1
|
He M, Li S, Sun J, Lv X, Li Y, Song L. CgVDAC2 participated in haemocyte mitophagy induced by Vibrio splendidus in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110226. [PMID: 39993486 DOI: 10.1016/j.fsi.2025.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
VDAC2 (Voltage dependent anion channel 2) is a highly conserved pore-forming protein expressed in the outer membrane of eukaryotic mitochondria. In the present study, CgVDAC2 identified from Crassostrea gigas regulated the mitophagy of haemocytes induced by Vibrio splendidus. CgVDAC2 was distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the mRNA and protein expressions of CgVDAC2 were induced in haemocytes. Furthermore, the green signals of CgVDAC2 were colocalized with the red signals of mitochondria and Mtphagy Dye, respectively. And their co-localization values were both increased significantly in haemocytes at 12 h after V. splendidus stimulation, respectively. In siCgVDAC2-treated oysters, the mRNA expressions of mitophagy-related genes (CgLC3, CgPINK1, CgParkin1, CgPHB2, and CgATG16L) and the levels of mitophagy decreased significantly in haemocytes after V. splendidus stimulation. In addition, both the fluorescence intensities of the JC-1 monomer/aggregate ratio (Q4/Q2) and mitochondrial reactive oxygen species (mtROS) increased significantly. Collectively, all the results indicated that CgVDAC2 participated in oyster antibacterial immune response through regulating the haemocyte mitophagy.
Collapse
Affiliation(s)
- Muchun He
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Shurong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Chiu HW, Chu CW, Huang CC, Chia ZC, Wang YL, Lee YH. Polystyrene microplastics induce hepatic lipid metabolism and energy disorder by upregulating the NR4A1-AMPK signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125850. [PMID: 39956511 DOI: 10.1016/j.envpol.2025.125850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Microplastics (MPs) are widespread throughout global ecosystems, and their impact on living organisms has garnered increasing attention in recent years. Research has demonstrated that exposure to different sizes (0.08-100 μm) polystyrene microplastics (PS-MPs) can disrupt hepatic lipid and energy metabolism while promoting oxidative stress. Despite these findings, the precise molecular mechanisms underlying PS-MP-induced toxicity are not fully understood. NR4A1 is known to regulate apoptosis and lipid metabolism, but few studies have explored its role in modulating hepatic lipid metabolism following PS-MP exposure. In this study, animal experiments showed that PS-MPs reduced triglyceride levels and significantly increased reactive oxygen species (ROS) in liver tissue. Transcriptional profiles of mouse liver tissues were processed and analyzed using Ingenuity Pathway Analysis (IPA) software and Gene Set Enrichment Analysis (GSEA) to identify relevant pathways and molecular signatures. The results revealed a significant upregulation in NR4A1 gene expression after exposure to PS-MPs. PS-MP accumulation in the liver activated NR4A1 and the AMPK-autophagy pathway, reducing lipid biosynthesis. In vitro study, NR4A1 knockdown in hepatocytes exposed to PS-MPs reduced the expression of AMPK and lipid metabolism-related proteins. In summary, this study indicated that PS-MPs disrupt lipid metabolism in the liver by affecting the NR4A1, leading to liver damage. Prolonged exposure to these microplastics could raise concerns about long-term liver health and the regulation of overall metabolic functions.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Wei Chu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Patil J, Bhattacharya S, Saoji SD, Dande P. Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer. Ther Deliv 2025; 16:25-41. [PMID: 39611708 PMCID: PMC11703380 DOI: 10.1080/20415990.2024.2435240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
AIMS To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS). MATERIALS & METHODS CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated. Cytotoxic effects on HepG2 cell lines were also assessed. RESULTS CBZ-PLS exhibited a 126-fold increase in solubility and enhanced CBZ release in vitro. Pharmacokinetic studies on Wistar rats demonstrated a 1.58-fold increase in bioavailability, while acute toxicity studies confirmed biocompatibility. CBZ-PLS showed superior cytotoxicity, apoptosis induction, migration inhibition, increased ROS generation, and greater DNA fragmentation in HepG2 cells. The complex also maintained stability over 6 months. CONCLUSIONS CBZ-PLS significantly improves the solubility, bioavailability, and therapeutic efficacy of CBZ against liver cancer, presenting a promising approach for more effective liver cancer treatment.
Collapse
Affiliation(s)
- Jayesh Patil
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Nagpur, India
| | - Payal Dande
- Department of Pharmacognosy, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
4
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Dayal AA, Parfenteva OI, Huiying W, Shakhov AS, Alieva IB, Minin AA. Vimentin and Desmin Intermediate Filaments Maintain Mitochondrial Membrane Potential. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2028-2036. [PMID: 39647830 DOI: 10.1134/s0006297924110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 12/10/2024]
Abstract
Intermediate filaments (IFs) represented by a diverse range of proteins, are one of the three main cytoskeleton components in different types of animal cells. IFs provide mechanical strength to cells and help position the nucleus and organelles in the cell. Desmin is an IF protein typical of muscle cells, while vimentin, which has a similar structure, is expressed in many mesenchymal cells. Both proteins are synthesized during myogenesis and regeneration of damaged muscle tissue and form a mixed IF network. Both desmin and vimentin regulate mitochondrial activity, including mitochondrial localization and maintenance of mitochondrial membrane potential, in the corresponding cells, but the role of mixed IFs in the control of mitochondrial functions remains unclear. To investigate how a simultaneous presence of these proteins affects mitochondrial membrane potential, we used BHK21 cells expressing both vimentin and desmin IFs. Expression of vimentin or desmin individually or both proteins simultaneously was suppressed using gene knockout and/or RNA interference. It was found that disruption of biosynthesis of either vimentin or desmin did not affect the mitochondrial membrane potential, which remained unchanged compared to cells expressing both proteins. Simultaneous abolishment of both proteins resulted in a 20% reduction in the mitochondrial membrane potential, indicating that both vimentin and desmin play an equally important role in its maintenance.
Collapse
Affiliation(s)
- Alexander A Dayal
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga I Parfenteva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Wang Huiying
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anton S Shakhov
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Irina B Alieva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander A Minin
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
6
|
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MDL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. BIOLOGY 2024; 13:721. [PMID: 39336148 PMCID: PMC11429014 DOI: 10.3390/biology13090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 μM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.
Collapse
Affiliation(s)
- Sílvia Moreira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Miguel Pastor
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Vicente Seco-Rovira
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
9
|
Pegoraro C, Domingo-Ortí I, Conejos-Sánchez I, Vicent MJ. Unlocking the Mitochondria for Nanomedicine-based Treatments: Overcoming Biological Barriers, Improving Designs, and Selecting Verification Techniques. Adv Drug Deliv Rev 2024; 207:115195. [PMID: 38325562 DOI: 10.1016/j.addr.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Enhanced targeting approaches will support the treatment of diseases associated with dysfunctional mitochondria, which play critical roles in energy generation and cell survival. Obstacles to mitochondria-specific targeting include the presence of distinct biological barriers and the need to pass through (or avoid) various cell internalization mechanisms. A range of studies have reported the design of mitochondrially-targeted nanomedicines that navigate the complex routes required to influence mitochondrial function; nonetheless, a significant journey lies ahead before mitochondrially-targeted nanomedicines become suitable for clinical use. Moving swiftly forward will require safety studies, in vivo assays confirming effectiveness, and methodologies to validate mitochondria-targeted nanomedicines' subcellular location/activity. From a nanomedicine standpoint, we describe the biological routes involved (from administration to arrival within the mitochondria), the features influencing rational design, and the techniques used to identify/validate successful targeting. Overall, rationally-designed mitochondria-targeted-based nanomedicines hold great promise for precise subcellular therapeutic delivery.
Collapse
Affiliation(s)
- Camilla Pegoraro
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inés Domingo-Ortí
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory and CIBERONC, Príncipe Felipe Research Center, Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
10
|
Yang Y, Yu L, Zhu T, Xu S, He J, Mao N, Liu Z, Wang D. Neuroprotective effects of Rehmannia glutinosa polysaccharide on chronic constant light (CCL)-induced oxidative stress and autophagic cell death via the AKT/mTOR pathway in mouse hippocampus and HT-22 cells. Int J Biol Macromol 2024; 261:129813. [PMID: 38286367 DOI: 10.1016/j.ijbiomac.2024.129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Rehmannia glutinosa polysaccharide (RGP) has been reported to exhibit anti-anxiety effects, yet the underlying mechanism remains unclear. Chronic constant light (CCL) induced cognitive dysfunction associated with oxidative stress in mice has been reported. Here, the neuroprotective effect of RGP on hippocampal neuron damage in CCL-treated mice was investigated. In vivo study, mice were subjected to CCL for 4 weeks and/or oral administration of 100, 200 and 400 mg/kg RGP every other day. In vitro experiment, hippocampal neuron cells (HT-22) was exposed to LED light and/or supplemented with 62.5, 125 and 250 μg/mL RGP. Mice exposed to CCL showed impaired cognitive and depressive-like behavior in the hippocampus, which were reversed by RGP. Meanwhile, RGP reversed light-induced oxidative stress and autophagy both in mice and hippocampal neuron cells (HT-22). Furthermore, compared with Light-exposed group, RGP treatment activated the AKT/mTOR pathway. Importantly, the AKT inhibitor Perifosine significantly weakened the neuroprotective of RGP on Light-induced oxidative stress and autophagy in HT-22 cells by inhibiting AKT/mTOR pathway and increasing the content of autophagy-related protein. Our data demonstrated, for the first time, that oxidative stress and the AKT/mTOR pathway plays a critical role in Light-induced apoptosis and autophagic cell death in mice and HT-22 cells.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
12
|
Sadeghsoltani F, Hassanpour P, Safari MM, Haiaty S, Rahbarghazi R, Rahmati M, Mota A. Angiogenic activity of mitochondria; beyond the sole bioenergetic organelle. J Cell Physiol 2024; 239:e31185. [PMID: 38219050 DOI: 10.1002/jcp.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir-Meghdad Safari
- Open Heart ICU of Shahid Madani Cardiovascular Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Ouyang Y, Jeong MY, Cunningham CN, Berg JA, Toshniwal AG, Hughes CE, Seiler K, Van Vranken JG, Cluntun AA, Lam G, Winter JM, Akdogan E, Dove KK, Nowinski SM, West M, Odorizzi G, Gygi SP, Dunn CD, Winge DR, Rutter J. Phosphate starvation signaling increases mitochondrial membrane potential through respiration-independent mechanisms. eLife 2024; 13:e84282. [PMID: 38251707 PMCID: PMC10846858 DOI: 10.7554/elife.84282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both by inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.
Collapse
Affiliation(s)
- Yeyun Ouyang
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Mi-Young Jeong
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Corey N Cunningham
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Jordan A Berg
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Ashish G Toshniwal
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Casey E Hughes
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Kristina Seiler
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | | | - Ahmad A Cluntun
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Geanette Lam
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Jacob M Winter
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Emel Akdogan
- Department of Molecular Biology and Genetics, Koç UniversityİstanbulTurkey
| | - Katja K Dove
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Sara M Nowinski
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Matthew West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, BoulderBoulderUnited States
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, BoulderBoulderUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of MedicineBostonUnited States
| | - Cory D Dunn
- Department of Molecular Biology and Genetics, Koç UniversityİstanbulTurkey
- Institute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Dennis R Winge
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
- Department of Medicine, The University of UtahSalt Lake CityUnited States
| | - Jared Rutter
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
- Howard Hughes Medical Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
14
|
Yu H, Ning N, He F, Xu J, Zhao H, Duan S, Zhao Y. Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer. Int J Nanomedicine 2024; 19:155-169. [PMID: 38204602 PMCID: PMC10778230 DOI: 10.2147/ijn.s444815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background Targeted delivery systems have been developed to improve cancer treatment by reducing side effects and enhancing drug efficacy. Geraniol, a natural product, has demonstrated promising anti-cancer effects in various cancer types, including prostate cancer, which is the most commonly diagnosed cancer in men. Hyaluronic acid (HA), a natural carrier targeting CD44-positive prostate cancer cells, can be utilized in a targeted delivery system. Purpose This study investigated the efficacy of a conjugate of HA and geraniol linked via a disulfide bond linker (HA-SS-Geraniol) in prostate cancer. Materials and Methods The cytotoxicity of HA-SS-Geraniol was evaluated on human PC-3 prostate cancer cells. Flow cytometry was used to assess its effects on mitochondrial membrane potential, apoptosis, and cell cycle arrest. Additionally, proteomic analysis was conducted to explore the underlying mechanism of action induced by HA-SS-Geraniol treatment. A subcutaneous xenograft tumor model was established in nude mice to evaluate the toxicity and efficacy of HA-SS-Geraniol in vivo. Results The results demonstrated that HA-SS-Geraniol exhibited potent cytotoxicity against PC-3 prostate cancer cells by inducing mitochondrial membrane potential loss and apoptosis in vitro. The proteomic analysis further supported the hypothesis that HA-SS-Geraniol induces cell death through mitochondria-mediated apoptosis, as evidenced by differential protein expression. The in vivo mouse model confirmed the safety of HA-SS-Geraniol and its ability to inhibit tumor growth. Conclusion HA-SS-Geraniol holds promise as a biologically safe and potentially effective therapeutic agent for prostate cancer treatment. Its targeted delivery system utilizing HA as a carrier shows potential for improving the efficacy of geraniol in cancer therapy.
Collapse
Affiliation(s)
- Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| | - Na Ning
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
| | - Fujin He
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People’s Republic of China
| | - Han Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yunqi Zhao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| |
Collapse
|
15
|
Tafech A, Jacquet P, Beaujean C, Fertin A, Usson Y, Stéphanou A. Characterization of the Intracellular Acidity Regulation of Brain Tumor Cells and Consequences for Therapeutic Optimization of Temozolomide. BIOLOGY 2023; 12:1221. [PMID: 37759620 PMCID: PMC10525637 DOI: 10.3390/biology12091221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
A well-known feature of tumor cells is high glycolytic activity, leading to acidification of the tumor microenvironment through extensive lactate production. This acidosis promotes processes such as metastasis, aggressiveness, and invasiveness, which have been associated with a worse clinical prognosis. Moreover, the function and expression of transporters involved in regulation of intracellular pH might be altered. In this study, the capacity of tumor cells to regulate their intracellular pH when exposed to a range of pH from very acidic to basic was characterized in two glioma cell lines (F98 and U87) using a new recently published method of fluorescence imaging. Our results show that the regulation of acidity in tumors is not the same for the two investigated cell lines; U87 cells are able to reduce their intracellular acidity, whereas F98 cells do not exhibit this property. On the other hand, F98 cells show a higher level of resistance to acidity than U87 cells. Intracellular regulation of acidity appears to be highly cell-dependent, with different mechanisms activated to preserve cell integrity and function. This characterization was performed on 2D monolayer cultures and 3D spheroids. Spatial heterogeneities were exhibited in 3D, suggesting a spatially modulated regulation in this context. Based on the corpus of knowledge available in the literature, we propose plausible mechanisms to interpret our results, together with some new lines of investigation to validate our hypotheses. Our results might have implications on therapy, since the activity of temozolomide is highly pH-dependent. We show that the drug efficiency can be enhanced, depending on the cell type, by manipulating the extracellular pH. Therefore, personalized treatment involving a combination of temozolomide and pH-regulating agents can be considered.
Collapse
Affiliation(s)
| | | | | | | | | | - Angélique Stéphanou
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France; (A.T.); (P.J.); (C.B.); (A.F.); (Y.U.)
| |
Collapse
|
16
|
Harford AR, Devaux JBL, Hickey AJR. Dynamic defence? Intertidal triplefin species show better maintenance of mitochondrial membrane potential than subtidal species at low oxygen pressures. J Exp Biol 2023; 226:jeb245926. [PMID: 37498237 DOI: 10.1242/jeb.245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Oxygen is essential for most eukaryotic lifeforms, as it supports mitochondrial oxidative phosphorylation to supply ∼90% of cellular adenosine triphosphate (ATP). Fluctuations in O2 present a major stressor, with hypoxia leading to a cascade of detrimental physiological changes that alter cell operations and ultimately induce death. Nonetheless, some species episodically tolerate near-anoxic environments, and have evolved mechanisms to sustain function even during extended hypoxic periods. While mitochondria are pivotal in central metabolism, their role in hypoxia tolerance remains ill defined. Given the vulnerability of the brain to hypoxia, mitochondrial function was tested in brain homogenates of three closely related triplefin species with varying degrees of hypoxia tolerance (Bellapiscis medius, Forsterygion lapillum and Forsterygion varium). High-resolution respirometry coupled with fluorometric measurements of mitochondrial membrane potential (mtMP) permitted assessment of differences in mitochondrial function and integrity in response to intermittent hypoxia and anoxia. Traditional steady-state measures of respiratory flux and mtMP showed no differences among species. However, in the transition into anoxia, the tolerant species B. medius and F. lapillum maintained mtMP at O2 pressures 7- and 4.4-fold lower, respectively, than that of the hypoxia-sensitive F. varium and exhibited slower rates of membrane depolarisation. The results indicate that dynamic oxic-hypoxic mitochondria transitions underlie hypoxia tolerance in these intertidal fish.
Collapse
Affiliation(s)
- Alice R Harford
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jules B L Devaux
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
17
|
Rottenberg H. The Reduction in the Mitochondrial Membrane Potential in Aging: The Role of the Mitochondrial Permeability Transition Pore. Int J Mol Sci 2023; 24:12295. [PMID: 37569671 PMCID: PMC10418870 DOI: 10.3390/ijms241512295] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
It is widely reported that the mitochondrial membrane potential, ∆Ψm, is reduced in aging animals. It was recently suggested that the lower ∆Ψm in aged animals modulates mitochondrial bioenergetics and that this effect is a major cause of aging since artificially increased ∆Ψm in C. elegans increased lifespan. Here, I critically review studies that reported reduction in ∆Ψm in aged animals, including worms, and conclude that many of these observations are best interpreted as evidence that the fraction of depolarized mitochondria is increased in aged cells because of the enhanced activation of the mitochondrial permeability transition pore, mPTP. Activation of the voltage-gated mPTP depolarizes the mitochondria, inhibits oxidative phosphorylation, releases large amounts of calcium and mROS, and depletes cellular NAD+, thus accelerating degenerative diseases and aging. Since the inhibition of mPTP was shown to restore ∆Ψm and to retard aging, the reported lifespan extension by artificially generated ∆Ψm in C. elegans is best explained by inhibition of the voltage-gated mPTP. Similarly, the reported activation of the mitochondrial unfolded protein response by reduction in ∆Ψm and the reported preservation of ∆Ψm in dietary restriction treatment in C. elegans are best explained as resulting from activation or inhibition of the voltage-gated mPTP, respectively.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA 18938, USA
| |
Collapse
|
18
|
Li L, Nie L, Jordan A, Cai Q, Liu Y, Li Y, Che Y, Vargas J, Chen Z, Leeming A, Wang W, Yao Y, Wang M, Jiang VC. Targeting glutaminase is therapeutically effective in ibrutinib-resistant mantle cell lymphoma. Haematologica 2023; 108:1616-1627. [PMID: 36420799 PMCID: PMC10230437 DOI: 10.3324/haematol.2022.281538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma characterized by frequent relapses. The development of resistance to ibrutinib therapy remains a major challenge in MCL. We previously showed that glutaminolysis is associated with resistance to ibrutinib. In this study, we confirmed that glutaminase (GLS), the first enzyme in glutaminolysis, is overexpressed in ibrutinib-resistant MCL cells, and that its expression correlates well with elevated glutamine dependency and glutaminolysis. Furthermore, we discovered that GLS expression correlates with MYC expression and the functioning of the glutamine transporter ASCT2. Depletion of glutamine or GLS significantly reduced cell growth, while GLS overexpression enhanced glutamine dependency and ibrutinib resistance. Consistent with this, GLS inhibition by its specific inhibitor telaglenastat suppressed MCL cell growth both in vitro and in vivo. Moreover, telaglenastat showed anti-MCL synergy when combined with ibrutinib or venetoclax in vitro, which was confirmed using an MCL patient-derived xenograft model. Our study provides the first evidence that targeting GLS with telaglenastat, alone or in combination with ibrutinib or venetoclax, is a promising strategy to overcome ibrutinib resistance in MCL.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Lei Nie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Alexa Jordan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Jovanny Vargas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Zhihong Chen
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Angela Leeming
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
19
|
Cai T, Shi P, Zhang S, Xiang W, Liu J, Lin Z, Tang J. Inhibition of Perilla frutescens Essential Oil on Pellicle Formation of Candida tropicalis and Pichia kluyveri and Its Effect on Volatile Compounds in Sichuan Pickles. Foods 2023; 12:foods12081593. [PMID: 37107388 PMCID: PMC10137390 DOI: 10.3390/foods12081593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Pellicle formation is the most typical characteristic of deteriorating fermented vegetable products. Perilla frutescens essential oil (PEO) is widely used as a useful natural preservative. However, few studies have addressed the antifungal activity and mechanism of PEO in pellicle formation microorganisms, and it is still unclear whether it can inhibit pellicle formation and affect its volatile compounds in Sichuan pickles. The current study showed that PEO can inhibit pellicle formation during fermentation of Sichuan pickles as it had significant antifungal activity against the pellicle formation microorganisms Candida tropicalis SH1 and Pichia kluyveri SH2. The minimum inhibitory concentration (MIC) of PEO against C. tropicalis SH1 and P. kluyveri SH2 was determined to be 0.4 μL/mL, and the minimum fungicidal concentrations (MFCs) were 1.6 μL/mL and 0.8 μL/mL, respectively. The antifungal mechanism was activated as a result of damage to the cell membrane, an increase in the cell permeability, a decrease in the mitochondrial membrane potential, and the inhibition of ATPase activity. Meanwhile, the addition of PEO to Sichuan pickles can enrich the profiles of volatile compounds during fermentation, including limonene, myrcene, 1,8-cineole, linalool, perilla ketone, heptanal, hexanal, α-thujone and β-terpineol and thus improve the overall sensory acceptability. These results indicated that PEO has the potential to be used as a novel food preservative to control pellicle formation in fermented vegetables.
Collapse
Affiliation(s)
- Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Pei Shi
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shan Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Junyu Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zixi Lin
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Food Microbiology of Sichuan, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| |
Collapse
|
20
|
He L, Tronstad KJ, Maheshwari A. Mitochondrial Dynamics during Development. NEWBORN (CLARKSVILLE, MD.) 2023; 2:19-44. [PMID: 37206581 PMCID: PMC10193651 DOI: 10.5005/jp-journals-11002-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitochondria are dynamic membrane-bound organelles in eukaryotic cells. These are important for the generation of chemical energy needed to power various cellular functions and also support metabolic, energetic, and epigenetic regulation in various cells. These organelles are also important for communication with the nucleus and other cellular structures, to maintain developmental sequences and somatic homeostasis, and for cellular adaptation to stress. Increasing information shows mitochondrial defects as an important cause of inherited disorders in different organ systems. In this article, we provide an extensive review of ontogeny, ultrastructural morphology, biogenesis, functional dynamics, important clinical manifestations of mitochondrial dysfunction, and possibilities for clinical intervention. We present information from our own clinical and laboratory research in conjunction with information collected from an extensive search in the databases PubMed, EMBASE, and Scopus.
Collapse
Affiliation(s)
- Ling He
- Department of Pediatrics and Pharmacology, Johns Hopkins University, Baltimore, United States of America
| | | | - Akhil Maheshwari
- Founding Chairman, Global Newborn Society, Clarksville, Maryland, United States of America
| |
Collapse
|
21
|
Wang H, Dou Q, Jeong KJ, Choi J, Gladyshev VN, Chung JJ. Redox regulation by TXNRD3 during epididymal maturation underlies capacitation-associated mitochondrial activity and sperm motility in mice. J Biol Chem 2022; 298:102077. [PMID: 35643315 PMCID: PMC9218152 DOI: 10.1016/j.jbc.2022.102077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 10/26/2022] Open
Abstract
During epididymal transit, redox remodeling protects mammalian spermatozoa, preparing them for survival in the subsequent journey to fertilization. However, molecular mechanisms of redox regulation in sperm development and maturation remain largely elusive. In this study, we report that thioredoxin-glutathione reductase (TXNRD3), a thioredoxin reductase family member particularly abundant in elongating spermatids at the site of mitochondrial sheath formation, regulates redox homeostasis to support male fertility. Using Txnrd3-/- mice, our biochemical, ultrastructural, and live cell imaging analyses revealed impairments in sperm morphology and motility under conditions of TXNRD3 deficiency. We find that mitochondria develop more defined cristae during capacitation in wildtype sperm. Furthermore, we show that absence of TXNRD3 alters thiol redox status in both the head and tail during sperm maturation and capacitation, resulting in defective mitochondrial ultrastructure and activity under capacitating conditions. These findings provide insights into molecular mechanisms of redox homeostasis and bioenergetics during sperm maturation, capacitation, and fertilization.
Collapse
Affiliation(s)
- Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Qianhui Dou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyung Jo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea; Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|