1
|
Coughlin TM, Makarewich CA. Emerging roles for microproteins as critical regulators of endoplasmic reticulum function and cellular homeostasis. Semin Cell Dev Biol 2025; 170:103608. [PMID: 40245464 PMCID: PMC12065929 DOI: 10.1016/j.semcdb.2025.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for key cellular processes including protein synthesis, calcium homeostasis, and the cellular stress response. It is composed of distinct domains, such as the rough and smooth ER, as well as membrane regions that facilitate direct communication with other organelles, enabling its diverse functions. While many well-characterized ER proteins contribute to these processes, recent studies have revealed a previously underappreciated class of small proteins that play critical regulatory roles. Microproteins, typically under 100 amino acids in length, were historically overlooked due to size-based biases in genome annotation and often misannotated as noncoding RNAs. Advances in ribosome profiling, mass spectrometry, and computational approaches have now enabled the discovery of numerous previously unrecognized microproteins, significantly expanding our understanding of the proteome. While some ER-associated microproteins, such as phospholamban and sarcolipin, were identified decades ago, newly discovered microproteins share similar fundamental characteristics, underscoring the need to refine our understanding of the coding potential of the genome. Molecular studies have demonstrated that ER microproteins play essential roles in calcium regulation, ER stress response, organelle communication, and protein translocation. Moreover, growing evidence suggests that ER microproteins contribute to cellular homeostasis and are implicated in disease processes, including cardiovascular disease and cancer. This review examines the shared and unique functions of ER microproteins, their implications for health and disease, and their potential as therapeutic targets for conditions associated with ER dysfunction.
Collapse
Affiliation(s)
- Taylor M Coughlin
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Deshpande A, Mahale S, Kanduri C. Beyond the Transcript: Translating Non-Coding RNAs and Their Impact on Cellular Regulation. Cancers (Basel) 2025; 17:1555. [PMID: 40361481 PMCID: PMC12071610 DOI: 10.3390/cancers17091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the human transcriptome and play diverse structural, catalytic, and regulatory roles. The ability of ncRNAs to be translated into functional peptides and microproteins expands our understanding of their regulatory potential beyond their established non-coding functions. Our comprehensive search identified 86 translating "non-coding" RNAs. While translating ncRNAs have traditionally been categorized as "peptide-encoding", in this study, we introduce a novel classification based on amino acid length, distinguishing their products as ncRNA encoded peptides (ncRNA-PEPs), which are less than 60 amino acids, or ncRNA encoded microproteins (ncRNA-MPs) ranging from 61 to 200 amino acids. These peptides and microproteins act as co-regulators in cell signaling, transcriptional regulation, and protein complex assembly, playing a role in both health and disease. We outline the molecular pathways by which ncRNA-PEPs and ncRNA-MPs could govern cell cycle progression, highlighting their influence on cell cycle transitions, oncogenic and tumor suppressor pathways, metabolic homeostasis, autophagy, and on key cell cycle regulators like PCNA, Rad18, and CDK-cyclin complexes. Furthermore, we highlight recent advancements in their detection and characterization, exploring their evolutionary origins, species-specific conservation, and potential therapeutic applications. Our findings underscore the emerging significance of ncRNA-PEPs and ncRNA-MPs as integral regulators of cellular processes, highlighting their functional versatility and opening promising avenues for further research and potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden; (A.D.); (S.M.)
| |
Collapse
|
3
|
Lisi M, Santini T, D'Andrea T, Salvatori B, Setti A, Paiardini A, Nutarelli S, Nicoletti C, Pellegrini F, Fucile S, Bozzoni I, Martone J. SERTM2: a neuroactive player in the world of micropeptides. EMBO Rep 2025; 26:2044-2076. [PMID: 40108405 PMCID: PMC12019361 DOI: 10.1038/s44319-025-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
In this study, we analyze the long noncoding RNA, lncMN3, that is predominantly expressed in motor neurons and shows potential coding capabilities. Utilizing custom antibodies, we demonstrate the production of a lncMN3-derived type I transmembrane micropeptide, SERTM2. Patch-clamp experiments performed on both wild-type and SERTM2 knockout motor neurons, differentiated in vitro from mouse embryonic stem cells, show a difference in the resting membrane potential and overall decreased excitability upon SERTM2 depletion. In vivo studies indicate that the absence of the peptide impairs treadmill test performance. At the mechanistic level, we identify a two-pore domain potassium channel, TASK1, known to be a major determinant of the resting membrane potential in motor neurons, as a SERTM2 interactor. Our study characterizes one of the first lncRNA-derived micropeptides involved in neuronal physiology.
Collapse
Affiliation(s)
- Michela Lisi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Beatrice Salvatori
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Sofia Nutarelli
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Carmine Nicoletti
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Flaminia Pellegrini
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Rome, Italy.
- Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Julie Martone
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
| |
Collapse
|
4
|
Carter AC, Koreman GT, Petrocelli JE, Robb JE, Bushinsky EM, Trowbridge SK, Kingsley DM, Walsh CA, Song JHT, Greenberg ME. FOS binding sites are a hub for the evolution of activity-dependent gene regulatory programs in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646366. [PMID: 40236085 PMCID: PMC11996375 DOI: 10.1101/2025.03.31.646366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
After birth, sensory inputs to neurons trigger the induction of activity-dependent genes (ADGs) that mediate many aspects of neuronal maturation and plasticity. To identify human-specific ADGs, we characterized these genes in human-chimpanzee tetraploid neurons. We identified 235 ADGs that are differentially expressed between human and chimpanzee neurons and found that their nearby regulatory sites are species-biased in their binding of the transcription factor FOS. An assessment of these sites revealed that many are enriched for single nucleotide variants that promote or eliminate FOS binding in human neurons. Disrupting the function of individual species-biased FOS-bound enhancers diminishes expression of nearby genes and affects the firing dynamics of human neurons. Our findings indicate that FOS-bound enhancers are frequent sites of evolution and that they regulate human-specific ADGs that may contribute to the unusually protracted and complex process of postnatal human brain development.
Collapse
|
5
|
Baena-Angulo C, Platero AI, Couso JP. Cis to trans: small ORF functions emerging through evolution. Trends Genet 2025; 41:119-131. [PMID: 39603921 DOI: 10.1016/j.tig.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Hundreds of thousands of small open reading frames (smORFs) of less than 100 codons exist in every genome, especially in long noncoding RNAs (lncRNAs) and in the 5' leaders of mRNAs. smORFs are often discarded as nonfunctional, but ribosomal profiling (RiboSeq) reveals that thousands are translated, while characterised smORF functions have risen from anecdotal to identifiable trends: smORFs can either have a cis-noncoding regulatory function (involving low translation of nonfunctional peptides) or full coding function mediated by robustly translated peptides, often having cellular and physiological roles as membrane-associated regulators of canonical proteins. The evolutionary context reveals that many smORFs represent new genes emerging de novo from noncoding sequences. We suggest a mechanism for this process, where cis-noncoding smORF functions provide niches for the subsequent evolution of full peptide functions.
Collapse
Affiliation(s)
- Casimiro Baena-Angulo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Juan Pablo Couso
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain.
| |
Collapse
|
6
|
Xiao X, Wang Y, Li T, Wang Q, Luo X, Li J, Gao L. Microproteins encoded by short open reading frames: Vital regulators in neurological diseases. Prog Neurobiol 2024; 243:102694. [PMID: 39586488 DOI: 10.1016/j.pneurobio.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as "transcriptional noise". However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
Collapse
Affiliation(s)
- Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
7
|
Vaganova AN, Fesenko ZS, Efimova EV, Chekrygin SA, Shafranskaya DD, Prjibelski AD, Katolikova NV, Gainetdinov RR. Knocking Out TAAR5: A Pathway to Enhanced Neurogenesis and Dopamine Signaling in the Striatum. Cells 2024; 13:1910. [PMID: 39594659 PMCID: PMC11592834 DOI: 10.3390/cells13221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The member of trace-amine associated receptor family, TAAR5 receptor was suggested to recognize tertiary amines, mostly in the olfactory system; however, knocking out the receptor TAAR5 in mice showed an enhancing effect on adult neurogenesis and dopamine neurotransmission in the striatum. To estimate the role of the TAAR5, we performed gene expression profiling of striatal samples from TAAR5 knockout (KO) mice and their wild-type littermates. The higher expression of several genes involved in dopaminergic signaling and the downregulation of genes associated with gliogenesis were revealed in TAAR5-KO mice. Meanwhile, the upregulating effect of TAAR5 knockout on genes was associated with neurogenesis and synaptogenesis. The estimation of cell-type relative abundance through the deconvolution of RNA sequencing data demonstrated that TAAR5-KO striatum samples contain more D2 dopamine receptor-expressing medium spiny neurons but fewer astrocytes than wild-type mice. Our findings indicate that previously identified improvement in cognitive functions and motor coordination in TAAR5-KO mice may activate genes involved in neurogenesis, synaptogenesis, and synapse organization in the striatum. These data suggest that the pharmaceutical targeting of TAAR5 may improve striatum-dependent cognitive or motor functions. At the same time, a more detailed investigation of future TAAR5 antagonists' effect on glia development is necessary.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
- Saint-Petersburg University Hospital, 199034 Saint-Petersburg, Russia
| | - Zoia S. Fesenko
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
| | - Evgeniya V. Efimova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
| | - Sergei A. Chekrygin
- Resource Center “Bio-Bank Center”, Research Park of Saint-Petersburg State University, 198504 Saint-Petersburg, Russia;
| | - Daria D. Shafranskaya
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
| | | | - Nataliia V. Katolikova
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (A.N.V.)
- Saint-Petersburg University Hospital, 199034 Saint-Petersburg, Russia
| |
Collapse
|
8
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
9
|
Das D, Podder S. Microscale marvels: unveiling the macroscopic significance of micropeptides in human health. Brief Funct Genomics 2024; 23:624-638. [PMID: 38706311 DOI: 10.1093/bfgp/elae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Non-coding RNA encodes micropeptides from small open reading frames located within the RNA. Interestingly, these micropeptides are involved in a variety of functions within the body. They are emerging as the resolving piece of the puzzle for complex biomolecular signaling pathways within the body. Recent studies highlight the pivotal role of small peptides in regulating important biological processes like DNA repair, gene expression, muscle regeneration, immune responses, etc. On the contrary, altered expression of micropeptides also plays a pivotal role in the progression of various diseases like cardiovascular diseases, neurological disorders and several types of cancer, including colorectal cancer, hepatocellular cancer, lung cancer, etc. This review delves into the dual impact of micropeptides on health and pathology, exploring their pivotal role in preserving normal physiological homeostasis and probing their involvement in the triggering and progression of diseases.
Collapse
Affiliation(s)
- Deepyaman Das
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| | - Soumita Podder
- Computational and Systems Biology Laboratory, Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal-733134, India
| |
Collapse
|
10
|
Liu T, Qiao H, Wang Z, Yang X, Pan X, Yang Y, Ye X, Sakurai T, Lin H, Zhang Y. CodLncScape Provides a Self-Enriching Framework for the Systematic Collection and Exploration of Coding LncRNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400009. [PMID: 38602457 PMCID: PMC11165466 DOI: 10.1002/advs.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Recent studies have revealed that numerous lncRNAs can translate proteins under specific conditions, performing diverse biological functions, thus termed coding lncRNAs. Their comprehensive landscape, however, remains elusive due to this field's preliminary and dispersed nature. This study introduces codLncScape, a framework for coding lncRNA exploration consisting of codLncDB, codLncFlow, codLncWeb, and codLncNLP. Specifically, it contains a manually compiled knowledge base, codLncDB, encompassing 353 coding lncRNA entries validated by experiments. Building upon codLncDB, codLncFlow investigates the expression characteristics of these lncRNAs and their diagnostic potential in the pan-cancer context, alongside their association with spermatogenesis. Furthermore, codLncWeb emerges as a platform for storing, browsing, and accessing knowledge concerning coding lncRNAs within various programming environments. Finally, codLncNLP serves as a knowledge-mining tool to enhance the timely content inclusion and updates within codLncDB. In summary, this study offers a well-functioning, content-rich ecosystem for coding lncRNA research, aiming to accelerate systematic studies in this field.
Collapse
Affiliation(s)
- Tianyuan Liu
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
| | - Huiyuan Qiao
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zixu Wang
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Xinyan Yang
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xianrun Pan
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Yu Yang
- School of Healthcare TechnologyChengdu Neusoft UniversityChengdu611844China
| | - Xiucai Ye
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Tetsuya Sakurai
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Hao Lin
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| |
Collapse
|
11
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
12
|
Zhang L, Tang M, Diao H, Xiong L, Yang X, Xing S. LncRNA-encoded peptides: unveiling their significance in cardiovascular physiology and pathology-current research insights. Cardiovasc Res 2023; 119:2165-2178. [PMID: 37517040 DOI: 10.1093/cvr/cvad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), which are RNA transcripts exceeding 200 nucleotides were believed to lack any protein-coding capacity. But advancements in -omics technology have revealed that some lncRNAs have small open reading frames (sORFs) that can be translated by ribosomes to encode peptides, some of which have important biological functions. These encoded peptides subserve important biological functions by interacting with their targets to modulate transcriptional or signalling axes, thereby enhancing or suppressing cardiovascular disease (CVD) occurrence and progression. In this review, we summarize what is known about the research strategy of lncRNA-encoded peptides, mainly comprising predictive websites/tools and experimental methods that have been widely used for prediction, identification, and validation. More importantly, we have compiled a list of lncRNA- encoded peptides, with a focus on those that play significant roles in cardiovascular physiology and pathology, including ENSRNOT (RNO)-sORF6/RNO-sORF7/RNO-sORF8, dwarf open reading frame (DOWRF), myoregulin (NLN), etc. Additionally, we have outlined the functions and mechanisms of these peptides in cardiovascular physiology and pathology, such as cardiomyocyte hypertrophy, myocardial contraction, myocardial infarction, and vascular remodelling. Finally, an overview of the existing challenges and potential future developments in the realm of lncRNA-encoded peptides was provided, with consideration given to prospective avenues for further research. Given that many lncRNA-encoded peptides have not been functionally annotated yet, their application in CVD diagnosis and treatment still requires further research.
Collapse
Affiliation(s)
- Li Zhang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Mi Tang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Haoyang Diao
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Liling Xiong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Xiao Yang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| | - Shasha Xing
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, 1617 Riyue Street, Qingyang District, Chengdu 611731, China
| |
Collapse
|
13
|
McCabe A, Zaheed O, Derlipanska M, Merrin G, Dean K. The copious capabilities of non-coding RNAs in cancer regulation, diagnosis and treatment. Cancer Treat Res Commun 2023; 37:100768. [PMID: 37852123 DOI: 10.1016/j.ctarc.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Globally, cancer is one of the leading causes of mortality, accounting for 10 million deaths per year. Non-coding RNAs (ncRNAs) play integral and diverse roles in cancer, possessing the ability to both promote oncogenesis and impede tumor formation. This review discusses the various roles of microRNAs, transfer RNA-derived small RNAs, long non-coding RNAs and lncRNA-derived microproteins in cancer progression and prevention. We highlight the diagnostic and therapeutic potential of these ncRNAs, with a particular focus on detection in liquid biopsies and targeting of ncRNAs with small inhibitory molecules. Ultimately, the biological functions of cancer-associated ncRNAs, as well as the development of ncRNA-based technologies, are compelling areas for further research, holding the possibility of revolutionizing cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland; The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland; The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Magdalina Derlipanska
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - George Merrin
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - Kellie Dean
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland.
| |
Collapse
|
14
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
15
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
16
|
Simmers MD, Jima DD, Tsuji Y, Cowley M. LncRNA Tuna is activated in cadmium-induced placental insufficiency and drives the NRF2-mediated oxidative stress response. Front Cell Dev Biol 2023; 11:1151108. [PMID: 37325564 PMCID: PMC10267411 DOI: 10.3389/fcell.2023.1151108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal found throughout the environment and one of the top ten toxicants of major public health concern identified by the World Health Organization. In utero Cd exposure causes fetal growth restriction, malformation, and spontaneous abortion; however, the mechanisms by which Cd impacts these outcomes are poorly understood. Cd accumulates in the placenta, suggesting that these negative outcomes may be a consequence of disrupted placental function and placental insufficiency. To understand the impact of Cd on gene expression within the placenta, we developed a mouse model of Cd-induced fetal growth restriction through maternal consumption of CdCl2 and performed RNA-seq on control and CdCl2 exposed placentae. The top differentially expressed transcript was the Tcl1 Upstream Neuron-Associated (Tuna) long non-coding RNA, which was upregulated over 25-fold in CdCl2 exposed placentae. Tuna has been shown to be critical for neural stem cell differentiation. However, within the placenta, there is no evidence that Tuna is normally expressed or functional at any developmental stage. To determine the spatial expression of Cd-activated Tuna within the placenta, we used in situ hybridization as well as placental layer-specific RNA isolation and analysis. Both methods confirmed the absence of Tuna expression in control samples and determined that Cd-induced Tuna expression is specific to the junctional zone. Since many lncRNAs regulate gene expression, we hypothesized that Tuna forms part of the mechanism of Cd-induced transcriptomic changes. To test this, we over-expressed Tuna in cultured choriocarcinoma cells and compared gene expression profiles to those of control and CdCl2 exposed cells. We demonstrate significant overlap between genes activated by Tuna overexpression and genes activated by CdCl2 exposure, with enrichment in the NRF2-mediated oxidative stress response. Herein we analyze the NRF2 pathway and show that Tuna increases NRF2/NRF2 both at the transcript and protein levels. Tuna drives increased NRF2 target gene expression, a result that is abrogated with the use of an NRF2 inhibitor, confirming that Tuna activates oxidative stress response genes through this pathway. This work identifies the lncRNA Tuna as a potential novel player in Cd-induced placental insufficiency.
Collapse
Affiliation(s)
- Mark D. Simmers
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dereje D. Jima
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Yoshiaki Tsuji
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael Cowley
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Talross GJS, Carlson JR. The rich non-coding RNA landscape of the Drosophila antenna. Cell Rep 2023; 42:112482. [PMID: 37167060 PMCID: PMC10431215 DOI: 10.1016/j.celrep.2023.112482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play diverse and critical roles in neural development, function, and disease. Here, we examine neuronal lncRNAs in a model system that offers enormous advantages for deciphering their functions: the Drosophila olfactory system. This system is numerically simple, its neurons are exquisitely well defined, and it drives multiple complex behaviors. We undertake a comprehensive survey of linear and circular lncRNAs in the Drosophila antenna and identify a wealth of lncRNAs enriched in it. We generate an unprecedented lncRNA-to-neuron map, which reveals that olfactory receptor neurons are defined not only by their receptors but also by the combination of lncRNAs they express. We identify species-specific lncRNAs, including many that are expressed primarily in pheromone-sensing neurons and that may act in modulation of pheromonal responses or in speciation. This resource opens many new opportunities for investigating the roles of lncRNAs in the nervous system.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Treichel AJ, Bazzini AA. Casting CRISPR-Cas13d to fish for microprotein functions in animal development. iScience 2022; 25:105547. [PMID: 36444300 PMCID: PMC9700322 DOI: 10.1016/j.isci.2022.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein coding genes were originally identified with sequence-based definitions that included a 100-codon cutoff to avoid annotating irrelevant open reading frames. However, many active proteins contain less than 100 amino acids. Indeed, functional genetics, ribosome profiling, and proteomic profiling have identified many short, translated open reading frames, including those with biologically active peptide products (microproteins). Yet, functions for most of these peptide products remain unknown. Because microproteins often act as key signals or fine-tune processes, animal development has already revealed functions for a handful of microproteins and provides an ideal context to uncover additional microprotein functions. However, many mRNAs during early development are maternally provided and hinder targeted mutagenesis approaches to characterize developmental microprotein functions. The recently established, RNA-targeting CRISPR-Cas13d system in zebrafish overcomes this barrier and produces potent knockdown of targeted mRNA, including maternally provided mRNA, and enables flexible, efficient interrogation of microprotein functions in animal development.
Collapse
Affiliation(s)
| | - Ariel Alejandro Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
19
|
pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 2022; 13:6840. [PMID: 36369429 PMCID: PMC9652315 DOI: 10.1038/s41467-022-34529-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.
Collapse
|
20
|
Brito-Estrada O, Hassel KR, Makarewich CA. An Integrated Approach for Microprotein Identification and Sequence Analysis. J Vis Exp 2022:10.3791/63841. [PMID: 35913170 PMCID: PMC9521633 DOI: 10.3791/63841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Next-generation sequencing (NGS) has propelled the field of genomics forward and produced whole genome sequences for numerous animal species and model organisms. However, despite this wealth of sequence information, comprehensive gene annotation efforts have proven challenging, especially for small proteins. Notably, conventional protein annotation methods were designed to intentionally exclude putative proteins encoded by short open reading frames (sORFs) less than 300 nucleotides in length to filter out the exponentially higher number of spurious noncoding sORFs throughout the genome. As a result, hundreds of functional small proteins called microproteins (<100 amino acids in length) have been incorrectly classified as noncoding RNAs or overlooked entirely. Here we provide a detailed protocol to leverage free, publicly available bioinformatic tools to query genomic regions for microprotein-coding potential based on evolutionary conservation. Specifically, we provide step-by-step instructions on how to examine sequence conservation and coding potential using Phylogenetic Codon Substitution Frequencies (PhyloCSF) on the user-friendly University of California Santa Cruz (UCSC) Genome Browser. Additionally, we detail steps to efficiently generate multiple species alignments of identified microprotein sequences to visualize amino acid sequence conservation and recommend resources to analyze microprotein characteristics, including predicted domain structures. These powerful tools can be used to help identify putative microprotein-coding sequences in noncanonical genomic regions or to rule out the presence of a conserved coding sequence with translational potential in a noncoding transcript of interest.
Collapse
Affiliation(s)
- Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Keira R Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center
| | - Catherine A Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
21
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
22
|
Zhang Z, Li Y, Yuan W, Wang Z, Wan C. Proteomic-driven identification of short open reading frame-encoded peptides. Proteomics 2022; 22:e2100312. [PMID: 35384297 DOI: 10.1002/pmic.202100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
Accumulating evidence has shown that a large number of short open reading frames (sORFs) also have the ability to encode proteins. The discovery of sORFs opens up a new research area, leading to the identification and functional study of sORF encoded peptides (SEPs) at the omics level. Besides bioinformatics prediction and ribosomal profiling, mass spectrometry (MS) has become a significant tool as it directly detects the sequence of SEPs. Though MS-based proteomics methods have proved to be effective for qualitative and quantitative analysis of SEPs, the detection of SEPs is still a great challenge due to their low abundance and short sequence. To illustrate the progress in method development, we described and discussed the main steps of large-scale proteomics identification of SEPs, including SEP extraction and enrichment, MS detection, data processing and quality control, quantification, and function prediction and validation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Yujie Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Wenqian Yuan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, People's Republic of China
| |
Collapse
|