1
|
Delgado-Guillena P, Jimeno M, López-Nuñez A, Córdova H, Fernández-Esparrach G. The endoscopic model for gastric carcinogenesis and Helicobacter pylori infection: A potential visual mind-map during gastroscopy examination. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502214. [PMID: 38844201 DOI: 10.1016/j.gastrohep.2024.502214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
Helicobacter pylori (Hp) is the main trigger of chronic gastric atrophy and the main leading cause of gastric cancer. Hp infects the normal gastric mucosa and can lead to chronic inflammation, glandular atrophy, intestinal metaplasia, dysplasia and finally adenocarcinoma. Chronic inflammation and gastric atrophy associated with Hp infection appear initially in the distal part of the stomach (the antrum) before progressing to the proximal part (the corpus-fundus). In recent years, endoscopic developments have allowed for the characterization of various gastric conditions including the normal mucosa (pyloric/fundic gland pattern and regular arrangement of collecting venules), Hp-related gastritis (Kyoto classification), glandular atrophy (Kimura-Takemoto classification), intestinal metaplasia (Endoscopic Grading of Gastric Intestinal Metaplasia), and dysplasia/adenocarcinoma (Vessel plus Surface classification). Despite being independent classifications, all these scales can be integrated into a single model: the endoscopic model for gastric carcinogenesis. This model would assist endoscopists in comprehending the process of gastric carcinogenesis and conducting a systematic examination during gastroscopy. Having this model in mind would enable endoscopists to promptly recognize the implications of Hp infection and the potential patient's risk of developing gastric cancer.
Collapse
Affiliation(s)
| | - Mireya Jimeno
- Department of Pathology, Hospital of Germans Trias i Pujol, Badalona, Spain
| | | | - Henry Córdova
- Department of Gastroenterology, Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Gloria Fernández-Esparrach
- Department of Gastroenterology, Hospital Clinic of Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| |
Collapse
|
2
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. Microbiol Spectr 2024; 12:e0001524. [PMID: 38682907 PMCID: PMC11237807 DOI: 10.1128/spectrum.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Here, we identified the differences in gastric inflammation, atrophy, and metaplasia associated with HP and HF infection in mice. PMSS1 HP strain or the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages revealing that both bacteria exhibit similar immunostimulatory effects in vitro. Next, C57BL/6J mice were infected with HP or HF and were assessed 2 months post-infection. HP-infected mice caused modest inflammation within both the gastric corpus and antrum, and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced the expression of pyloric metaplasia (PM) markers. HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for studies on the effects of gastric inflammation on tumorigenesis. . IMPORTANCE Mouse infection models with Helicobacter species are widely used to study Helicobacter pathogenesis and gastric cancer initiation. However, Helicobacter pylori is not a natural mouse pathogen, and mouse-adapted H. pylori strains are poorly immunogenic. In contrast, Helicobacter felis is a natural mouse pathogen that induces robust gastric inflammation and is often used in mice to investigate gastric cancer initiation. Although both bacterial strains are widely used, their disease pathogenesis in mice differs dramatically. However, few studies have directly compared the pathogenesis of these bacterial species in mice, and the contrasting features of these two models are not clearly defined. This study directly compares the gastric inflammation, atrophy, and metaplasia development triggered by the widely used PMSS1 H. pylori and CS1 H. felis strains in mice. It serves as a useful resource for researchers to select the experimental model best suited for their studies.
Collapse
Affiliation(s)
- Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Shrinidhi Venkateshwaraprabu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Benjamin C. Duncan
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Maeve T. Morris
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Fredrick H. Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan T. Busada
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
4
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Aiderus A, Barker N, Tergaonkar V. Serrated colorectal cancer: preclinical models and molecular pathways. Trends Cancer 2024; 10:76-91. [PMID: 37880007 DOI: 10.1016/j.trecan.2023.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Serrated lesions are histologically heterogeneous, and detection can be challenging as these lesions have subtle features that may be missed by endoscopy. Furthermore, while approximately 30% of colorectal cancers (CRCs) arise from serrated lesions, only 8-10% of invasive serrated CRCs exhibit serrated morphology at presentation, suggesting potential loss of apparent characteristics with increased malignancy. Thus, understanding the genetic basis driving serrated CRC initiation and progression is critical to improve diagnosis and identify therapeutic biomarkers and targets to guide disease management. This review discusses the preclinical models of serrated CRCs reported to date and how these systems have been used to provide mechanistic insights into tumor initiation, progression, and novel treatment targets.
Collapse
Affiliation(s)
- Aziz Aiderus
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore.
| | - Nick Barker
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Laboratory of NFκB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore 117596, Republic of Singapore
| |
Collapse
|
6
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573128. [PMID: 38187587 PMCID: PMC10769338 DOI: 10.1101/2023.12.22.573128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on Helicobacter- induced gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Each of these infection models is associated with strengths and weaknesses. Here, we identified the differences in immunogenicity and gastric pathological changes associated with HP and HF infection in mice. Material and Methods PMSS1 HP strain or with the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. C57BL/6J mice were infected with HP or HF, and gastric inflammation, atrophy, and metaplasia development were assessed 2 months post-infection. Results HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages. HP-infected mice caused modest inflammation within both the gastric corpus and antrum and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced expression of pyloric metaplasia markers. Conclusions HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for pathogenesis and cancer initiation studies.
Collapse
|
7
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|