1
|
Zhang Y, Han J, Gao J, Ge Q, Zhang H, Shi J, Wang H. Polysaccharide from Pyrus pashia Buch ameliorates DSS-induced colitis in mice via MAPKP38/NF-κB P65 and SCFAs/ERK/MSK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156561. [PMID: 40036991 DOI: 10.1016/j.phymed.2025.156561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
PURPOSE In this experiment, we investigated the effect of Pyrus pashia Buch on the relevant inflammatory disease indexes, intestinal microbiota, and short-chain fatty acids in mice with dextran sodium sulfate (DSS)-induced ulcerative colitis. METHODS The anti-inflammatory effect of PPBP was assessed by measuring inflammatory markers (ELISA), colonic pathological changes (H&E), qPCR of relevant gene expression, 16S rRNA sequencing of intestinal contents, and short-chain fatty acids (SCFAs). RESULTS Pyrus pashia Buch polysaccharide (PPBP) alleviated the main symptoms of UC (Weight down, reduced diet, increased disease activity index) and ameliorated pathological damage to colonic tissues by reducing the release of cytokines TNF-α, IL-6, IL-1β, and iNOS. Furthermore, PPBP enhanced the expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) and elevated intestinal mucin MUC2 and MUC3 levels. qPCR analysis showed that PPBP activated MAPK/NF-κB and verified that it regulated the MAPK signaling pathway through the SCFA-ERK-MSK pathway and downregulated the phosphorylation levels of p38 and p65. Using the 16S rRNA method to analyze the level of microbial changes in the mouse gut, it was shown that Pyrus pashia Buch polysaccharide (PPBP) restored the intestinal microbial diversity and species richness in the UC model, and gas chromatography-mass spectrometry analysis demonstrated that Pyrus pashia Buch polysaccharide (PPBP) was able to increase beneficial short chain fatty acids. CONCLUSION PPBP is a resourceful edible herb. By studying the mechanism of action of P38/IκBα/P65 in MAPK/NF-κB and SCFA with ERK/MSK in MAPK, we have demonstrated that PPBP can attenuate inflammatory responses to repair intestinal mucosal damage, balance abnormalities in the intestinal microbiota, and improve the function of the damaged intestinal barrier. It provides preliminary experiments for developing PPBP as an IκBα stabilizer and P65 inhibitor.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China.
| | - Jiaxin Han
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| | - Jiaqi Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| | - Qin Ge
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| | - Huiying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| | - Jing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| | - Hui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Area (TEDA), Tianjin, 300457, China
| |
Collapse
|
2
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
4
|
Eilakinezhad M, Mighani L, Khazaei M, Esmaeili SA, Nazari SE, Eskandari M, Bazzaz SMM, Kharazmi K, Moghaddas E, Zarean M. The Role of Dicrocoelium dendriticum Egg Antigen in Colitis: A Molecular, Pathological and Serological Study in an Experimental Model of C57BL/6 Mice. Acta Parasitol 2024; 69:1801-1810. [PMID: 39388051 DOI: 10.1007/s11686-024-00890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic and recurrent disease of the gastrointestinal tract that enhances the chance of developing colorectal cancer. Since standard treatments such as Mesalazine have limited effectiveness and are often accompanied by numerous side effects, the use of immune modulators derived from worms has been proposed as a new immunotherapy method for inflammatory diseases such as ulcerative colitis. The aim of this study is to investigate the protective effects of D. dendriticum egg antigen on DSS-induced colitis in C57BL/6 mice. METHODS D. dendriticum egg antigen was extracted and DSS (3.5%) was used to induce colitis in mice. Treatment and prophylaxis included intraperitoneal injections of D. dendriticum egg antigen. Histopathological indicators and the disease activity index (DAI), including weight loss, rectal bleeding, stool consistency, and rectal prolapse, were used to assess the severity of colitis. Real-time PCR measured the expression of transforming growth factor-β (TGF-β) and interleukin-17 (IL-17), while ELISA determined the concentration of these cytokines. RESULTS Treatment with D. dendriticum egg antigen significantly improved the clinical symptoms and decreased the severity of DSS-induced colitis. Furthermore, D. dendriticum egg antigen increased the expression of TGF-β mRNA and reduced the expression of IL-17 mRNA, leading to a positive adjustment in the regulation of proteins and reduction of inflammatory proteins. As a result, the macroscopic, microscopic inflammation and activity index (DAI) of DSS-induced decreased. CONCLUSION D. dendriticum egg antigen provides a promising new way to modulate the immune system and improve ulcerative colitis.
Collapse
Affiliation(s)
- Malihe Eilakinezhad
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Mighani
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Esmaeili
- Immunology Department, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Khatereh Kharazmi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Monash university, Melbourne, Vic, Australia.
| | - Mehdi Zarean
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Guo K, Yin Y, Zheng L, Wu Z, Rao X, Zhu W, Zhou B, Liu L, Liu D. Integration of microbiomics, metabolomics, and transcriptomics reveals the therapeutic mechanism underlying Fuzheng-Qushi decoction for the treatment of lipopolysaccharide-induced lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118584. [PMID: 39019418 DOI: 10.1016/j.jep.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1β, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Kaien Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Yuting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Linxin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zenan Wu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xiaoyong Rao
- National Engineering Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine Manufacturing Technology, Nanchang, 330004, Jiangxi Province, China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Bugao Zhou
- Department of Research, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Liangji Liu
- Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
6
|
Zhao X, Guo J, Wang Y, Yi X. High-tannin food enhances spatial memory and scatter-hoarding in rodents via the microbiota-gut-brain axis. MICROBIOME 2024; 12:140. [PMID: 39075602 DOI: 10.1186/s40168-024-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The mutually beneficial coevolutionary relationships between rodents and plant seeds have been a theme of research in plant-animal relationships. Seed tannins are important secondary metabolites of plants that regulate the food-hoarding behavior of rodents; however, the underlying molecular mechanisms are not yet clear. In this study, we investigated whether and how seed tannins improve spatial memory and regulate the hoarding behavior of Tamias sibiricus by altering their gut microbiota. RESULTS We showed that acorn tannins not only improved spatial memory but also enhanced scatter-hoarding in T. sibiricus. Changes in the composition and function of the gut microbiota in response to tannins from acorns are closely related to these improvements. Metabonomic analyses revealed the role of gut isovaleric acid and isobutyric acid as well as serum L-tryptophan in mediating the spatial memory of T. sibiricus via the gut microbiota. The hippocampal proteome provides further evidence that the microbiota-gut-brain axis regulates spatial memory and scatter-hoarding in animals. Our study is likely the first to report that plant secondary metabolites improve hippocampal function and spatial memory and ultimately modulate food-hoarding behavior via the microbiota-gut-brain axis. CONCLUSION Our findings may have resolved the long-standing puzzle about the hidden role of plant secondary metabolites in manipulating food-hoarding behavior in rodents via the microbiota-gut-brain axis. Our study is important for better understanding the mutualistic coevolution between plants and animals. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiawei Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
- Present address: Huxi Middle School, Dongchangfu District, Liaocheng, 252000, China
| | - Yiming Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
7
|
Stark KA, Rinaldi G, Costain A, Clare S, Tolley C, Almeida A, McCarthy C, Harcourt K, Brandt C, Lawley TD, Berriman M, MacDonald AS, Forde-Thomas JE, Hulme BJ, Hoffmann KF, Cantacessi C, Cortés A. Gut microbiota and immune profiling of microbiota-humanised versus wildtype mouse models of hepatointestinal schistosomiasis. Anim Microbiome 2024; 6:36. [PMID: 38918824 PMCID: PMC11201864 DOI: 10.1186/s42523-024-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.
Collapse
Affiliation(s)
- K A Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - G Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - A Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - S Clare
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - C Tolley
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - A Almeida
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - K Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - C Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - T D Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - M Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - B J Hulme
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - A Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Wu P, Li W, Xie Y, Guan W, Yang S, Li J, Zhao Y. An insight into the gut microbiota after Schistosoma japonicum eggs immunization in an experimental ulcerative colitis model. FASEB J 2024; 38:e23721. [PMID: 38822662 DOI: 10.1096/fj.202302576rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.
Collapse
Affiliation(s)
- Peng Wu
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wenhao Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Xue Q, Wang Y, Liu Y, Hua H, Zhou X, Xu Y, Zhang Y, Xiong C, Liu X, Yang K, Huang Y. Dysregulated Glucuronidation of Bilirubin Exacerbates Liver Inflammation and Fibrosis in Schistosomiasis Japonica through the NF-κB Signaling Pathway. Pathogens 2024; 13:287. [PMID: 38668242 PMCID: PMC11054532 DOI: 10.3390/pathogens13040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this study, we observed a positive correlation between total bilirubin levels and the levels of ALT, AST, LN, and CIV in patients with advanced schistosomiasis. Additionally, we established mouse models at different time points following S. japonicum infection. As the infection time increased, liver fibrosis escalated, while liver UGT1A1 consistently exhibited a low expression, indicating impaired glucuronidation of bilirubin metabolism in mice. In vitro experiments suggested that SEA may be a key inhibitor of hepatic UGT1A1 expression after schistosome infection. Furthermore, a high concentration of bilirubin activated the NF-κB signaling pathway in L-O2 cells in vitro. These findings suggested that the dysregulated glucuronidation of bilirubin caused by S. japonicum infection may play a significant role in schistosomiasis liver fibrosis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qingkai Xue
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yuyan Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yiyun Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Haiyong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xiangyu Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Ying Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Techniques of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi 214064, China; (Q.X.)
- Tropical Diseases Research Center, Nanjing Medical University, Wuxi 214064, China
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yuzheng Huang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
10
|
Liu J, Chen B, Jiang M, Cui T, Lv B, Fu Z, Li X, Du Y, Guo J, Zhong X, Zou Y, Zhao X, Yang W, Gao X. Polygonatum odoratum polysaccharide attenuates lipopolysaccharide-induced lung injury in mice by regulating gut microbiota. Food Sci Nutr 2023; 11:6974-6986. [PMID: 37970373 PMCID: PMC10630852 DOI: 10.1002/fsn3.3622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 11/17/2023] Open
Abstract
Polygonatum odoratum is appreciated for its edible and medicinal benefits especially for lung protection. However, the contained active components have been understudied, and further research is required to fully exploit its potential application. We aimed to probe into the beneficial effects of Polygonatum odoratum polysaccharide (POP) in lipopolysaccharide-induced lung inflammatory injury mice. POP treatment could ameliorate the survival rate, pulmonary function, lung pathological lesions, and immune inflammatory response. POP treatment could repair intestinal barrier, and modulate the composition of gut microbiota, especially reducing the abundance of Klebsiella, which were closely associated with the therapeutic effects of POP. Investigation of the underlying anti-inflammatory mechanism showed that POP suppressed the generation of pro-inflammatory molecules in lung by inhibiting iNOS+ M1 macrophages. Collectively, POP is a promising multi-target microecological regulator to prevent and treat the immuno-inflammation and lung injury by modulating gut microbiota.
Collapse
Affiliation(s)
- Jia‐rui Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bo‐xue Chen
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Mei‐ting Jiang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tian‐yi Cui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi‐fei Fu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Li
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yao‐dong Du
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jin‐he Guo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin‐qin Zhong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ya‐dan Zou
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wen‐zhi Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiu‐mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
11
|
Bu Y, Liu Y, Zhang T, Liu Y, Zhang Z, Yi H. Bacteriocin-Producing Lactiplantibacillus plantarum YRL45 Enhances Intestinal Immunity and Regulates Gut Microbiota in Mice. Nutrients 2023; 15:3437. [PMID: 37571374 PMCID: PMC10421436 DOI: 10.3390/nu15153437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Bacteriocins production is one of important beneficial characteristics of probiotics, which has antibacterial property against intestinal pathogens and is helpful for regulating intestinal flora. To investigate the impact of bacteriocin-producing probiotics on gut microecology, bacteriocin-producing Lactiplantibacillus plantarum YRL45 was orally administered to mice. The results revealed that it promoted the release of cytokines and improved the phagocytic activity of peritoneal macrophages to activate the immune regulation system. L. plantarum YRL45 was conducive to maintaining the morphology of colon tissue without inflammation and increasing the ratio of villus height to crypt depth in the ileum. The gene expression levels of Muc2, ZO-1 and JAM-1 were significantly up-regulated in the ileum and colon, and the gene expression of Cramp presented an upward trend with L. plantarum YRL45 intervention. Moreover, L. plantarum YRL45 remarkably enhanced the levels of immunoglobulins sIgA, IgA and IgG in the intestine of mice. The 16S rRNA gene analysis suggested that L. plantarum YRL45 administration up-regulated the relative abundance of the beneficial bacteria Muribaculaceae and Akkermansia, down-regulated the abundance of the pathogenic bacteria Lachnoclostridium, and promoted the production of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in mice feces. Our findings indicated that L. plantarum YRL45 had the potential to be developed as a novel probiotic to regulate the intestinal barrier by altering gut microbiota to enhance intestinal immunity and ameliorate intestinal flora balance.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Tai Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (T.Z.); (Y.L.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
12
|
Lin Q, Hao WJ, Zhou RM, Huang CL, Wang XY, Liu YS, Li XZ. Pretreatment with Bifidobacterium longum BAA2573 ameliorates dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota. Front Microbiol 2023; 14:1211259. [PMID: 37346749 PMCID: PMC10280014 DOI: 10.3389/fmicb.2023.1211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Objectives Inflammatory bowel disease (IBD) is a chronic lifelong inflammatory disease. Probiotics such as Bifidobacterium longum are considered to be beneficial to the recovery of intestinal inflammation by interaction with gut microbiota. Our goals were to define the effect of the exclusive use of BAA2573 on dextran sulfate sodium (DSS)-induced colitis, including improvement of symptoms, alleviation of histopathological damage, and modulation of gut microbiota. Methods In the present study, we pretreated C57BL/6J mice with Bifidobacterium longum BAA2573, one of the main components in an over-the-counter (OTC) probiotic mixture BIFOTO capsule, before modeling with DSS. 16S rDNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomic profiling were performed with the collected feces. Results We found that pretreatment of Bifidobacterium longum BAA2573 given by gavage significantly improved symptoms and histopathological damage in DSS-induced colitis mice. After the BAA2573 intervention, 57 genera and 39 metabolites were significantly altered. Pathway enrichment analysis demonstrated that starch and sucrose metabolism, vitamin B6 metabolism, and sphingolipid metabolism may contribute to ameliorating colitis. Moreover, we revealed that the gut microbiome and metabolites were interrelated in the BAA2573 intervention group, while Alistipes was the core genus. Conclusion Our study demonstrates the impact of BAA2573 on the gut microbiota and reveals a possible novel adjuvant therapy for IBD patients.
Collapse
Affiliation(s)
- Qiong Lin
- Nephrology and Immunology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Wu-Juan Hao
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Ren-Min Zhou
- Department of Digestive, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | | | - Xu-Yang Wang
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Zhong Li
- Nephrology and Immunology Department, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Zhang D, Cheng H, Zhang Y, Zhou Y, Wu J, Liu J, Feng W, Peng C. Ameliorative effect of Aconite aqueous extract on diarrhea is associated with modulation of the gut microbiota and bile acid metabolism. Front Pharmacol 2023; 14:1189971. [PMID: 37266146 PMCID: PMC10229775 DOI: 10.3389/fphar.2023.1189971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aconite is a form of traditional Chinese medicine (TCM) that has been widely used to treat diarrhea for thousands of years. However, it is not clear whether the anti-diarrhea role of aconite aqueous extract (AA) is associated with regulation of the gut microbiota or with bile acid (BA) metabolism. This study aimed to confirm whether AA exerts its anti-diarrhea effects by regulating the gut microbiota and BA metabolism. Methods: The therapeutic effect of AA in a mouse model of diarrhea was measured based on analysis of body weight, fecal water content, diarrhea scores, intestinal propulsion rate, colonic pathology, and colonic immunohistochemistry. In addition, 16S rRNA high-throughput sequencing was conducted to analyze the effect of AA on the gut microbiota, and targeted metabolomics was employed to analyze the effect of AA on metabolism of BAs. Results: The results showed that treatment with AA reduced fecal water content and diarrhea scores, inhibited intestinal propulsion rate and pathological changes in the colon, and increased AQP3 and AQP4 content in the colon. In addition, AA was found to be capable of regulating the gut microbiota. Effects included increasing its richness (according to the ACE and Chao1 indices); altering the gut microbiota community structure (PCA, PCoA, and NMDS); increasing the relative abundance of norank_f_Muribaculaceae, Ruminococcus, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, and norank_f_norank_o_Clostridia_UCG-014; and decreasing the relative abundance of Escherichia-Shigella, unclassified_f_Ruminococcaceae, Ruminococcus_torques_group, and Parasutterella. More importantly, AA significantly increased fecal TCA (a primary BA) and DCA, LCA, GDCA, dehydro-LCA, and 12-keto-LCA (secondary BAs), thus restoring BA homeostasis. Moreover, AA increased the ratios of DCA/CA, DCA/TCA, and LCA/CDCA and decreased the ratios of TLCA/LCA, GLCA/LCA, and TUDCA/UDCA. Conclusion: The anti-diarrhea effect of AA was associated with restoration of the gut microbiota and BA metabolism-related homeostasis. The results of this study provide insights into the application of AA and the treatment of diarrhea.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3645-3658. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Zheng L. New insights into the interplay between intestinal flora and bile acids in inflammatory bowel disease. World J Clin Cases 2022; 10:10823-10839. [PMID: 36338232 PMCID: PMC9631134 DOI: 10.12998/wjcc.v10.i30.10823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal flora plays a key role in nutrient absorption, metabolism and immune defense, and is considered to be the cornerstone of maintaining the health of human hosts. Bile acids synthesized in the liver can not only promote the absorption of fat-soluble substances in the intestine, but also directly or indirectly affect the structure and function of intestinal flora. Under the action of intestinal flora, bile acids can be converted into secondary bile acids, which can be reabsorbed back to the liver through the enterohepatic circulation. The complex dialogue mechanism between intestinal flora and bile acids is involved in the development of intestinal inflammation such as inflammatory bowel disease (IBD). In this review, the effects of intestinal flora, bile acids and their interactions on IBD and the progress of treatment were reviewed.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
16
|
Xie X, Wu Z, Wu Y, Liu J, Chen X, Shi X, Wei C, Li J, Lv J, Li Q, Tang L, He S, Zhan T, Tang Z. Cysteine protease of Clonorchis sinensis alleviates DSS-induced colitis in mice. PLoS Negl Trop Dis 2022; 16:e0010774. [PMID: 36084127 PMCID: PMC9491586 DOI: 10.1371/journal.pntd.0010774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Currently, inflammatory bowel disease (IBD) has become a global chronic idiopathic disease with ever-rising morbidity and prevalence. Accumulating evidence supports the IBD-hygiene hypothesis that helminths and their derivatives have potential therapeutic value for IBD. Clonorchis sinensis (C. sinensis) mainly elicit Th2/Treg-dominated immune responses to maintain long-term parasitism in the host. This study aimed to evaluate the therapeutic effects of cysteine protease (CsCP) and adult crude antigen (CsCA) of C. sinensis, and C. sinensis (Cs) infection on DSS-induced colitis mice.
Methods
BALB/c mice were given 5% DSS daily for 7 days to induce colitis. During this period, mice were treated with rCsCP, CsCA or dexamethasone (DXM) every day, or Cs infection which was established in advance. Changes in body weight, disease activity index (DAI), colon lengths, macroscopic scores, histopathological findings, myeloperoxidase (MPO) activity levels, regulatory T cell (Treg) subset levels, colon gene expression levels, serum cytokine levels, and biochemical indexes were measured.
Results
Compared with Cs infection, rCsCP and CsCA alleviated the disease activity of acute colitis more significant without causing abnormal blood biochemical indexes. In comparison, rCsCP was superior to CsCA in attenuating colonic pathological symptoms, enhancing the proportion of Treg cells in spleens and mesenteric lymph nodes, and improving the secretion of inflammatory-related cytokines (e.g., IL-2, IL-4, IL-10 and IL-13) in serum. Combined with RNA-seq data, it was revealed that CsCA might up-regulate the genes related to C-type lectin receptor and intestinal mucosal repair related signal pathways (e.g., Cd209d, F13a1 and Cckbr) to reduce colon inflammation and benefit intestinal mucosal repair. Dissimilarly, rCsCP ameliorated colitis mainly through stimulating innate immunity, such as Toll like receptor (TLR) signaling pathway, down-regulating the expression of inflammatory cytokines (e.g., IL-12b, IL-23r and IL-7), thereby restraining the differentiation of Th1/Th17 cells.
Conclusions
Both rCsCP and CsCA showed good therapeutic effects on the treatment of acute colitis, but rCsCP is a better choice. rCsCP is a safe, effective, readily available and promising therapeutic agent against IBD mainly by activating innate immunity and regulating the IL-12/IL-23r axis.
Collapse
Affiliation(s)
- Xiaoying Xie
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- GuangXi Medical Transformational Key Laboratory of Combine Traditional Chinese and Western Medicine and High Incidence of Infectious Diseases, Nanning, China
| | - Yuhong Wu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jing Liu
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xinyuan Chen
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoqian Shi
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Caiheng Wei
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiasheng Li
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Jiahui Lv
- School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Department of Parasitology, Guangxi Medical University, Nanning, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Shanshan He
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
| | - Tingzheng Zhan
- Department of Parasitology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- * E-mail: (TZ); (ZT)
| |
Collapse
|
17
|
Gelmez E, Lehr K, Kershaw O, Frentzel S, Vilchez-Vargas R, Bank U, Link A, Schüler T, Jeron A, Bruder D. Characterization of Maladaptive Processes in Acute, Chronic and Remission Phases of Experimental Colitis in C57BL/6 Mice. Biomedicines 2022; 10:1903. [PMID: 36009449 PMCID: PMC9405850 DOI: 10.3390/biomedicines10081903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease with unknown etiology. Dextran sulfate sodium (DSS) induced colitis is a widely used mouse model in IBD research. DSS colitis involves activation of the submucosal immune system and can be used to study IBD-like disease characteristics in acute, chronic, remission and transition phases. Insight into colon inflammatory parameters is needed to understand potentially irreversible adaptations to the chronification of colitis, determining the baseline and impact of further inflammatory episodes. We performed analyses of non-invasive and invasive colitis parameters in acute, chronic and remission phases of the DSS colitis in C57BL/6 mice. Non-invasive colitis parameters poorly reflected inflammatory aspects of colitis in chronic remission phase. We found invasive inflammatory parameters, positively linked to repeated DSS-episodes, such as specific colon weight, inflamed colon area, spleen weight, absolute cell numbers of CD4+ and CD8+ T cells as well as B cells, blood IFN-γ level, colonic chemokines BLC and MDC as well as the prevalence of Turicibacter species in feces. Moreover, microbial Lactobacillus species decreased with chronification of disease. Our data point out indicative parameters of recurrent gut inflammation in context of DSS colitis.
Collapse
Affiliation(s)
- Elif Gelmez
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sarah Frentzel
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ramiro Vilchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Section of Molecular Gastroenterology and Microbiota-Associated Diseases, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
18
|
Lin D, Song Q, Liu J, Chen F, Zhang Y, Wu Z, Sun X, Wu X. Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis. Front Immunol 2022; 13:941530. [PMID: 35911697 PMCID: PMC9330540 DOI: 10.3389/fimmu.2022.941530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in Schistosoma japonicum infection-induced disease changed significantly. Gut microbes, such as Bacteroides, Blautia, Enterococcus, Alloprevotella, Parabacteroides and Mucispirillum, showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in S. japonicum infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features Bacteroides, Blautia, and Enterococcus and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by S. japonicum infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yishu Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|