | | | - Geraldine Delbes
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Sante Biotechnologie, Laval, Quebec, Canada
| | - Michael L Eisenberg
- Department of Urology and Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Brendan J Houston
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | - Niels Jørgensen
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, 'Mario Serio', University of Florence, University Hospital of Careggi Florence, Florence, Italy
| | - Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
- Monash IVF Group, Richmond, Victoria, Australia
| | - Suks Minhas
- Department of Surgery and Cancer Imperial, London, UK
| | - Tim Moss
- Healthy Male and the Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Allan Pacey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lærke Priskorn
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jacquetta Trasler
- Departments of Paediatrics, Human Genetics and Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Leonardo Trasande
- Center for the Investigation of Environmental Hazards, Department of Paediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Mónica Hebe Vazquez-Levin
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Fundación IBYME, Buenos Aires, Argentina
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
39
|
Mazziotta C, Badiale G, Cervellera CF, Tognon M, Martini F, Rotondo JC. Regulatory mechanisms of circular RNAs during human mesenchymal stem cell osteogenic differentiation. Theranostics 2024; 14:143-158. [PMID: 38164139 PMCID: PMC10750202 DOI: 10.7150/thno.89066] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/01/2023] [Indexed: 01/03/2024] Open
Abstract
Human osteogenic differentiation is a complex and well-orchestrated process which involves a plethora of molecular players and cellular processes. A growing number of studies have underlined that circular RNAs (circRNAs) play an important regulatory role during human osteogenic differentiation. CircRNAs are single-stranded, covalently closed non-coding RNA molecules that are acquiring increased attention as epigenetic regulators of gene expression. Given their intrinsic high conformational stability, abundance, and specificity, circRNAs can undertake various biological activities in order to regulate multiple cellular processes, including osteogenic differentiation. The most recent evidence indicates that circRNAs control human osteogenesis by preventing the inhibitory activity of miRNAs on their downstream target genes, using a competitive endogenous RNA mechanism. The aim of this review is to draw attention to the currently known regulatory mechanisms of circRNAs during human osteogenic differentiation. Specifically, we provide an understanding of recent advances in research conducted on various human mesenchymal stem cell types that underlined the importance of circRNAs in regulating osteogenesis. A comprehensive understanding of the underlying regulatory mechanisms of circRNA in osteogenesis will improve knowledge on the molecular processes of bone growth, resulting in the potential development of novel preclinical and clinical studies and the discovery of novel diagnostic and therapeutic tools for bone disorders.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | | | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara. 64/b, Fossato di Mortara Street. Ferrara, Italy
| |
Collapse
|
40
|
Tennenbaum SR, Bortner R, Lynch C, Santymire R, Crosier A, Santiestevan J, Marinari P, Pukazhenthi BS, Comizzoli P, Hawkins MTR, Maldonado JE, Koepfli K, vonHoldt BM, DeCandia AL. Epigenetic changes to gene pathways linked to male fertility in ex situ black-footed ferrets. Evol Appl 2024; 17:e13634. [PMID: 38283602 PMCID: PMC10818088 DOI: 10.1111/eva.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.
Collapse
Affiliation(s)
| | - Robyn Bortner
- U.S. Fish & Wildlife Service National Black‐Footed Ferret Conservation CenterCarrColoradoUSA
| | | | - Rachel Santymire
- Biology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Adrienne Crosier
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenny Santiestevan
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Paul Marinari
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Budhan S. Pukazhenthi
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Pierre Comizzoli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate ZoologyNational Museum of Natural HistoryWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | | | - Alexandra L. DeCandia
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
- BiologyGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
41
|
Naeimi N, Mohseni Kouchesfehani H, Heidari Z, Mahmoudzadeh-Sagheb H. Effect of smoking on methylation and semen parameters. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:76-83. [PMID: 38299759 DOI: 10.1002/em.22583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
One type of epigenetic modification is genomic DNA methylation, which is induced by smoking, and both are associated with male infertility. In this study, the relationship between smoking and CHD5 gene methylation and semen parameters in infertile men was determined. After the MS-PCR of blood in 224 samples, 103 infertile patients (62 smokers and 41 non-smokers) and 121 fertile men, methylation level changes between groups and the effect of methylation and smoking on infertility and semen parameters in infertile men were determined. The results showed that there is a significant difference in the methylation status (MM, MU, UU) of the CHD5 gene between the patient and the control group, and this correlation also exists for the semen parameters (p < .001). The average semen parameters in smokers decreased significantly compared to non-smokers and sperm concentration was (32.21 ± 5.27 vs. 55.27 ± 3.38), respectively. MM methylation status was higher in smokers (22.5%) compared to non-smokers (14.6%). Smoking components affect the methylation pattern of CHD5 gene, and smokers had higher methylation levels and lower semen parameters than non-smokers, which can be biomarkers for evaluating semen quality and infertility risk factors. Understanding the epigenetic effects of smoking on male infertility can be very useful for predicting negative consequences of smoking and providing therapeutic solutions.
Collapse
Affiliation(s)
- Nasim Naeimi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
42
|
Beiraghdar M, Beiraghdar M, Khosravi S. The methylation status of GATA3 potentially predicts the outcomes of assisted reproductive technologies. HUM FERTIL 2023; 26:1279-1285. [PMID: 36625441 DOI: 10.1080/14647273.2023.2164871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/30/2022] [Indexed: 01/11/2023]
Abstract
Evaluation of methylation status of genes in sperm samples has been suggested for diagnosis of male infertility as well as prognosis of assisted reproductive technologies (ART) outcomes. In this study, we compared the methylation pattern of the GATA3 gene in infertile and fertile men as well as in infertile men with positive and negative ART outcome based on clinical pregnancy. Ejaculates were obtained from 42 infertile men with a negative ART outcome (group 1), 30 infertile men with a positive ART outcome (group 2), and 21 fertile men (control). Then, samples were subjected to genomic DNA isolation and subsequent TUNEL assay and methylation-specific PCR. The number of infertile men with at least one methylated allele of GATA3 was significantly higher compared to the control group (p = 0.022). Also, the number of patients with at least one methylated allele was significantly higher in group 1 compared to group 2 (p = 0.013). Moreover, the TUNEL assay revealed that the amount of sperm DNA fragmentation is higher in group 1 compared to group 2 (p = 0.008). The findings of our study demonstrated that the degree of GATA3 methylation can potentially differentiate between infertile and fertile men and more importantly can potentially predict the outcome of ART.
Collapse
Affiliation(s)
- Mina Beiraghdar
- Department of Biology, Faculty of Basic Science, Islamic Azad University of Center Tehran Branch, Tehran, Iran
| | - Mozhdeh Beiraghdar
- Department of pathology, specialist of anatomical and clinical pathology, University of Isfahan, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Science, Isfahan, Iran
- Genetic Lab in Majesty of Maryam Infertility Center, Martyr Beheshti Hospital, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
43
|
Dong M, Tang M, Li W, Li S, Yi M, Liu W. Morphological and transcriptional analysis of sexual differentiation and gonadal development in a burrowing fish, the four-eyed sleeper (Bostrychus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101148. [PMID: 37865042 DOI: 10.1016/j.cbd.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Collapse
Affiliation(s)
- Mengdan Dong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Mingyue Tang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
| |
Collapse
|
44
|
Shacfe G, Turko R, Syed HH, Masoud I, Tahmaz Y, Samhan LM, Alkattan K, Shafqat A, Yaqinuddin A. A DNA Methylation Perspective on Infertility. Genes (Basel) 2023; 14:2132. [PMID: 38136954 PMCID: PMC10743303 DOI: 10.3390/genes14122132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Infertility affects a significant number of couples worldwide and its incidence is increasing. While assisted reproductive technologies (ART) have revolutionized the treatment landscape of infertility, a significant number of couples present with an idiopathic cause for their infertility, hindering effective management. Profiling the genome and transcriptome of infertile men and women has revealed abnormal gene expression. Epigenetic modifications, which comprise dynamic processes that can transduce environmental signals into gene expression changes, may explain these findings. Indeed, aberrant DNA methylation has been widely characterized as a cause of abnormal sperm and oocyte gene expression with potentially deleterious consequences on fertilization and pregnancy outcomes. This review aims to provide a concise overview of male and female infertility through the lens of DNA methylation alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (G.S.); (R.T.); (H.H.S.); (I.M.); (Y.T.); (L.M.S.); (K.A.); (A.Y.)
| | | |
Collapse
|
45
|
Salehi N, Totonchi M. The construction of a testis transcriptional cell atlas from embryo to adult reveals various somatic cells and their molecular roles. J Transl Med 2023; 21:859. [PMID: 38012716 PMCID: PMC10680190 DOI: 10.1186/s12967-023-04722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The testis is a complex organ that undergoes extensive developmental changes from the embryonic stage to adulthood. The development of germ cells, which give rise to spermatozoa, is tightly regulated by the surrounding somatic cells. METHODS To better understand the dynamics of these changes, we constructed a transcriptional cell atlas of the testis, integrating single-cell RNA sequencing data from over 26,000 cells across five developmental stages: fetal germ cells, infants, childhood, peri-puberty, and adults. We employed various analytical techniques, including clustering, cell type assignments, identification of differentially expressed genes, pseudotime analysis, weighted gene co-expression network analysis, and evaluation of paracrine cell-cell communication, to comprehensively analyze this transcriptional cell atlas of the testis. RESULTS Our analysis revealed remarkable heterogeneity in both somatic and germ cell populations, with the highest diversity observed in Sertoli and Myoid somatic cells, as well as in spermatogonia, spermatocyte, and spermatid germ cells. We also identified key somatic cell genes, including RPL39, RPL10, RPL13A, FTH1, RPS2, and RPL18A, which were highly influential in the weighted gene co-expression network of the testis transcriptional cell atlas and have been previously implicated in male infertility. Additionally, our analysis of paracrine cell-cell communication supported specific ligand-receptor interactions involved in neuroactive, cAMP, and estrogen signaling pathways, which support the crucial role of somatic cells in regulating germ cell development. CONCLUSIONS Overall, our transcriptional atlas provides a comprehensive view of the cell-to-cell heterogeneity in the testis and identifies key somatic cell genes and pathways that play a central role in male fertility across developmental stages.
Collapse
Affiliation(s)
- Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
46
|
Kotková L, Drábek J. Age-related changes in sperm DNA methylation and their forensic and clinical implications. Epigenomics 2023; 15:1157-1173. [PMID: 38031735 DOI: 10.2217/epi-2023-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
As a link between a stable genome and a dynamic environment, epigenetics is a promising tool for mapping age-related changes in human DNA. Methylated cytosine changes at specific loci are generally less studied in sperm DNA than in somatic cell DNA. Age-related methylation changes can be connected to various reproductive health problems and multiple disorders in offspring. In addition, they can be helpful in forensic fields, where testing of specific loci in semen samples found at sexual assault crime scenes can predict a perpetrator's age and narrow down the police investigation. This review focuses on age-related methylation changes in sperm. It covers the biological role of methylation, methylation testing techniques and the implications of methylation changes in forensics and clinical practice.
Collapse
Affiliation(s)
- Lucie Kotková
- Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University Olomouc and University Hospital Olomouc, 77900, Czech Republic
| | - Jiří Drábek
- Institute of Molecular & Translational Medicine, Faculty of Medicine & Dentistry, Palacky University Olomouc and University Hospital Olomouc, 77900, Czech Republic
| |
Collapse
|
47
|
Kaltsas A, Zachariou A, Markou E, Dimitriadis F, Sofikitis N, Pournaras S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J Pers Med 2023; 13:1491. [PMID: 37888102 PMCID: PMC10608462 DOI: 10.3390/jpm13101491] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The human microbiota in the genital tract is pivotal for maintaining fertility, but its disruption can lead to male infertility. This study examines the relationship between microbial dysbiosis and male infertility, underscoring the promise of precision medicine in this field. Through a comprehensive review, this research indicates microbial signatures associated with male infertility, such as altered bacterial diversity, the dominance of pathogenic species, and imbalances in the genital microbiome. Key mechanisms linking microbial dysbiosis to infertility include inflammation, oxidative stress, and sperm structural deterioration. Emerging strategies like targeted antimicrobial therapies, probiotics, prebiotics, and fecal microbiota transplantation have shown potential in adjusting the genital microbiota to enhance male fertility. Notably, the application of precision medicine, which customizes treatments based on individual microbial profiles and specific causes of infertility, emerges as a promising approach to enhance treatment outcomes. Ultimately, microbial dysbiosis is intricately linked to male infertility, and embracing personalized treatment strategies rooted in precision medicine principles could be the way forward in addressing infertility associated with microbial factors.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.Z.); (N.S.)
| | - Spyridon Pournaras
- Clinical Microbiology Laboratory, Attikon General University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
48
|
Taghian Dinani H, Naderi N, Tavalaee M, Rabiee F, Nasr-Esfahani MH. Aberrant Expression of TET2 Accounts for DNA Hypomethylation in Varicocele. CELL JOURNAL 2023; 25:706-716. [PMID: 37865879 PMCID: PMC10591265 DOI: 10.22074/cellj.2023.2000170.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE Epigenetic modifications such as DNA methylation play a key role in male infertility etiology. This study aimed to explore the global DNA methylation status in testicular spermatogenic cells of varicocele-induced rats and consider their semen quality, with a focus on key epigenetic marks, namely 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC), as well as the mRNA and proteins of ten-eleven translocation (TET) methylcytosine dioxygenases 1-3. MATERIALS AND METHODS In this experimental study, 24 mature male Wistar rats (8 in each group) were assigned amongst the control, sham, and varicocele groups. Sperm quality was assessed, and DNA methylation patterns of testicular spermatogenic cells were investigated using reverse transcription-polymerase chain reaction (RT-PCR), western blot, and immunofluorescence techniques. RESULTS Sperm parameters, chromatin and DNA integrity were significantly lower, and sperm lipid peroxidation significantly increased in varicocele-induced rats in comparison with control rats. During spermatogenesis in rat testis, 5-mC and 5-hmC epigenetic marks, and TET1-3 mRNA and proteins were expressed. In contrast to the 5-mC fluorescent signal which was presented in all testicular cells, the 5-hmC fluorescent signal was presented exclusively in spermatogonia and a few spermatids. In varicocele-induced rats, the 5-mC signal decreased in all cells within the tubules, whereas a strong signal of 5-hmC was detected in seminiferous tubules compared to the control group. As well, the levels of TET2 mRNA and protein expression were significantly upregulated in varicocele-induced rats in comparison with the control group. Also, our results showed that the varicocele-induced animals exhibited strong fluorescent signals of TET1-3 in testicular cells, whereas weak fluorescent signals were identified in the seminiferous tubules of the control animals. CONCLUSION Consequently, we showed TET2 upregulation and the 5-hmC gain at testicular levels are associated with varicocele and sperm quality decline, and therefore they can be exploited as potential biomarkers of spermatogenesis.
Collapse
Affiliation(s)
- Hengameh Taghian Dinani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Farzaneh Rabiee
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- ACECR Institute of Higher Education, Isfahan Branch, Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
49
|
Hashemi Karoii D, Azizi H, Skutella T. Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. DNA Cell Biol 2023; 42:617-637. [PMID: 37610843 DOI: 10.1089/dna.2023.0189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Medical Faculty, Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Clement A, Amar E, Clement P, Sedbon É, Brami C, Alvarez S, Menezo Y. Hyperhomocysteinemia in hypofertile male patients can be alleviated by supplementation with 5MTHF associated with one carbon cycle support. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1229997. [PMID: 37705678 PMCID: PMC10495983 DOI: 10.3389/frph.2023.1229997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Homocysteine (Hcy) is a cellular poison, side product of the hydrolysis of S-Adenosyl Homocysteine, produced after the universal methylation effector S -Adenosylmethionine liberates a methyl group to recipient targets. It inhibits the methylation processes and its rising is associated with multiple disease states and ultimately is both a cause and a consequence of oxidative stress, affecting male gametogenesis. We have determined hyper homocysteinhemia (HHcy) levels can be reliably reduced in hypofertile patients in order to decrease/avoid associated epigenetic problems and protect the health of future children, in consideration of the fact that treatment with high doses of folic acid is inappropriate. Methods Homocysteine levels were screened in male patients consulting for long-standing infertility associated with at least three failed Assisted Reproductive Technology (ART) attempts and/or repeat miscarriages. Seventy-seven patients with Hcy levels > 15 µM were treated for three months with a combination of micronutrients including 5- MethylTetraHydroFolate (5-MTHF), the compound downstream to the MTHFR enzyme, to support the one carbon cycle; re-testing was performed at the end of a 3 months treatment period. Genetic status for Methylenetetrahydrofolate Reductase (MTHFR) Single nucleotide polymorphisms (SNPs) 677CT (c.6777C > T) and 1298AC (c.1298A > C) was determined. Results Micronutrients/5-MTHF were highly efficient in decreasing circulating Hcy, from averages 27.4 to 10.7 µM, with a mean observed decrease of 16.7 µM. The MTHFR SNP 677TT (homozygous form) and combined heterozygous 677CT/1298AC status represent 77.9% of the patients with elevated Hcy. Discussion Estimation HHcy should not be overlooked in men suffering infertility of long duration. MTHFR SNPs, especially 677TT, are a major cause of high homocysteinhemia (HHcy). In these hypofertile patients, treatment with micronutrients including 5-MTHF reduces Hcy and even allows spontaneous pregnancies post treatment. This type of therapy should be considered in order to ensure these patients' quality of life and avoid future epigenetic problems in their descendants.
Collapse
Affiliation(s)
- Arthur Clement
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| | - Edouard Amar
- Cabinet Médical Urology, Andrology, Avenue Victor Hugo, Paris, France
| | - Patrice Clement
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| | - Éric Sedbon
- Cabinet Médical, Gyn Obst, 17 rue Pétrarque, Paris, France
| | - Charles Brami
- Cabinet Médical, Gyn Obst, 16 Avenue Paul Doumer, Paris, France
| | - Silvia Alvarez
- Cabinet Médical, Gyn Obst, 15 Avenue Pointcarré, Paris, France
| | - Yves Menezo
- Laboratoire Clément, Genetics and IVF, Avenue d'Eylau, Paris, France
| |
Collapse
|