1
|
Gherardini L, Sharma A, Taranta M, Cinti C. Epigenetic Reprogramming by Decitabine in Retinoblastoma. FRONT BIOSCI-LANDMRK 2025; 30:33386. [PMID: 40302340 DOI: 10.31083/fbl33386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/21/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Retinoblastoma (Rb) is a rare cancer, yet it is the most common eye tumor in children. It can occur in either a familial or sporadic form, with the sporadic variant being more prevalent, though its downstream effects on epigenetic markers remain largely unclear. Currently, the treatment for retinoblastoma typically involves aggressive chemotherapy and surgical resection. The identification of specific epigenetic characteristics of non-hereditary (sporadic) Rb has led to the development of advanced, high-throughput methods to explore its epigenetic profile. Our previous research demonstrated that treatment with the demethylating agent 5-Aza-2'-deoxycytidine (decitabine; DAC) induced cell cycle arrest and apoptosis in a well-characterized retinoblastoma model (WERI-Rb-1). Our analysis of time-dependent gene expression in WERI-Rb-1 cells following DAC exposure has led to the development of testable hypotheses to further investigate the epigenetic impact on the initiation and progression of retinoblastoma tumors. METHODS Gene expression analysis of publicly available datasets from patients' primary tumors and normal retina have been compared with those found in WERI-Rb-1 cells to assess the relevance of DAC-driven genes as markers of primary retinoblastoma tumors. The effect of DAC treatment has been evaluated in vivo, both in subcutaneous xenografts and in orthotopic models. qPCR analysis of gene expression and Methylation-Specific PCR (MSP) was performed. RESULTS Our analysis of network maps for differentially expressed genes in primary tumors compared to DAC-driven genes identified 15 hub/driver genes that may play a pivotal role in the genesis and progression of retinoblastoma. DAC treatment induced significant tumor growth arrest in vivo in both subcutaneous and orthotopic xenograft retinoblastoma models. This was associated with changes in gene expression, either through the direct switching-on of epigenetically locked genes or through the indirect regulation of linked genes, suggesting the potential use of DAC as an epigenetic anti-cancer drug for the treatment of retinoblastoma patients. CONCLUSION There is a pressing need to develop innovative treatments for retinoblastoma. Our research revealed that DAC can effectively suppress the growth and progression of retinoblastoma in in vivo models, offering a potential new therapeutic approach to battle this destructive disease. This discovery highlights the impact of this epigenetic therapy in reprogramming tumor dynamics, and thus its potential to preserve both the vision and lives of affected children.
Collapse
Affiliation(s)
- Lisa Gherardini
- Institute of Clinical Physiology, National Research Council of Italy, 53100 Siena, Italy
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Monia Taranta
- Institute of Clinical Physiology, National Research Council of Italy, 53100 Siena, Italy
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity, National Research Council of Italy, 40129 Bologna, Italy
| |
Collapse
|
2
|
Pallavi R, Soni BL, Jha GK, Sanyal S, Fatima A, Kaliki S. Tumor heterogeneity in retinoblastoma: a literature review. Cancer Metastasis Rev 2025; 44:46. [PMID: 40259075 PMCID: PMC12011974 DOI: 10.1007/s10555-025-10263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
Tumor heterogeneity, characterized by the presence of diverse cell populations within a tumor, is a key feature of the complex nature of cancer. This diversity arises from the emergence of cells with varying genomic, epigenetic, transcriptomic, and phenotypic profiles over the course of the disease. Host factors and the tumor microenvironment play crucial roles in driving both inter-patient and intra-patient heterogeneity. These diverse cell populations can exhibit different behaviors, such as varying rates of proliferation, responses to treatment, and potential for metastasis. Both inter-patient heterogeneity and intra-patient heterogeneity pose significant challenges to cancer therapeutics and management. In retinoblastoma, while heterogeneity at the clinical presentation level has been recognized for some time, recent attention has shifted towards understanding the underlying cellular heterogeneity. This review primarily focuses on retinoblastoma heterogeneity and its implications for therapeutic strategies and disease management, emphasizing the need for further research and exploration in this complex and challenging area.
Collapse
Affiliation(s)
- Rani Pallavi
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Bihari Lal Soni
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Gaurab Kumar Jha
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Shalini Sanyal
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Azima Fatima
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, Telangana, India.
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Ahamad Khan MM, Ganguly A, Barman S, Das C, Ganesan SK. Unveiling ferroptosis genes and inhibitors in diabetic retinopathy through single-cell analysis and docking simulations. Biochem Biophys Rep 2025; 41:101932. [PMID: 39968183 PMCID: PMC11833632 DOI: 10.1016/j.bbrep.2025.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication of diabetes and a leading cause of vision loss worldwide. Although several mechanisms have been implicated in the pathogenesis of DR, emerging evidence suggests a link between ferroptosis and DR. Unfortunately, the exact mechanism underlying this connection is not clear. Therefore, investigating the role of ferroptosis in diabetic retinopathy holds promise for advancing our understanding of this complex disease and developing innovative treatments. We have identified differentially expressed genes (DEGs) and differentially expressed marker genes (DEMGs) from open-source single-cell RNA sequencing datasets by using in depth in silico approach. Subsequently, ferroptosis-associated DEGs (FA-DEGs), ferroptosis-associated DEMGs (FA-DEMGs), and ferroptosis-associated Hub Genes (FAHGs) were identified. The FDA-approved drugs for our target proteins were also identified, and their ADMET properties were assessed. Molecular docking and simulation were utilized to explore the interaction stability of the compounds with the target proteins. Overall, we identified 63 FA-DEMGs that were significantly enriched in Peroxiredoxin activity, Ferroptosis, Mitophagy, and Autophagy. Further analysis predicted that PRDX1 and UBC are candidate target proteins. Molecular docking results showed that dexamethasone has a high binding affinity for both PRDX1 and UBC. Additionally, molecular dynamics simulations revealed that dexamethasone (which showed the best hit in the docking analysis) exhibited a 'stable effect' on both PRDX1 and UBC. To summarize, this study showed that PRDX1 and UBC could be suitable therapeutic targets for dexamethasone, which might be helpful in the advance of DR treatments in the future.
Collapse
Affiliation(s)
- Md. Maqsood Ahamad Khan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Ananya Ganguly
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
| | - Shubhrajit Barman
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chirasmita Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Senthil Kumar Ganesan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, India
- CSIR-Indian Institute of Chemical Biology, Translational Research Unit of Excellence (TRUE), Kolkata, 700091, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
4
|
Moghimi A, Bani Hosseinian N, Mahdipour M, Ahmadpour E, Miranda‐Bedate A, Ghorbian S. Deciphering the Molecular Complexity of Hepatocellular Carcinoma: Unveiling Novel Biomarkers and Therapeutic Targets Through Advanced Bioinformatics Analysis. Cancer Rep (Hoboken) 2024; 7:e2152. [PMID: 39118438 PMCID: PMC11310554 DOI: 10.1002/cnr2.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/20/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents a primary liver tumor characterized by a bleak prognosis and elevated mortality rates, yet its precise molecular mechanisms have not been fully elucidated. This study uses advanced bioinformatics techniques to discern differentially expressed genes (DEGs) implicated in the pathogenesis of HCC. The primary objective is to discover novel biomarkers and potential therapeutic targets that can contribute to the advancement of HCC research. METHODS The bioinformatics analysis in this study primarily utilized the Gene Expression Omnibus (GEO) database as data source. Initially, the Transcriptome analysis console (TAC) screened for DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network of the proteins associated to the identified DEGs with the STRING database. We obtained our hub genes using Cytoscape and confirmed the results through the GEPIA database. Furthermore, we assessed the prognostic significance of the identified hub genes using the GEPIA database. To explore the regulatory interactions, a miRNA-gene interaction network was also constructed, incorporating information from the miRDB database. For predicting the impact of gene overexpression on drug effects, we utilized CANCER DP. RESULTS A comprehensive analysis of HCC gene expression profiles revealed a total of 4716 DEGs, consisting of 2430 upregulated genes and 2313 downregulated genes in HCC sample compared to healthy control group. These DEGs exhibited significant enrichment in key pathways such as the PI3K-Akt signaling pathway, nuclear receptors meta-pathway, and various metabolism-related pathways. Further exploration of the PPI network unveiled the P53 signaling pathway and pyrimidine metabolism as the most prominent pathways. We identified 10 hub genes (ASPM, RRM2, CCNB1, KIF14, MKI67, SHCBP1, CENPF, ANLN, HMMR, and EZH2) that exhibited significant upregulation in HCC samples compared to healthy control group. Survival analysis indicated that elevated expression levels of these genes were strongly associated with changes in overall survival in HCC patients. Lastly, we identified specific miRNAs that were found to influence the expression of these genes, providing valuable insights into potential regulatory mechanisms underlying HCC progression. CONCLUSION The findings of this study have successfully identified pivotal genes and pathways implicated in the pathogenesis of HCC. These novel discoveries have the potential to significantly enhance our understanding of HCC at the molecular level, opening new ways for the development of targeted therapies and improved prognosis evaluation.
Collapse
Affiliation(s)
- Ata Moghimi
- Immunology Research Center, Tabriz University of Medical SciencesTabrizIran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical SciencesTabrizIran
| | | | - Saeid Ghorbian
- Department of Molecular GeneticsAhar Branch, Islamic Azad UniversityAharIran
| |
Collapse
|
5
|
Zhang Z, Gu Q, Chen L, Yuan D, Gu X, Qian H, Xie P, Liu Q, Hu Z. Selective microRNA expression of exosomes from retinal pigment epithelial cells by oxidative stress. Vision Res 2024; 220:108388. [PMID: 38593635 DOI: 10.1016/j.visres.2024.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
The function of exosomal miRNAs (miRs) in retinal degeneration is largely unclear. We were aimed to investigate the functions of exosomes as well as their miRs derived from retinal pigment epithelial (RPE) cells following exposure to oxidative stress (OS). After the OS by lipopolysaccharide and rotenone on RPE cells, interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) were upregulated, along with the decreased mitochondrial membrane potential and upregulated oxidative damage marker 8-OH-dG in RPE cells. RPE-derived exosomes were then isolated, identified, injected into the subretinal space in mice. After subretinal injection, RPE-exosomes after OS not only induced higher ROS level and apoptotic retinal cells, but also elevated IL-1β, IL-6 alongside TNF-α expressions among retina/RPE/choroidal complex. Next, miRs inside the exosomes were sequenced by the next generation sequencing (NGS) technology. NGS revealed that certain miRs were abundant in exosomes, while others were selectively kept by RPE cells. Further, downregulated miRs, like miR-125b-5p, miR-125a-5p, alongside miR-128-3p, and upregulated miR, such as miR-7-5p were validated byRT-qPCR. Finally, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to find the possible target genes of those selective exosomal miRs. Our results proved that the RPE-derived exosomes after OS selectively express certain miRs, providing novel insights into the pathogenesis of age-related macular degeneration (AMD) in future.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Lu Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University. Xuzhou, Jiangsu 221116, China
| | - Dongqing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Xunyi Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China; Department of Ophthalmology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University. Nanjing, Jiangsu 210029, China.
| |
Collapse
|
6
|
Cai C, Gu C, He S, Meng C, Lai D, Zhang J, Qiu Q. TET2-mediated ECM1 hypomethylation promotes the neovascularization in active proliferative diabetic retinopathy. Clin Epigenetics 2024; 16:6. [PMID: 38172938 PMCID: PMC10765922 DOI: 10.1186/s13148-023-01619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Studies have shown that tet methylcytosine dioxygenase 2 (TET2) is highly expressed in diabetic retinopathy (DR), which reduces the DNA methylation of downstream gene promoters and activates the transcription. Abnormally expressed TET2 and downstream genes in a high-glucose environment are associated with retinal capillary leakage and neovascularization. Here, we investigated the downstream genes of TET2 and its potential association with neovascularization in proliferative diabetic retinopathy (PDR). METHODS GSE60436, GSE57362, and GSE158333 datasets were analyzed to identify TET2-related hypomethylated and upregulated genes in PDR. Gene expression and promoter methylation of these genes under high glucose treatment were verified. Moreover, TET2 knockdown was used to assess its impact on tube formation and migration in human retinal microvascular endothelial cells (HRMECs), as well as its influence on downstream genes. RESULTS Our analysis identified three key genes (PARVB, PTPRE, ECM1) that were closely associated with TET2 regulation. High glucose-treated HRMECs exhibited increased expression of TET2 and ECM1 while decreasing the promoter methylation level of ECM1. Subsequently, TET2 knockdown led to decreased migration ability and tube formation function of HRMECs. We further found a decreased expression of PARVB, PTPRE, and ECM1, accompanied by an increase in the promoter methylation of ECM1. CONCLUSIONS Our findings indicate the involvement of dysregulated TET2 expression in neovascularization by regulating the promoter methylation and transcription of downstream genes (notably ECM1), eventually leading to PDR. The TET2-induced hypomethylation of downstream gene promoters represents a potential therapeutic target and offers a novel perspective on the mechanism underlying neovascularization in PDR.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai, 200080, People's Republic of China.
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, People's Republic of China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Changning District, Shanghai, 200050, People's Republic of China.
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Tibet, People's Republic of China.
| |
Collapse
|
7
|
Li W, He XD, Yang ZT, Han DM, Sun Y, Chen YX, Han XT, Guo SC, Ma YT, Jin X, Yang HM, Gao Y, Wang ZS, Li JK, He W. De Novo Mutations Contributes Approximately 7% of Pathogenicity in Inherited Eye Diseases. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 36729443 PMCID: PMC9907368 DOI: 10.1167/iovs.64.2.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purpose The purpose of this study was to describe genotype-phenotype associations and novel insights into genetic characteristics in a trio-based cohort of inherited eye diseases (IEDs). Methods To determine the etiological role of de novo mutations (DNMs) and genetic profile in IEDs, we retrospectively reviewed a large cohort of proband-parent trios of Chinese origin. The patients underwent a detailed examination and was clinically diagnosed by an ophthalmologist. Panel-based targeted exome sequencing was performed on DNA extracted from blood samples, containing coding regions of 792 IED-causative genes and their flanking exons. All participants underwent genetic testing. Results All proband-parent trios were divided into 22 subgroups, the overall diagnostic yield was 48.67% (605/1243), ranging from 4% to 94.44% for each of the subgroups. A total of 108 IED-causative genes were identified, with the top 24 genes explaining 67% of the 605 genetically solved trios. The genetic etiology of 6.76% (84/1243) of the trio was attributed to disease-causative DNMs, and the top 3 subgroups with the highest incidence of DNM were aniridia (n = 40%), Marfan syndrome/ectopia lentis (n = 38.78%), and retinoblastoma (n = 37.04%). The top 10 genes have a diagnostic yield of DNM greater than 3.5% in their subgroups, including PAX6 (40.00%), FBN1 (38.78%), RB1 (37.04%), CRX (10.34%), CHM (9.09%), WFS1 (8.00%), RP1L1 (5.88%), RS1 (5.26%), PCDH15 (4.00%), and ABCA4 (3.51%). Additionally, the incidence of DNM in offspring showed a trend of correlation with paternal age at reproduction, but not statistically significant with paternal (P = 0.154) and maternal (P = 0.959) age at reproduction. Conclusions Trios-based genetic analysis has high accuracy and validity. Our study helps to quantify the burden of the full spectrum IED caused by each gene, offers novel potential for elucidating etiology, and plays a crucial role in genetic counseling and patient management.
Collapse
Affiliation(s)
- Wei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | | | - Zheng-Tao Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Dong-Ming Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Yan Sun
- He University, Shenyang, China
| | - Yan-Xian Chen
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiao-Tong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Si-Cheng Guo
- BGI-Shenzhen, Shenzhen, China,College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu-Ting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Huan-Ming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,BGI-Shenzhen, Shenzhen, China
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Wei He
- He University, Shenyang, China
| |
Collapse
|