1
|
Elkotamy MS, Elgohary MK, Elkelesh IA, Alkabbani MA, Khaleel EF, Eldehna WM, Abdel-Aziz HA. Design, synthesis, and molecular dynamics-driven evaluation of quinoline-sulfonamide derivatives as potent and selective EGFR inhibitors with promising anti-cancer efficacy and safety profiles. Bioorg Chem 2025; 157:108247. [PMID: 39983403 DOI: 10.1016/j.bioorg.2025.108247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/23/2025]
Abstract
The creation of new molecules that target EGFR is essential for the progression of cancer treatment. This study synthesized and evaluated 16 quinoline-sulfonamide derivatives for their potential as anti-cancer agents. Compound 8c, which contains a methoxy group on the benzenesulfonamide tail, exhibited notable EGFR inhibitory activity (IC50 = 0.161 µM), similar to that of Erlotinib (IC50 = 0.142 µM). Compound 8c demonstrated enhanced in-vitro cytotoxicity against HCT-116, MCF-7, HeLa, and HepG2 cancer cell lines. Studies on the cell cycle and apoptosis demonstrated that compound 8c caused G1/S arrest and markedly enhanced apoptosis in HepG2 cells. In-vivo, compound 8c demonstrated comparable and/or superior efficacy compared to doxorubicin in decreasing tumor volume, weight, TNF-alpha, and COX-2 levels in the SEC model, alongside improved histopathological and immunohistochemical results. Molecular docking and dynamic simulations confirmed its stable binding to EGFR, exhibiting superior stability metrics in comparison to Erlotinib. Pharmacokinetic and toxicity evaluations indicated that compound 8c exhibits favorable drug-like properties and a safer toxicity profile. These findings identify compound 8c as a potential candidate for the development of safe and effective anti-cancer therapies, necessitating additional preclinical investigations.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt.
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt
| | - Islam A Elkelesh
- Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University Badr City 11829 Cairo Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829 Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421 Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648 Egypt.
| |
Collapse
|
2
|
Ray A, Birdi A, Nebhinani N, Banerjee M, Sharma P, Sharma S, Suthar N, Janu VC, Yadav D. Correlation Between Severity of Schizophrenia with Certain Trace Elements and TNF-α Gene Expression and Its Circulatory Level in the Population of Western India. Biol Trace Elem Res 2025; 203:2159-2169. [PMID: 38995436 DOI: 10.1007/s12011-024-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This cross-sectional study aimed to assess serum trace element (TE) concentrations, TNF-α gene expression, protein levels in schizophrenia (SZ) patients, and their correlation with disease severity measured by Positive and Negative Syndrome Scale (PANSS) scores. Forty SZ cases and 40 healthy controls aged 18-60 were recruited. Forty (n = 40) cases who meet ICD-10 criteria for SZ and 40 (n = 40) healthy individuals (controls) between 18 and 60 years of age were recruited in the study. Sandwich enzyme-linked immunosorbent assay (ELISA) and RT-qPCR (quantitative real-time PCR) were used to estimate pro-inflammatory cytokine TNF-α protein and gene expression. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectroscopy (GFAAS) were used to assess serum levels of trace elements (TEs): Fe, Zn, Cu, Mg, and Se. Compared to healthy controls, cases had significantly higher levels of TNF-α protein, as well as Fe, Cu, and Se (p < 0.05). Cu correlated positively with TNF-α protein level (rho = 0.234; p = 0.048) and gene expression (rho = 0.333; p = 0.041) and with PANSS negative (rho = 0.531), general (rho = 0.643), and total (rho = 0.541) scores. Additionally, Zn negatively correlated with serum Mg (rho = - 0.426, p < 0.01) and positively with serum Se (rho = 0.343, p < 0.05). In conclusion, elevated Cu levels could potentially contribute to the development of SZ. Elevated Cu levels in cases and their correlation with the TNF-α gene and protein and PANSS score indicate Cu's potential role in exacerbating SZ severity through inflammatory cytokines. This suggests the involvement of metals and cytokines in the pathophysiology of SZ.
Collapse
Affiliation(s)
- Arti Ray
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Amandeep Birdi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Nebhinani
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Navaratan Suthar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
3
|
Ziqubu K, Mazibuko-Mbeje SE, Dludla PV. Regulation of adipokine and batokine secretion by dietary flavonoids, as a prospective therapeutic approach for obesity and its metabolic complications. Biochimie 2025; 230:95-113. [PMID: 39551425 DOI: 10.1016/j.biochi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Traditionally recognised as the energy reservoir and main site of adaptive thermogenesis, white and brown adipose tissues are complex endocrine organs regulating systemic energy metabolism via the secretion of bioactive molecules, termed "adipokines" and "batokines", respectively. Due to its significant role in regulating whole-body energy metabolism and other physiological processes, adipose tissue has been increasingly explored as a feasible therapeutic target for obesity. Flavonoids are one of the most significant plant polyphenolic compounds holding a great potential as therapeutic agents for combating obesity. However, understanding their mechanisms of action remains largely insufficient to formulate therapeutic theories. This review critically discusses scientific evidence highlighting the role of flavonoids in ameliorating obesity-related metabolic complications, including adipose tissue dysfunction, inflammation, insulin resistance, hepatic steatosis, and cardiovascular comorbidities in part by modulating the release of adipokines and batokines. Further discussion advocates for the use of therapeutics targeting these bioactive molecules as a potential avenue for developing effective treatment for obesity and its adverse metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Meyer A, Marty L, Drouin J, Weill A, Carbonnel F, Dray-Spira R. Risks of 75 major congenital malformations after in utero exposure to thiopurines and anti-TNF for maternal inflammatory bowel disease. Clin Gastroenterol Hepatol 2025:S1542-3565(25)00147-8. [PMID: 40020958 DOI: 10.1016/j.cgh.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND & AIMS Limited data are available on the risk of major congenital malformations (MCMs) of thiopurines and anti-tumor necrosis factor (TNF) during pregnancy. In this study, we assess the risk of MCMs associated with maternal exposure to thiopurines and anti-TNF for the treatment of inflammatory bowel disease (IBD) during pregnancy. METHODS Using the nationwide comprehensive EPI-MERES registry, we identified all births >22 weeks of pregnancy in mothers with IBD in France between April 2010 and December 2021. We compared the risks of 75 individual MCMs according to thiopurines and anti-TNF exposure during the first trimester of pregnancy, accounting for maternal and pregnancy characteristics using propensity score weighting. Sensitivity analyses were conducted to assess estimates robustness. RESULTS Among a total of 39,515 births (5223 exposed to thiopurines, 6528 to anti-TNF, and 28,827 unexposed), 717 (181.5/10,000) had ≥1 MCM. The overall prevalence of MCMs ranged from 175.2 per 10,000 among unexposed births to 197.2 per 10,000 among those exposed to thiopurine, and 203.7 per 10,000 among those exposed to anti-TNF. None of the 75 MCMs was consistently associated with in utero exposure to thiopurines in the main and sensitivity analyses. However, anti-TNF exposure was associated with an increased risk of talipes equinovarus in the main analysis (adjusted risk ratio, 2.17; 95% confidence interval, 1.04-4.53) and in sensitivity analyses (adjusted risk ratios ranging between 2.15 and 2.40). CONCLUSIONS This study provides no evidence of substantial risk of MCMs associated with in utero exposure to thiopurines or anti-TNF, except for talipes equinovarus, which appears increased with exposure to anti-TNF. This finding needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Antoine Meyer
- EPI-PHARE, Épidémiologie des Produits de Santé, Saint-Denis, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre and Université Paris-Saclay, Le Kremlin Bicêtre, France.
| | - Lise Marty
- EPI-PHARE, Épidémiologie des Produits de Santé, Saint-Denis, France
| | - Jérôme Drouin
- EPI-PHARE, Épidémiologie des Produits de Santé, Saint-Denis, France
| | - Alain Weill
- EPI-PHARE, Épidémiologie des Produits de Santé, Saint-Denis, France
| | - Franck Carbonnel
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre and Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | |
Collapse
|
5
|
Khranovska N, Skachkova O, Gorbach O, Semchuk I, Shymon D, Ripa O, Lutsii O, Shvets Y, Horbatok K, Afonin S, Komarov I. Properties of Monocyte-Derived Dendritic Cells Loaded With Lysates of Cancer Cells Exposed to Cytotoxic Peptides. Exp Oncol 2025; 46:375-386. [PMID: 39985347 DOI: 10.15407/exp-oncology.2024.04.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND This study is based on the idea of using tumor cell membrane lysis induced by diarylethene-containing analog of cytotoxic peptides (CPs) - gramicidin S to create a new approach for obtaining dendritic cells (DCs)-based anticancer vaccine. It is supposed that cancer cells undergoing immunogenic cell death release the damage-associated molecular patterns (DAMPs), and thus enhance immunogenic maturation and activation of DCs. The aim of this study is to analyze the phenotypic and functional characteristics of the generated monocyte-derived DCs loaded with CPs-treated lysates of tumor cells. MATERIALS AND METHODS The triple-negative human breast cancer cell line MDA-MB-231 was used in the study. DCs were generated from peripheral blood monocytes using a recombinant human granulocytemacrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Tumor cells were treated with LMB033 CPs containing a diarylethene fragment (photoswitch) in two ring forms - "closed" with low activity and toxicity and "open" with high activity. The obtained lysates of tumor cells were co-incubated with human monocyte-derived DCs. The analysis of the phenotypic characteristics of DCs was performed by a flow cytometry using monoclonal antibodies to CD83, CD86, CD11c, HLA-DR, and HLA-ABC. The expression level of mRNA of cytokine genes and indoleamine 2,3-dioxygenase (IDO) gene was determined using the quantitative real-time PCR. RESULTS The highest cytotoxic effect on MDA-MB-231 cells was detected after 6-h incubation with the open form of LMB033 at concentrations of 16 and 32 μM. The studied CPs even at the lower of the tested concentrations caused externalization of phosphatidylserine in almost 100% of apoptotic cells of MB-MDA-231 cells following 6-h incubation. Loading monocyte-derived DCs with lysate of MDA-MB-231 cells treated with LMB033 peptide in open or closed forms caused a different effect on the antigen-presenting properties of cells depending on the form of the peptide. Compared to DCs loaded with untreated lysate, a significant increase in the number of mature activated CD83+ DCs was found after loading with lysates of cells treated with open (16 μM) or closed (32 μM) forms of LMB033. CPs-induced lysates of MDA-MB-231 cells did not cause significant changes in the expression of mRNA of Th1 polarizing cytokines TNF-α, IL-12, neither did these lysates activate the transcription of the genes of immunosuppressive cytokines and IL-10, TGF-β, and the IDO gene. This indicates the absence of the activation of the immunosuppressive properties of the generated DCs. CONCLUSION The presented data open the prospects for developing an effective antitumor immunotherapeutic vaccine based on DCs using CPs LMB033.
Collapse
Affiliation(s)
- N Khranovska
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - O Skachkova
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - O Gorbach
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - I Semchuk
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - D Shymon
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - O Ripa
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - O Lutsii
- Nonprofit organization "National Cancer Institute", Kyiv, Ukrainee
| | - Yu Shvets
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - K Horbatok
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - S Afonin
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - I Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
6
|
Li W, Yang T, Zhang Z, Peng A, Wang Q. Exosomes derived from TNF-α preconditioned bone marrow mesenchymal stem cells alleviate cisplatin-induced ototoxicity in mice. Int J Med Sci 2025; 22:1215-1222. [PMID: 40027193 PMCID: PMC11866538 DOI: 10.7150/ijms.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 03/05/2025] Open
Abstract
The polarization of microglia promotes the development of cisplatin-induced ototoxicity, and exosomes (Exo) derived from TNF-α preconditioned mesenchymal stem cells (MSCs) may induce the polarization of macrophage. Mice were intraperitoneally injected with cisplatin to establish the ototoxicity model. Bone marrow MSCs (BMSCs) were preconditioned with TNF-α for 48 h, and the relevant TNF-Exo or Exo was enriched, which were further trans-tympanically administered in the left ear of ototoxic mice. Auditory sensitivity was revealed with auditory brainstem response (ABR) at 8, 16, 24, and 32 kHz. The number of hair cells was detected with Myosin 7a staining. Damaged auditory sensitivity and up-regulated hair cell loss were revealed in cisplatin-exposed mice, which could be reversed by Exo or TNF-Exo treatment. Mechanically, up-regulated Iba1, Cd86, iNOS, Cd206, and Arg1 were detected in cisplatin-exposed cochlea. TNF-Exo or Exo administration further decreased Iba1, Cd86, and iNOS expression, and increased cd206 and Arg1 expression. TNF-Exo or Exo administration inhibited the productin of pro-inflammatory cytokines (IL-1β and IL-6), while enhanced the anti-inflammatory cytokine IL-10 production in the cisplatin-exposed cochlea. Importantly, TNF-Exo administration showed more profound benefits compared with Exo. TNF-α preconditioning might be a new therapeutic option to enhance the capability of BMSCs-derived exosomes against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Qin Wang
- Department of Otolaryngology and Head & Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
7
|
Langhnoja J, Buch L, Pillai P. Neurotrophomodulatory effect of TNF-α through NF-κB in rat cortical astrocytes. Cytotechnology 2025; 77:37. [PMID: 39776978 PMCID: PMC11700960 DOI: 10.1007/s10616-024-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades. Both TNFR1 and TNFR2 are expressed in astrocytes, which are specialized glial cells essential for maintaining the structural and functional integrity of the central nervous system (CNS). Astrocytes support neuronal function by regulating brain homeostasis, maintaining synaptic function, and supplying metabolic substrates. In addition, astrocytes are known to secrete a variety of growth factors and neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/5. These neurotrophins play a critical role in supporting neuronal survival, synaptic plasticity, and myelination within the brain. The present study focuses on the role of TNF-α in modulating neurotrophin expression and secretion in rat cortical astrocytes. We demonstrate that TNF-α induces the upregulation of neurotrophins, particularly NGF and BDNF, in cultured astrocytes. This effect is accompanied by an increase in the expression of their respective receptors (TrkA & TrkB), further suggesting a functional modulation of neurotrophic signaling pathways. Notably, we show that the modulation of neurotrophin expression by TNF-α is mediated via the NF-κB signaling pathway. Additionally, we observed that TNF-α also regulates the secretion levels of NGF and BDNF into the culture media of astrocytes in a dose-dependent manner, indicating that TNF-α can modulate both the production and release of these growth factors. Taken together, our findings highlight a previously underexplored neuroprotective role of TNF-α in astrocytes. Specifically, we propose that TNF-α, through the upregulation of neurotrophins, may contribute to maintaining neuronal health and supporting neuroprotection under disease conditions.
Collapse
Affiliation(s)
- Jaldeep Langhnoja
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Lipi Buch
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| |
Collapse
|
8
|
Nieto Ramirez LM, Mehaffy C, Dobos KM. Systematic review of innate immune responses against Mycobacterium tuberculosis complex infection in animal models. Front Immunol 2025; 15:1467016. [PMID: 39949719 PMCID: PMC11821578 DOI: 10.3389/fimmu.2024.1467016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/27/2024] [Indexed: 02/16/2025] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) complex (MTBC) includes ten species that affect mammals and pose a significant global health concern. Upon infection, Mtb induces various stages in the host, including early bacterial elimination, which may or may not involve memory responses. Deciphering the role of innate immune responses during MTBC infection is crucial for understanding disease progression or protection. Over the past decade, there has been growing interest in the innate immune response to Mtb, with new preclinical models emerging. Methods We conducted a systematic review following PRISMA guidelines, focused on innate immune mediators linked to protection or disease progression in animal models of MTBC infection. We searched two databases: National Library of Medicine and Web of Science. Two researchers independently extracted data based on specific inclusion and exclusion criteria. Results Eighty-three articles were reviewed. Results were categorized in four groups: MTBC species, animal models, soluble factors and innate pathways, and other molecules (metabolites and drugs). Mtb and M. bovis were the only species studied. P2X7R receptor's role in disease progression and higher macrophage recruitment were observed differentially after infection with hypervirulent Mtb strains. Mice and non-human primates (NHPs) were the most used mammals, with emerging models like Galleria mellonella and planarians also studied. NHPs provided insights into age-dependent immunity and markers for active tuberculosis (ATB). Key innate immune factors/pathways identified included TNF-α, neutrophil recruitment, ROS/RNS responses, autophagy, inflammasomes, and antimicrobial peptides, with homologous proteins identified in insects. Metabolites like vitamin B5 and prostaglandin E2 were associated with protection. Immunomodulatory drugs targeting autophagy and other mechanisms were studied, exhibiting their potential as therapeutic alternatives. Conclusion Simpler, physiologically relevant, and ethically sound models, such as G. mellonella, are needed for studying innate responses in MTBC infection. While insects lack adaptive immunity, they could provide insights into "pure" innate immune responses. The dissection of "pure," "sustained" (later than 7 days post-infection), and trained innate immunity presents additional challenges that require high-resolution temporospatial analytical methods. Identifying early innate immune mediators and targetable pathways in the blood and affected tissues could identify biomarkers for immunization efficiency, disease progression, and potential synergistic therapies for ATB.
Collapse
Affiliation(s)
- Luisa Maria Nieto Ramirez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | | | - Karen Marie Dobos
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Liu CY, Chen YR, Mu HY, Huang JH. A Dynamic Breathing Lung Chip for Precise Evaluation of Inhaled Drug Efficacy and Airway Epithelial Responses. ACS Biomater Sci Eng 2025; 11:682-691. [PMID: 39616618 PMCID: PMC11733924 DOI: 10.1021/acsbiomaterials.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/14/2025]
Abstract
Inhaled therapy has become a crucial treatment option for respiratory diseases like asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD), delivering drugs directly to bronchial and alveolar tissues. However, traditional static in vitro cell models, while valuable for studying pharmacokinetics (PK) and pharmacodynamics (PD), fall short in replicating the dynamic nature of physiological breathing. In this study, we present a breathing lung chip model that integrates a dynamic breathing mechanism with an air-liquid interface (ALI) culture environment to overcome these limitations. The platform replicates key aspects of lung physiology, including a functional airway interface, cyclic breathing motion, and medium circulation. Using the Calu-3 cell line to model airway epithelium, our experiments show that the incorporation of breathing motion significantly enhances the efficacy of inhaled drug delivery and cellular uptake, resulting in improved treatment outcomes compared to direct exposure of the drug. While further research is needed to explore its full potential, this platform holds promise for advancing inhaled drug screening and respiratory disease research.
Collapse
Affiliation(s)
- Chao-Yu Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Ru Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsuan-Yu Mu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Muzammil MA, Chaudhary N, Abbas SM, Ahmad O, Nasir A, Baig E, Fariha F, Afridi AK, Zaveri S. Advancements in Serum Biomarkers for Early Diagnosis and Prognostic Assessment of Aortic Dissection. Crit Pathw Cardiol 2024; 23:207-217. [PMID: 38446088 DOI: 10.1097/hpc.0000000000000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Aortic dissection (AD) is a potentially fatal cardiovascular issue that needs to be diagnosed and treated very away. Although early detection is essential for bettering patient outcomes, there are substantial obstacles with the diagnostic techniques used today. Promising pathways for improving AD prognosis evaluation and early detection are presented by recent developments in serum biomarkers. The most recent research on serum biomarkers for AD is reviewed here, with an emphasis on the prognostic and diagnostic utility of these indicators. A number of biomarkers, including as matrix metalloproteinases, soluble elastin fragments, smooth muscle myosin heavy chain, and D-dimer, have been identified as putative markers of AD. These indicators are indicative of multiple pathophysiological mechanisms associated with AD, including inflammation, extracellular matrix remodeling, and vascular damage. Research has indicated that they are useful in differentiating AD from other acute cardiovascular diseases, facilitating prompt diagnosis and risk assessment.
Collapse
Affiliation(s)
- Muhammad Ali Muzammil
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Neeru Chaudhary
- Department of School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Syed Muhammad Abbas
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Owais Ahmad
- Department of Medicine, Islamic International Medical College, Riphah International University, Islamabad
| | - Aqsa Nasir
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Eesha Baig
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Fnu Fariha
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Azra Khan Afridi
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Sahil Zaveri
- Department of Medicine, Cell Biology, and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY
- Department of Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY
| |
Collapse
|
11
|
Shen H, Liu M, Zhou H, Li Y, Guo Y, Yin Y, Zhang F, Wang J. Differential expression and significance of cytokines in cerebrospinal fluid of patients with viral encephalitis. Neuroscience 2024; 561:11-19. [PMID: 39389253 DOI: 10.1016/j.neuroscience.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
To extensively identify cerebrospinal fluid (CSF) cytokine profiles related to the occurrence, development and prognosis of viral encephalitis (VE) patients by using a high-throughput proteomic approach. We measured 80 cytokines in the CSF of acute-phase VE patients (n = 11) using high-throughput protein chip technology, comparing them to controls (n = 6). ELISA validated these findings and assessed additional cytokines from prior literature in a larger cohort (15 VE patients, 15 controls). Correlations between biomarkers and clinical characteristics were also examined. In the initial stage, we identified two differentially expressed cytokines: cathepsin-L (CTSL), which was up-regulated, and Fractalkine, which was down-regulated. Functional enrichment analysis revealed that these proteins are linked to inflammation, apoptosis, autophagy, and blood-brain barrier disruption. In stage2, the elevations of cathepsin-L (CTSL), fractalkine, interleukin-6 (IL-6), IL-1β, macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), insulin-like growth factor Ⅱ (IGF-2) and CXC chemokine ligand 10 (CXCL10) in VE were validated by ELISA. The results of linear regression indicated that these cytokines was positively correlated with CSF reactive lesions (p < 0.05). In this study, some biomarkers related with CSF level changes and prognosis were obtained. Although these cytokines are not specific, they may be related to the occurrence and development of VE. CTSL, MIF, IL-1β, TNF-α and CXCL10 can be used as VE potential biomarkers. These cytokines may participate in the pathogenesis of VE through inflammatory response, cell apoptosis, autophagy, blood-brain barrier disruption and cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Huijun Shen
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Miaomiao Liu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong Zhou
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuchen Li
- Tianjin Medical University, Tianjin, China
| | - Yingshi Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujie Yin
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Fang Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Adeyi OE, Somade OT, Ugwor EI, Ajayi BO, Adeyi AO, Rahman SA, Adams SO, Ayanwale MO, Adediran OO, Ambali G, Phillip YP, Abass DO, Adebisi YO, Okwori KA, Moses D, Somoye AO, Ugbaja RN, Ademuyiwa O. Syringic acid through reduction of inflammation, oxidative injury, and downregulation of NF-κB-IL-6 pathway ameliorates HFD-induced pulmonary toxicity in male Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:787-802. [DOI: 10.1007/s00580-024-03601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 01/04/2025]
|
13
|
Ma Y, Lai J, Chen Z, Wan Q, Shi X, Zhou H, Li J, Yang Z, Wu J. Exploring therapeutic targets and molecular mechanisms for treating diabetes mellitus-associated heart failure with Qishen Yiqi dropping pills: A network pharmacology and bioinformatics approach. Medicine (Baltimore) 2024; 103:e39104. [PMID: 39093800 PMCID: PMC11296435 DOI: 10.1097/md.0000000000039104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) and heart failure frequently coexist, presenting significant public health challenges. QiShenYiQi Dropping Pills (QSDP) are widely employed in the treatment of diabetes mellitus concomitant with heart failure (DM-HF). Nevertheless, the precise mechanisms underlying their efficacy have yet to be elucidated. Active ingredients and likely targets of QSDP were retrieved from the TCMSP and UniProt databases. Genes associated with DM-HF were pinpointed through searches in the GeneCards, OMIM, DisGeNET, and TTD databases. Differential genes connected to DM-HF were sourced from the GEO database. Enrichment analyses via gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways, as well as immune infiltration assessments, were conducted using R software. Further analysis involved employing molecular docking strategies to explore the interactions between the identified targets and active substances in QSDP that are pertinent to DM-HF treatment. This investigation effectively discerned 108 active compounds and 257 targets relevant to QSDP. A protein-protein interaction network was constructed, highlighting 6 central targets for DM-HF treatment via QSDP. Gene ontology enrichment analysis predominantly linked these targets with responses to hypoxia, metabolism of reactive oxygen species, and cytokine receptor interactions. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways demonstrated that these targets mainly participate in pathways linked to diabetic complications, such as AGE-RAGE signaling, dyslipidemia, arteriosclerosis, the HIF-1 signaling pathway, and the tumor necrosis factor signaling pathway. Further, immune infiltration analysis implied that QSDP's mechanism in treating DM-HF might involve immune-mediated inflammation and crucial signaling pathways. Additionally, molecular docking studies showed that the active substances in QSDP have strong binding affinities with these identified targets. This research presents a new model for addressing DM-HF through the use of QSDP, providing novel insights into incorporating traditional Chinese medicine (TCM) principles in the clinical treatment of DM-HF. The implications of these findings are substantial for both clinical application and further scientific inquiry.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhengtao Chen
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianlin Shi
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaming Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zurong Yang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
14
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
15
|
Philippi CI, Hagens J, Heuer KM, Schmidt HC, Schuppert P, Pagerols Raluy L, Trochimiuk M, Li Z, Bunders MJ, Reinshagen K, Tomuschat C. Exploring cell death mechanisms in spheroid cultures using a novel application of the RIP3-caspase3-assay. Sci Rep 2024; 14:16032. [PMID: 38992075 PMCID: PMC11239891 DOI: 10.1038/s41598-024-66805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
This study explores the application of the RIP3-caspase3-assay in heterogeneous spheroid cultures to analyze cell death pathways, emphasizing the nuanced roles of apoptosis and necroptosis. By employing directly conjugated monoclonal antibodies, we provide detailed insights into the complex mechanisms of cell death. Our findings demonstrate the assay's capability to differentiate between RIP1-independent apoptosis, necroptosis, and RIP1-dependent apoptosis, marking a significant advancement in organoid research. Additionally, we investigate the effects of TNFα on isolated intestinal epithelial cells, revealing a concentration-dependent response and an adaptive or threshold reaction to TNFα-induced stress. The results indicate a preference for RIP1-independent cell death pathways upon TNFα stimulation, with a notable increase in apoptosis and a secondary role of necroptosis. Our research underscores the importance of the RIP3-caspase3-assay in understanding cell death mechanisms in organoid cultures, offering valuable insights for disease modeling and the development of targeted therapies. The assay's adaptability and robustness in spheroid cultures enhances its potential as a tool in personalized medicine and translational research.
Collapse
Affiliation(s)
- C I Philippi
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Hagens
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K M Heuer
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H C Schmidt
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Schuppert
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Z Li
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M J Bunders
- Research Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- Division of Regenerative Medicine and Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Tomuschat
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Elokil A, Li S, Chen W, Farid O, Abouelezz K, Zohair K, Nassar F, El-Komy E, Farag S, Elattrouny M. Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poult Sci 2024; 103:103761. [PMID: 38692088 PMCID: PMC11070915 DOI: 10.1016/j.psj.2024.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Intestinal oxidative stress in broilers is produced by chronic heat stress (HS) and has a negative impact on poultry performance as it induces intestinal inflammation and promotes the invasion of gram-negative bacteria, such as bacterial lipopolysaccharide (LPS). Therefore, dietary inclusion of the antioxidant compound, ethoxyquin (EQ), could improve enteric antioxidant capacity, immune responses, and the epithelial barrier, and maintain the symbiotic gut microbiota community. To investigate the effects of EQ supplementation on alleviating enteric oxidative stress in heat-stressed broilers, 200 one-day-old male Ross 308 broilers were randomly assigned to 4 groups (n = 50 chicks/group; n = 10 chicks/replicate) and fed a basal diet supplemented with 0 (CT), 50 (EQ-50), 100 (EQ-100), and 200 (EQ-200) mg EQ/ kg-1 for 5 wk. The chicks were raised in floor pens inside the broiler farm at a temperature and humidity index (THI) of 29 from d 21 to d 35. Growth performance traits, relative organ index, hepatic antioxidant enzymes, serum immunity, total adenylate, and cytokine activities were improved in the EQ-50 group (linear or quadratic P < 0.05), promoting the relative mRNA expression of cytokine gene-related anti-inflammatory and growth factors. A distinct microbial community colonised the gut microbiota in the EQ-50 group, with a high relative abundance of Lactobacillus, Ligilactobacillus, Limosilactobacillus, Pediococcus, Blautia, and Faecalibacterium compared to the other groups. Dietary supplementation with 50 mg EQ/ kg-1 for 5 wk attenuates enteric oxidative stress and intestinal inflammation by enhancing serum immune and cytokine content (IgG, IL-6, and TGF-β,) and symbiotic microbiota in heat-stressed broilers. EQ promotes the expression of Hsp70, SOD2, GPx 4, IL-6, and IGF-1 cytokine gene-related anti-inflammatory and growth factors in heat-stressed hepatic broilers. Collectively, EQ-50 could be a suitable feed supplement for attenuating enteric oxidative stress and intestinal inflammation, thereby promoting the productivity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdelmotaleb Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12553, Egypt
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Khairy Zohair
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Farid Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Esteftah El-Komy
- Animal Production Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Soha Farag
- Department of animal production, Faculty of Agriculture, Tanta University, Egypt
| | - Mahmoud Elattrouny
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
17
|
Son H, Zhang Y, Shannonhouse J, Gomez R, Kim YS. PACAP38/mast-cell-specific receptor axis mediates repetitive stress-induced headache in mice. J Headache Pain 2024; 25:87. [PMID: 38802819 PMCID: PMC11131290 DOI: 10.1186/s10194-024-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center, San Antonio, TX, USA.
- Programs in Integrated Biomedical Sciences, Biomedical Engineering, Radiological Sciences, Translational Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
18
|
Dave B, Patel M, Suresh S, Ginjupalli M, Surya A, Albdour M, Kooner KS. Wound Modulations in Glaucoma Surgery: A Systematic Review. Bioengineering (Basel) 2024; 11:446. [PMID: 38790314 PMCID: PMC11117829 DOI: 10.3390/bioengineering11050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there is a need to develop novel treatments which provide increased effectiveness and specificity. This review aims to provide insight into the pathophysiology behind wound healing in glaucoma surgery, as well as the current and promising future wound healing agents that are less toxic and may provide better IOP control.
Collapse
Affiliation(s)
- Bhoomi Dave
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Monica Patel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Sruthi Suresh
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mahija Ginjupalli
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Arvind Surya
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
| | - Mohannad Albdour
- Department of Ophthalmology, King Hussein Medical Center Royal Medical Services, Amman 11180, Jordan;
| | - Karanjit S. Kooner
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.D.); (M.P.); (S.S.); (M.G.); (A.S.)
- Department of Ophthalmology, Veteran Affairs North Texas Health Care System Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
19
|
Alshevskaya AA, Lopatnikova JA, Zhukova JV, Perik-Zavodskaia OY, Alrhmoun S, Obleukhova IA, Matveeva AK, Savenkova DA, Imatdinov IR, Yudkin DV, Sennikov SV. TNFR1 Absence Is Not Crucial for Different Types of Cell Reaction to TNF: A Study of the TNFR1-Knockout Cell Model. EPIGENOMES 2024; 8:15. [PMID: 38651368 PMCID: PMC11036270 DOI: 10.3390/epigenomes8020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND One of the mechanisms regulating the biological activity of tumor necrosis factor (TNF) in cells is the co-expression of TNFR1/TNFR2 receptors. A model with a differential level of receptor expression is required to evaluate the contribution of these mechanisms. AIM The development of a cellular model to compare the effects of TNF on cells depending on the presence of both receptors and TNFR2 alone. METHODS TNFR1 absence modifications of ZR-75/1 and K-562 cell lines were obtained by TNFR1 knockout. The presence of deletions was confirmed by Sanger sequencing, and the absence of cell membrane receptor expression was confirmed by flow cytometry. The dose-dependent effect of TNF on intact and knockout cells was comparatively evaluated by the effect on the cell cycle, the type of cell death, and the profile of expressed genes. RESULTS Knockout of TNFR1 resulted in a redistribution of TNFR2 receptors with an increased proportion of TNFR2+ cells in both lines and a multidirectional change in the density of expression in the lines (increased in K562 and decreased in ZR75/1). The presence of a large number of cells with high TNFR2 density in the absence of TNFR1 in the K562 cells was associated with greater sensitivity to TNF-stimulating doses and increased proliferation but did not result in a significant change in cell death parameters. A twofold increase in TNFR2+ cell distribution in this cell line at a reduced expression density in ZR75/1 cells was associated with a change in sensitivity to low cytokine concentrations in terms of proliferation; an overall increase in cell death, most pronounced at standard stimulating concentrations; and increased expression of the lymphocyte-activation gene groups, host-pathogen interaction, and innate immunity. CONCLUSIONS The absence of TNFR1 leads to different variants of compensatory redistribution of TNFR2 in cellular models, which affects the type of cell response and the threshold level of sensitivity. The directionality of cytokine action modulation and sensitivity to TNF levels depends not only on the fraction of cells expressing TNFR2 but also on the density of expression.
Collapse
Affiliation(s)
- Alina A. Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
| | - Julia A. Lopatnikova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Julia V. Zhukova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Olga Y. Perik-Zavodskaia
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Irina A. Obleukhova
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| | - Anna K. Matveeva
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Darya A. Savenkova
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Ilnaz R. Imatdinov
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Dmitry V. Yudkin
- Genome Research Department, State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.M.); (D.A.S.); (I.R.I.); (D.V.Y.)
| | - Sergey V. Sennikov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia; (A.A.A.); (J.A.L.); (J.V.Z.); (S.A.)
- Federal State Budgetary Scientific Institution, “Research Institute of Fundamental and Clinical Immunology” (RIFCI), 630099 Novosibirsk, Russia (I.A.O.)
| |
Collapse
|
20
|
Pukajło-Marczyk A, Zwolińska D. The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course. J Clin Med 2024; 13:1888. [PMID: 38610653 PMCID: PMC11012282 DOI: 10.3390/jcm13071888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: The pathogenesis of idiopathic nephrotic syndrome (INS) has not been fully explained. Among the likely factors, tumor necrosis factor - alpha (TNF-α) is considered. We aimed to evaluate the TNF-α (sTNF-α, uTNF-α) levels in the serum and urine of INS children, with the aim of determining its association with proteinuria, and of determining its usefulness as a marker of the disease severity. Methods: Fifty-one examined patients were divided into subgroups depending on the number of relapses as follows: group IA-first episode; group IB-more than two relapses, and according to treatment modality; group IIA-glucocorticosteroids (GS) alone; and group IIB-GS with immunosuppressants. Healthy age-matched children served as the control group. Results: sTNF-α and uTNF-α levels were significantly increased in active phases in the whole INS group compared to the control group. They decreased in remission, but remained significantly higher when compared to the control group. During remission in the IB group, sTNF-α levels were significantly higher than in IA, whereas, in the relapse phase, these values were similar. In the IA group, a positive correlation between proteinuria and sTNF-α was demonstrated. Conclusions: Our findings suggest that TNF-α plays a role in the development of INS, and may be used as a prognostic marker, as well as an indicator for the continuation of therapy. Additional research is required to verify this statement.
Collapse
Affiliation(s)
- Agnieszka Pukajło-Marczyk
- Department of Pediatric Nephrology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | | |
Collapse
|
21
|
Hatab MH, Chen W, Abouelezz K, Elaroussi M, Badran A, Zoheir K, El-Komy E, Li S, Elokil A. Effects of exposing Japanese quail eggs to a low dose of gamma radiation and in ovo feeding by two sources of trace elements on embryonic development activities. Poult Sci 2024; 103:103364. [PMID: 38198914 PMCID: PMC10825557 DOI: 10.1016/j.psj.2023.103364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
The present study investigated the influence of exposing quail eggs to low-dose gamma radiation (GR) and in ovo feeding with 2 sources of a mixture of trace elements (Zn, Fe, and Cu), including sulfate (TES) and loaded with montmorillonite (TEM), on embryonic development activities and prehatch quality. A total of 960 eggs on the seventh day of incubation were randomly divided into 6 groups (160 eggs/group) with 4 replicate of 40 eggs in each. A 3 × 2 factorial arrangement experiment was performed and included 3 sources in ovo feeding with a mixture of trace elements (Zn, Fe, and Cu), including 0 mg/egg, 50 mg TES/egg, and 50 mg TEM/egg with egg irradiation using 0 and 0.2 Gy from GR. Eggs injected with 50 mg TEM/egg and exposed to 0.2 Gy from GR (TEM/GR) was significantly (P ≤ 0.05 and 0.01) higher in hatchability, hatch body weight, and relative organ weight (liver, gizzard, proventriculus, heart, and intestine). The obtained results indicated significant (P ≤ 0.05) decreased in the serum concentration of malondialdehyde (MDA) in TEM/GR group. There was significant (P ≤ 0.05) increased of catalase (CAT) activity and the concentrations of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in TEM/GR group; however; total antioxidant capacity (T-AOC) was significant (P ≤ 0.05) increased in CT/GR group. Serum concentrations of immunoglobulin M (IgM) (P ≤ 0.05) and tumor necrosis factor-alpha (TNF-α) were increased in the TEM/CR group; the concentration of transforming growth factor beta (TGF-β) significant (P ≤ 0.05) increased in the TEM/GR group; and interleukins (IL6 and IL10) showed no significant differences among the groups. Our results showed increase in thyroxine and myostatin concentrations with TES/CR and CT/GR of our study groups, respectively. The relative mRNA expression levels of the GH, IGF-1, and Fas cell surface death receptor (FAS) genes were significantly (P ≤ 0.05 and 0.01) upregulated in the liver tissue of the TEM/GR group compared with the other groups. In conclusion, TEM/GR was the best treatment for improving prehatch quality, increasing serum antioxidant enzyme activities, and promoting the expression of growth and immune genes in fertilized quail eggs.
Collapse
Affiliation(s)
- Mahmoud H Hatab
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agriculture Science and Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, Guangdong, China.
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Mahmoud Elaroussi
- Biological Application Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Aml Badran
- Poultry Breeding Department, Animal Production Research Institute, Agriculture Research center, Ministry of Agriculture, Dokki, Giza, Egypt
| | - Khairy Zoheir
- Cell biology department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Esteftah El-Komy
- Animal Production Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Shijun Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Abdelmotaleb Elokil
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agriculture Science and Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, Guangdong, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
22
|
Sánchez D, Cesarman-Maus G, Romero L, Sánchez-Verin R, Vail D, Guadarrama M, Pelayo R, Sarmiento-Silva RE, Lizano M. The NDV-MLS as an Immunotherapeutic Strategy for Breast Cancer: Proof of Concept in Female Companion Dogs with Spontaneous Mammary Cancer. Viruses 2024; 16:372. [PMID: 38543739 PMCID: PMC10974497 DOI: 10.3390/v16030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 05/23/2024] Open
Abstract
The absence of tumor-infiltrating lymphocytes negatively impacts the response to chemotherapy and prognosis in all subtypes of breast cancer. Therapies that stimulate a proinflammatory environment may help improve the response to standard treatments and also to immunotherapies such as checkpoint inhibitors. Newcastle disease virus (NDV) shows oncolytic activity, as well as immune modulating potential, in the treatment of breast cancer in vitro and in vivo; however, its potential to enhance tumor-infiltrating immune cells in breast cancer has yet to be evaluated. Since spontaneous canine mammary tumors represent a translational model of human breast cancer, we conducted this proof-of-concept study, which could provide a rationale for further investigating NDV-MLS as immunotherapy for mammary cancer. Six female companion dogs with spontaneous mammary cancer received a single intravenous and intratumoral injection of oncolytic NDV-MLS. Immune cell infiltrates were evaluated by histology and immunohistochemistry in the stromal, intratumoral, and peritumoral compartments on day 6 after viral administration. Increasing numbers of immune cells were documented post-viral treatment, mainly in the peritumoral compartment, where plasma cells and CD3+ and CD3-/CD79- lymphocytes predominated. Viral administration was well tolerated, with no significant adverse events. These findings support additional research on the use of NDV-MLS immunotherapy for mammary cancer.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- NorthStar VETS, Veterinary Emergency Trauma & Specialty Centers, Robbinsville, NJ 08691, USA
| | - Gabriela Cesarman-Maus
- Departamento de Hematología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Laura Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.R.); (M.G.)
| | | | - David Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA;
| | - Marina Guadarrama
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (L.R.); (M.G.)
| | - Rosana Pelayo
- Unidad de Educación e Investigación, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
- Centro de Investigación Biomédica de Oriente, CIBIOR, Instituto Mexicano del Seguro Social, Puebla 06720, Mexico
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
23
|
Abdul-Rahman T, Ghosh S, Badar SM, Nazir A, Bamigbade GB, Aji N, Roy P, Kachani H, Garg N, Lawal L, Bliss ZSB, Wireko AA, Atallah O, Adebusoye FT, Teslyk T, Sikora K, Horbas V. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res 2024; 29:124. [PMID: 38360737 PMCID: PMC10868116 DOI: 10.1186/s40001-024-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor progression and eradication have long piqued the scientific community's interest. Recent discoveries about the role of chemokines and cytokines in these processes have fueled renewed interest in related research. These roles are frequently viewed as contentious due to their ability to both suppress and promote cancer progression. As a result, this review critically appraised existing literature to discuss the unique roles of cytokines and chemokines in the tumor microenvironment, as well as the existing challenges and future opportunities for exploiting these roles to develop novel and targeted treatments. While these modulatory molecules play an important role in tumor suppression via enhanced cancer-cell identification by cytotoxic effector cells and directly recruiting immunological effector cells and stromal cells in the TME, we observed that they also promote tumor proliferation. Many cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered clinical trials for people with advanced cancer, while the FDA has approved interferon-alpha and IL-2. Nonetheless, low efficacy and dose-limiting toxicity limit these agents' full potential. Conversely, Chemokines have tremendous potential for increasing cancer immune-cell penetration of the tumor microenvironment and promoting beneficial immunological interactions. When chemokines are combined with cytokines, they activate lymphocytes, producing IL-2, CD80, and IL-12, all of which have a strong anticancer effect. This phenomenon opens the door to the development of effective anticancer combination therapies, such as therapies that can reverse cancer escape, and chemotaxis of immunosuppressive cells like Tregs, MDSCs, and TAMs.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Sarah M Badar
- The University of the West of Scotland, Lanarkshire, UK
| | | | - Gafar Babatunde Bamigbade
- Department of Food Science and Technology, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Narjiss Aji
- McGill University, Faculty of Medicine and Health Sciences, Montreal, Canada
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Camden, NJ, 08084, USA
| | - Lukman Lawal
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Zarah Sophia Blake Bliss
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan, Mexico
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Tetiana Teslyk
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Kateryna Sikora
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Viktoriia Horbas
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| |
Collapse
|
24
|
Schmalkuche K, Rother T, Besli S, Schwinzer R, Blasczyk R, Petersen B, Figueiredo C. Human PD-L1 overexpression decreases xenogeneic human T-cell immune responses towards porcine kidneys. Front Immunol 2024; 15:1279050. [PMID: 38352884 PMCID: PMC10861674 DOI: 10.3389/fimmu.2024.1279050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Xenotransplantation offers a promising alternative to circumvent the lack of donated human organs available for transplantation. Different attempts to improve the survival of xenografts led to the generation of transgenic pigs expressing various combinations of human protective genes or knocked out for specific antigens. Currently, testing the efficiency of porcine organs carrying different genetic modifications in preventing xenogeneic immune responses completely relies on in vitro assays, humanized mouse models, or non-human primate transplantation models. However, these tests are often associated with major concerns due to reproducibility and generation of insufficient data as well as they raise ethical, logistical, and economic issues. In this study, we investigated the feasibility of specifically assessing the strength of human T-cell responses towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP). Human T cells were shown to adhere to the endothelium and transmigrate into WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as cytotoxic molecules such as granzyme B and perforin secreted by human T cells were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT kidneys. These results were confirmed via in vitro assays using renal endothelial cells (ECs) isolated from WT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T cells showed significantly lower proliferation rates after exposure to hPD-L1 porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly increased in cytotoxic assays. This study demonstrates the feasibility of evaluating the human response of specific immune subsets such as human T cells towards the whole xenograft during EVKP. This may represent a robust strategy to assess the potency of different genetic modifications to prevent xenogeneic immune responses and thereby predict the risk of immune rejection of new genetically engineered xenografts.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sevval Besli
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Transplantation Laboratory, Clinic for General, Visceral and Transplantation-Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Neustadt am Rübenberge, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Muthamil S, Muthuramalingam P, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Shin H, Park JH. Unlocking Prognostic Genes and Multi-Targeted Therapeutic Bioactives from Herbal Medicines to Combat Cancer-Associated Cachexia: A Transcriptomics and Network Pharmacology Approach. Int J Mol Sci 2023; 25:156. [PMID: 38203330 PMCID: PMC10778733 DOI: 10.3390/ijms25010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
| | - Younghoon Go
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea;
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea;
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (H.S.)
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea; (S.M.); (H.-Y.K.); (H.-J.J.); (J.-H.L.); (U.C.S.)
- Korean Convergence Medicine Major, University of Science & Technology (UST), KIOM Campus, Daejeon 34054, Republic of Korea
| |
Collapse
|
26
|
Tang Y, Zhang Z, Weng M, Shen Y, Lai W, Hao T, Yao C, Bu X, Du J, Li Y, Mai K, Ai Q. Glycerol monolaurate improved intestinal barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis in large yellow croaker (Larimichthys crocea) fed with high soybean oil diets. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109031. [PMID: 37640122 DOI: 10.1016/j.fsi.2023.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1β, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.
Collapse
Affiliation(s)
- Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Miao Weng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Chanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China.
| |
Collapse
|
27
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Dhall A, Patiyal S, Choudhury S, Jain S, Narang K, Raghava GPS. TNFepitope: A webserver for the prediction of TNF-α inducing epitopes. Comput Biol Med 2023; 160:106929. [PMID: 37126926 DOI: 10.1016/j.compbiomed.2023.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tumor Necrosis Factor alpha (TNF-α) is a pleiotropic pro-inflammatory cytokine that is crucial in controlling the signaling pathways within the immune cells. Recent studies reported that higher expression levels of TNF-α are associated with the progression of several diseases, including cancers, cytokine release syndrome in COVID-19, and autoimmune disorders. Thus, it is the need of the hour to develop immunotherapies or subunit vaccines to manage TNF-α progression in various disease conditions. In the pilot study, we proposed a host-specific in-silico tool for predicting, designing, and scanning TNF-α inducing epitopes. The prediction models were trained and validated on the experimentally validated TNF-α inducing/non-inducing epitopes from human and mouse hosts. Firstly, we developed alignment-free (machine learning based models using composition-based features of peptides) methods for predicting TNF-α inducing peptides and achieved maximum AUROC of 0.79 and 0.74 for human and mouse hosts, respectively. Secondly, an alignment-based (using BLAST) method has been used for predicting TNF-α inducing epitopes. Finally, a hybrid method (combination of alignment-free and alignment-based method) has been developed for predicting epitopes. Hybrid approach achieved maximum AUROC of 0.83 and 0.77 on an independent dataset for human and mouse hosts, respectively. We have also identified potential TNF-α inducing peptides in different proteins of HIV-1, HIV-2, SARS-CoV-2, and human insulin. The best models developed in this study has been incorporated in the webserver TNFepitope (https://webs.iiitd.edu.in/raghava/tnfepitope/), standalone package and GitLab (https://gitlab.com/raghavalab/tnfepitope).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Kashish Narang
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India. http://webs.iiitd.edu.in/raghava/
| |
Collapse
|
29
|
Yuxuan L, Junchao L, Wenya L. The role of sarcopenia in treatment-related outcomes in patients with renal cell carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31332. [PMID: 36316941 PMCID: PMC9622586 DOI: 10.1097/md.0000000000031332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND in recent years, more attention has been paid to the fuzzy relationship between skeletal muscle components and renal cell carcinoma (RCC). This study attempts to conduct a meta-analysis using all relevant research evidence to explore the impact of sarcopenia on the final survival and recurrence outcome of RCC patients and the change process of this impact after treatment. METHODS This systematic review and Meta-analysis study took "sarcopenia", "kidney" and "tumor" and their synonyms as the main search terms, and comprehensively searched all relevant literatures published in PubMed, web of science, SpringerLink, EMBASE, Cochrane Library, Ovid (Lww oup), Wiley, ScienceDirect and Scopus databases since February 2, 2022. Multivariate hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), cancer specific survival (CSS), and progression free survival (PFS), as well as rough data of Kaplan-Meier survival curve, were combined as the main analysis results. Subgroup analyses based on cohort characteristics (treatment, ethnicity, and BMI factors) for each study were used as secondary outcomes. The combined effect was estimated by random effect model or fixed effect model, and the heterogeneity was evaluated by I2 value. Because this study belongs to secondary literature, the medical ethics committee of the First Affiliated Hospital of Xinjiang Medical University considers that ethical review is unnecessary. RESULTS Eighteen retrospective studies involving 3591 patients with RCC were analyzed, of which 71.5% were men and the median age of the cohort was 61.6. The prevalence of sarcopenia was 43% (38-48%). Sarcopenia is an independent predictor of OS (HR: 1.83, 95% CI = [1.41, 2.37]), and this prognostic value can also be reflected in Asian populations (HR: 2.59, 95% CI = [1.90, 3.54]) and drug treated patients (HR: 2.07, 95% CI = [1.07, 4.04]). Sarcopenia can also be used as an independent predictor of CSS (HR: 1.78, 95% CI = [1.34, 2.36]) and PFS (HR: 1.98, 95% CI = [1.34, 2.92]). The effect of low skeletal muscle mass on OS and CSS increased slowly from 1 to 5 years. CONCLUSION Sarcopenia can be used as a comprehensive prognostic factor in RCC population, but the detailed effects from ethnic characteristics and treatment mechanism need to be further studied.
Collapse
Affiliation(s)
- Li Yuxuan
- Imaging Department, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, China
| | - Li Junchao
- Imaging Department, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, China
| | - Liu Wenya
- Imaging Department, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, China
- * Correspondence: Liu Wenya, Imaging Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China (e-mail:)
| |
Collapse
|
30
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
31
|
Fan H, Cui J, Liu F, Zhang W, Yang H, He N, Dong Z, Dong J. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. Eur J Pharmacol 2022; 933:175252. [PMID: 36063870 DOI: 10.1016/j.ejphar.2022.175252] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
Sepsis-related acute liver injury (ALI) is a fatal disease associated with many complications. Recent studies indicate that malvidin, an active flavonoid, has multiple bioactivities including anti-oxidant and anti-inflammation. However, the protective roles of malvidin against LPS-induced ALI are unknown. The purpose of this research is to explore whether malvidin has biological activities on LPS-induced ALI in mice and the underlying mechanisms. Male C57 mice were injected intraperitoneally with malvidin for five days and the mice were euthanized 6 hours after LPS (10 mg/kg body weight) intraperitoneal injection. Multiple methods of H&E staining, biochemical kits, qRT-PCR assay, western blotting analysis, TUNEL and transmission electron microscope (TEM) were used. Results showed that decreased ALT, AST levels and alleviated histopathological damage of liver tissue were observed in malvidin pretreatment group in mice. Then, malvidin prevented LPS-induced reduction of antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase (CAT) via up-regulating nuclear factor E2-related factor2 (Nrf2) pathway. In addition, in malvidin pretreatment groups, mRNA levels of pro-inflammatory cytokines (TNF-α,IL-1β, IL-6) and protein levels of NOD-like receptor protein 3 (NLRP3) inflammasome in the liver were significantly down-regulated. We also found that the malvidin could reduce the expression of apoptosis key protein and TUNEL-labeled apoptotic hepatocytes. Furthermore, malvidin inhibited the protein expression of ATG5, p62 and the ratio of LC3-II/LC3-I. In conclusion, our study firstly suggests that malvidin is a potentially protective agent against LPS-induced ALI through up-regulating Nrf2 signaling pathway, suppressing NLRP3 inflammasome and inhibiting apoptosis and autophagy.
Collapse
Affiliation(s)
- Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiajia Cui
- Department of Rheumatology and Immunology, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
32
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
33
|
Castillo-Ruiz A, Cisternas CD, Sturgeon H, Forger NG. Birth triggers an inflammatory response in the neonatal periphery and brain. Brain Behav Immun 2022; 104:122-136. [PMID: 35661680 DOI: 10.1016/j.bbi.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022] Open
Abstract
Birth is preceded by inflammation at the fetal/maternal interface. Additionally, the newborn experiences stimuli that under any other circumstance could elicit an immune response. It is unknown, however, whether birth elicits an inflammatory response in the newborn that extends to the brain. Moreover, it is unknown whether birth mode may alter such a response. To study these questions, we first measured corticosterone and pro- and anti-inflammatory cytokines in plasma of mouse offspring at several timepoints spaced closely before and after a vaginal or Cesarean birth. We found highest levels of IL-6 one day before birth and surges in corticosterone and IL-10 just after birth, regardless of birth mode. We next examined the neuroimmune response by measuring cytokine mRNA expression and microglial number and morphology in the paraventricular nucleus of the hypothalamus and hippocampus around the time of birth. We found a marked increase in TNF-α expression in both brain regions a day after birth, and rapid increases in microglial cell number in the first three days postnatal, with subtle differences by birth mode. To test whether the association between birth and cytokine production or expansion of microglia is causal, we manipulated birth timing. Remarkably, advancing birth by a day advanced the increases in all of the markers tested. Thus, birth triggers an immune response in the body and brain of offspring. Our results may provide a mechanism for effects of birth (e.g., acute changes in cell death and neural activation) previously reported in the newborn brain.
Collapse
Affiliation(s)
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Hannah Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|