1
|
Windle ST, Neal ML, Mast FD, Kappe SHI, Aitchison JD. A Conditional Cas9 System for Stage-Specific Gene Editing in P. falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642268. [PMID: 40161752 PMCID: PMC11952345 DOI: 10.1101/2025.03.09.642268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The malaria parasite has a complex lifecycle involving various host cell environments in both human and mosquito hosts. The parasite must tightly regulate gene expression at each stage in order to adapt to its current environment while continuing development. However, it is challenging to study gene function and regulation of essential genes across the parasite's multi-host lifecycle. Thus, we adapted a recently developed a single-plasmid dimerizable Cre recombinase system for rapamycin-controllable expression of Cas9, allowing for conditional introduction of mutations. We explored rates of gene deletion using varying repair template lengths, showing functionality of donor templates under 250bp for homology-directed repair. As a proof of concept, we conditionally disrupted two uncharacterized genes in blood and gametocyte stages, identifying new stage-specific phenotypes. Importance As progress towards eliminating malaria has stalled, there is a pressing need for new antimalarials and vaccines. Genes essential to multiple stages of development represent ideal candidates for both antimalarials and vaccines. However, much of the parasite genome remains uncharacterized. Conditional gene perturbation approaches are needed in order to study gene function across the lifecycle. Currently available tools are limited in their ability to perturb genes at the scale required for large screens. We describe a tool that allows for conditional introduction of desired mutations by controlling Cas9 with the DiCre-loxP system. We demonstrate the accessibility of this approach by designing gRNA-donor pairs that can be commercially synthesized. This toolkit provides a scalable system for identifying new drug and vaccine candidates targeting multiple stages of the parasite lifecycle.
Collapse
Affiliation(s)
- Sean T. Windle
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stefan H. I. Kappe
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - John D. Aitchison
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Liu C, Tang J, Liang K, Liu P, Li Z. Ready for renascence in mosquito: The regulation of gene expression in Plasmodium sexual development. Acta Trop 2024; 254:107191. [PMID: 38554994 DOI: 10.1016/j.actatropica.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kejia Liang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Hollin T, Abel S, Banks C, Hristov B, Prudhomme J, Hales K, Florens L, Stafford Noble W, Le Roch KG. Proteome-Wide Identification of RNA-dependent proteins and an emerging role for RNAs in Plasmodium falciparum protein complexes. Nat Commun 2024; 15:1365. [PMID: 38355719 PMCID: PMC10866993 DOI: 10.1038/s41467-024-45519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Ribonucleoprotein complexes are composed of RNA, RNA-dependent proteins (RDPs) and RNA-binding proteins (RBPs), and play fundamental roles in RNA regulation. However, in the human malaria parasite, Plasmodium falciparum, identification and characterization of these proteins are particularly limited. In this study, we use an unbiased proteome-wide approach, called R-DeeP, a method based on sucrose density gradient ultracentrifugation, to identify RDPs. Quantitative analysis by mass spectrometry identifies 898 RDPs, including 545 proteins not yet associated with RNA. Results are further validated using a combination of computational and molecular approaches. Overall, this method provides the first snapshot of the Plasmodium protein-protein interaction network in the presence and absence of RNA. R-DeeP also helps to reconstruct Plasmodium multiprotein complexes based on co-segregation and deciphers their RNA-dependence. One RDP candidate, PF3D7_0823200, is functionally characterized and validated as a true RBP. Using enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq), we demonstrate that this protein interacts with various Plasmodium non-coding transcripts, including the var genes and ap2 transcription factors.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Charles Banks
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Kianna Hales
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Varijakshi G, Divya M, Ware AP, Paul B, Saadi AV. Transcriptomic approaches for identifying potential transmission blocking vaccine candidates in Plasmodium falciparum: a review of current knowledge and future directions. 3 Biotech 2023; 13:344. [PMID: 37711230 PMCID: PMC10497465 DOI: 10.1007/s13205-023-03752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Utilizing transcriptomics, promising methods for identifying unique genes associated with Plasmodium gametocyte development offer a potential avenue for novel candidate targets in transmission blocking vaccine development. In this review, we identified 40 publicly available transcriptomic datasets related to parasite factors linked with sexual stage transmission, from which we analyzed two RNA-Seq datasets to identify potential genes crucial for the transmission of P. falciparum from humans to mosquito vectors. Differential expression analysis revealed 3500 (2489 upregulated and 1011 downregulated) common genes differentially expressed throughout sexual stage development of P. falciparum occurring in both humans (gametocyte stage II, V) and mosquitoes (ookinete). Among which 1283 (914 upregulated and 369 downregulated) and 826 (719 upregulated and 107 downregulated) genes were specific to female and male gametocytes, respectively. Also, 830 potential transition associated genes were identified that may be involved in the adaptation and survival of the parasite in between human and mosquito stages. Additionally, we reviewed the functional aspects of important genes highly expressed throughout the sexual stage pathway and evaluated their suitability as vaccine candidates. The review provides researchers with insight into the importance of publicly available transcriptomic datasets for identifying critical and novel gametocyte markers that may aid in the development of rational transmission blocking strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03752-3.
Collapse
Affiliation(s)
- Gutthedhar Varijakshi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Mallya Divya
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
6
|
Mauer S, Camargo N, Abatiyow BA, Gargaro OR, Kappe SHI, Kumar S. Plasmodium microtubule-binding protein EB1 is critical for partitioning of nuclei in male gametogenesis. mBio 2023; 14:e0082223. [PMID: 37535401 PMCID: PMC10470552 DOI: 10.1128/mbio.00822-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Sexual reproduction of the malaria parasites is critical for their transmission to a mosquito vector. Several signaling molecules, such as kinases and phosphatases, are known to regulate this process. We previously demonstrated that Plasmodium falciparum (Pf) Ca2+-dependent protein kinase 4 (CDPK4) and serine/arginine-rich protein kinase 1 (SRPK1) are critical for axoneme formation during male gametogenesis, with genetic deletion of either gene causing a complete block in parasite transmission to the mosquito. A comparative phospho-proteome analysis of Pfcdpk4- and RNA-seq analysis of Pfsrpk1- gametocytes showed that these kinases regulate similar biological processes linked to both microtubule (MT) dynamics and cell motility. One of these proteins was a nuclear MT-associated End Binding protein 1 (EB1), which was hypophosphorylated in Pfcdpk4- gametocytes. To study the functional relevance of EB1, we created gene deletion parasites for EB1. We further demonstrate that Pfeb1- parasites like WT NF54 parasites proliferate normally as asexuals and undergo gametocytogenesis and gametogenesis. Strikingly, these parasites suffer a severe defect in nuclear segregation and partitioning of nuclei into emerging microgametes. Further genetic crosses utilizing male- and female-sterile parasites revealed that Pfeb1- parasites only suffer a male fertility defect. Overall, our study reveals an essential function for PfEB1 in male gamete nuclear segregation and suggests a potential therapeutic avenue in the design of transmission-blocking drugs to prevent malaria transmission from humans to mosquito. IMPORTANCE Gametogenesis and subsequent gamete fusion are central to successful transmission of the malaria parasites to a female Anopheles mosquito vector and completion of the sexual phase of the parasite life cycle. Male gametogenesis involves the formation of axonemes inside male gametes from male gametocytes via active cytoskeleton remodeling. The tubulin and tubulin-binding proteins are, thus, attractive anti-malarial drug targets. In the present study, we demonstrate that a microtubule-binding protein PfEB1 is essential for male gamete fertility, specifically for the inheritance of nuclei from activated male gametocytes. Targeting PfEB1 function may provide new avenues into designing interventions to prevent malaria transmission and disease spread.
Collapse
Affiliation(s)
- Sydney Mauer
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Olivia R. Gargaro
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
7
|
Chawla J, Goldowitz I, Oberstaller J, Zhang M, Pires CV, Navarro F, Sollelis L, Wang CCQ, Seyfang A, Dvorin J, Otto TD, Rayner JC, Marti M, Adams JH. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2023; 11:e0416422. [PMID: 37154686 PMCID: PMC10269797 DOI: 10.1128/spectrum.04164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ilana Goldowitz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Francesca Navarro
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chengqi C. Q. Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Dvorin
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H. Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
The troubled puberty of malaria parasites. Trends Parasitol 2023; 39:155-157. [PMID: 36702699 DOI: 10.1016/j.pt.2023.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Sexual differentiation of malaria parasites is essential for transmission, yet the underlying mechanisms are poorly understood. Russell et al. elegantly combined a loss-of-function screen with single-cell RNA-sequencing to identify key factors in this process. Gomes et al. further characterized one of them, MD1, as a regulator contributing to male fate determination.
Collapse
|
9
|
Russell AJC, Sanderson T, Bushell E, Talman AM, Anar B, Girling G, Hunziker M, Kent RS, Martin JS, Metcalf T, Montandon R, Pandey V, Pardo M, Roberts AB, Sayers C, Schwach F, Choudhary JS, Rayner JC, Voet T, Modrzynska KK, Waters AP, Lawniczak MKN, Billker O. Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host Microbe 2023; 31:305-319.e10. [PMID: 36634679 PMCID: PMC7616090 DOI: 10.1016/j.chom.2022.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.
Collapse
Affiliation(s)
| | - Theo Sanderson
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ellen Bushell
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Arthur M Talman
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Burcu Anar
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Mirjam Hunziker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Julie S Martin
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Metcalf
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Vikash Pandey
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | - A Brett Roberts
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Claire Sayers
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; KU Leuven Institute for Single Cell Omics, LISCO, KU Leuven, 3000 Leuven, Belgium
| | - Katarzyna K Modrzynska
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | | - Oliver Billker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden.
| |
Collapse
|
10
|
Kumar S, Kappe SHI. PfHMGB2 has a role in malaria parasite mosquito infection. Front Cell Infect Microbiol 2022; 12:1003214. [PMID: 36506024 PMCID: PMC9732239 DOI: 10.3389/fcimb.2022.1003214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
Abstract
Differentiation of asexually replicating parasites into gametocytes is critical for successful completion of the sexual phase of the malaria parasite life cycle. Gametes generated from gametocytes fuse to form a zygote which differentiates into ookinetes and oocysts. The sporozoites are formed inside oocysts which migrate to the salivary glands for next cycle of human infection. These morphologically and functionally distinct stages require stage-specific gene expression via specific transcriptional regulators. The capacity of high mobility group box (HMGB) proteins to interact with DNA in a sequence independent manner enables them to regulate higher order chromosome organization and regulation of gene expression. Plasmodium falciparum HMGB2 (PfHMGB2) shows a typical L- shaped predicted structure which is similar to mammalian HMG box proteins and shows very high protein sequence similarity to PyHMGB2 and PbHMGB2. Functional characterization of PfHMGB2 by gene deletion (Pfhmgb2¯) showed that knockout parasites develop normally as asexual stages and undergo gametocytogenesis. Transmission experiments revealed that Pfhmgb2¯ can infect mosquitoes and develop as oocyst stages. However, transmission was reduced compared to wild type (WT) parasites and as a consequence, the salivary gland sporozoites were reduced in number. In summary, we demonstrate that PfHMGB2 has no role in asexual growth and a modest role in sexual phase development and parasite transmission to the mosquito.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics , University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Abstract
Serine/arginine-rich protein kinases (SRPKs) are cell cycle-regulated serine/threonine protein kinases and are important regulators of splicing factors. In this study, we functionally characterize SRPK1 of the human malaria parasite Plasmodium falciparum. P. falciparum SRPK1 (PfSRPK1) was expressed in asexual blood-stage and sexual-stage gametocytes. Pfsrpk1- parasites formed asexual schizonts that generated far fewer merozoites than wild-type parasites, causing reduced replication rates. Pfsrpk1- parasites also showed a severe defect in the differentiation of male gametes, causing a complete block in parasite transmission to mosquitoes. RNA sequencing (RNA-seq) analysis of wild-type PfNF54 and Pfsrpk1- stage V gametocytes suggested a role for PfSRPK1 in regulating transcript splicing and transcript abundance of genes coding for (i) microtubule/cilium morphogenesis-related proteins, (ii) proteins involved in cyclic nucleotide metabolic processes, (iii) proteins involved in signaling such as PfMAP2, (iv) lipid metabolism enzymes, (v) proteins of osmophilic bodies, and (vi) crystalloid components. Our study reveals an essential role for PfSRPK1 in parasite cell morphogenesis and suggests this kinase as a target to prevent malaria transmission from humans to mosquitoes. IMPORTANCE Plasmodium sexual stages represent a critical bottleneck in the parasite life cycle. Gametocytes taken up in an infectious blood meal by female anopheline mosquito get activated to form gametes and fuse to form short-lived zygotes, which transform into ookinetes to infect mosquitoes. In the present study, we demonstrate that PfSRPK1 is important for merozoite formation and critical for male gametogenesis and is involved in transcript homeostasis for numerous parasite genes. Targeting PfSRPK1 and its downstream pathways may reduce parasite replication and help achieve effective malaria transmission-blocking strategies.
Collapse
|
12
|
Kumar S, Valansi C, Haile MT, Li X, Flyak K, Dwivedy A, Abatiyow BA, Leeb AS, Kennedy SY, Camargo NM, Vaughan AM, Brukman NG, Podbilewicz B, Kappe SHI. Malaria parasites utilize two essential plasma membrane fusogens for gamete fertilization. Cell Mol Life Sci 2022; 79:549. [PMID: 36241929 PMCID: PMC9568910 DOI: 10.1007/s00018-022-04583-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
Abstract
Cell fusion of female and male gametes is the climax of sexual reproduction. In many organisms, the Hapless 2 (HAP2) family of proteins play a critical role in gamete fusion. We find that Plasmodium falciparum, the causative agent of human malaria, expresses two HAP2 proteins: PfHAP2 and PfHAP2p. These proteins are present in stage V gametocytes and localize throughout the flagellum of male gametes. Gene deletion analysis and genetic crosses show that PfHAP2 and PfHAP2p individually are essential for male fertility and thereby, parasite transmission to the mosquito. Using a cell fusion assay, we demonstrate that PfHAP2 and PfHAP2p are both authentic plasma membrane fusogens. Our results establish nonredundant essential roles for PfHAP2 and PfHAP2p in mediating gamete fusion in Plasmodium and suggest avenues in the design of novel strategies to prevent malaria parasite transmission from humans to mosquitoes.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Clari Valansi
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xiaohui Li
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Kateryna Flyak
- The Technion-Israel Institute of Technology, Haifa, Israel
| | - Abhisek Dwivedy
- Nucleic Acids Programming Laboratory, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Biley A Abatiyow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amanda S Leeb
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly M Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, USA
| | | | | | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Abstract
Cyclin-dependent kinases (CDKs) and cyclins are critical cell cycle regulators in eukaryotes. In this study, we functionally characterized a CDK-related kinase (CRK5) of the human malaria parasite Plasmodium falciparum. P. falciparum CRK5 (PfCRK5) was expressed in asexual blood stages and sexual gametocyte stages, but showed male gametocyte- specific expression. In contrast to previous findings, we showed that gene deletion Pfcrk5− parasites grew normally as asexual stages and underwent normal gametocytogenesis to stage V gametocytes. However, Pfcrk5− parasites showed a severe defect in male gametogenesis, which was evident by a significant reduction in the emergence of male gametes (exflagellation). This defect caused a severe reduction of parasite transmission to the mosquito. Genetic crosses performed using sex-specific sterile transgenic parasites revealed that Pfcrk5− parasites suffered a defect in male fertility but female gametes were fertile. Taken together, these results demonstrate that PfCRK5 is a critical sexual stage kinase which regulates male gametogenesis and transmission to the mosquito.
Collapse
|
14
|
Kumar S, Baranwal VK, Haile MT, Oualim KMZ, Abatiyow BA, Kennedy SY, Vaughan AM, Kappe SHI. PfARID Regulates P. falciparum Malaria Parasite Male Gametogenesis and Female Fertility and Is Critical for Parasite Transmission to the Mosquito Vector. mBio 2022; 13:e0057822. [PMID: 35638735 PMCID: PMC9239086 DOI: 10.1128/mbio.00578-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
Sexual reproduction of Plasmodium falciparum parasites is critical to the spread of malaria in the human population. The factors that regulate gene expression underlying formation of fertilization-competent gametes, however, remain unknown. Here, we report that P. falciparum expresses a protein with an AT-rich interaction domain (ARID) which, in other organisms, is part of chromatin remodeling complexes. P. falciparum ARID (PfARID) localized to the parasite nucleus and is critical for the formation of male gametes and fertility of female gametes. PfARID gene deletion (Pfarid-) gametocytes showed downregulation of gene expression important for gametogenesis, antigenic variation, and cell signaling and for parasite development in the mosquito. Our study identifies PfARID as a critical nuclear protein involved in regulating the gene expression landscape of mature gametocytes. This establishes fertility and also prepares the parasite for postfertilization events that are essential for infection of the mosquito vector. IMPORTANCE Successful completion of the Plasmodium life cycle requires formation of mature gametocytes and their uptake by the female Anopheles mosquito vector in an infected blood meal. Inside the mosquito midgut the parasite undergoes gametogenesis and sexual reproduction. In the present study, we demonstrate that PfARID is essential for male gametogenesis and female fertility and, thereby, transmission to the mosquito vector. PfARID possibly regulates the chromatin landscape of stage V gametocytes and targeting PfARID function may provide new avenues into designing interventions to prevent malaria transmission.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Vinay K. Baranwal
- Molecular Botany Lab, Swami Devanand Post Graduate College, Math-Lar, Deoria, Uttar Pradesh, India
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kenza M. Z. Oualim
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Spencer Y. Kennedy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|