1
|
Sadri S, Aghajani A, Soleimani H, Ghorbani Kalkhajeh S, Nazari H, Brouki Milan P, Peyravian N, Pezeshkian Z, Malekzadeh Kebria M, Shirazi F, Shams E, Naderi Noukabadi F, Nazemalhosseini-Mojarad E, Salehi Z. Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics. Biochem Genet 2025; 63:1116-1148. [PMID: 39636332 DOI: 10.1007/s10528-024-10988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Colorectal cancer (CRC) is an important public health issue and is the third most common cancer, accounting for approximately 10% of all cancer cases worldwide. CRC results from the accumulation of multiple genetic and epigenetic alterations in the normal epithelial cells of the colon and rectum, leading to the development of colorectal polyps and invasive carcinomas. The transforming growth factor-beta (TGF-β) pathway is regulated in many diseases, such as cancer. This factor can show tumor suppressant function in the early stages in healthy and cancer cells. It can be regulated and affected by different factors, including noncoding RNAs, which are the remarkable regulators for this pathway. The most prominent functions of this factor are cell cycle arrest and apoptosis in cancer cells. However, activating at the final stages of the cell cycle can cause tumor metastasis. Thus, the dual function of TGF-β and the pleiotropic nature of this signaling make it a crucial challenge for cancer treatment. Accurately studying the TGF-β signaling pathway is critical to determine its role. One of the roles of TGF-β signaling is its significant effect on colorectal polyp malignancy and cancer. In this article, we review the published scientific papers regarding the TGF-β signaling pathway, its related genes, and their contribution to precancerous conditions and colorectal cancer progression. The complex interaction of the TGF-β signaling pathway with noncoding RNAs, such as lncRNA TUG1 and miR-21, significantly influences colorectal polyp and cancer progression. Identifying dysregulated TGF-β-related noncoding RNAs offers promising therapeutic avenues for colorectal cancer. Comprehending TGF-β's connection to other molecular mechanisms is crucial for advancing effective therapeutic strategies.
Collapse
Affiliation(s)
- Shadi Sadri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ali Aghajani
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hiva Soleimani
- Department of General Biology, Faculty of Fundamental Science, Islamic Azad University of Shahr-E Qods, Tehran, 37515-374, Iran
| | - Sourena Ghorbani Kalkhajeh
- Department of Radiologic Technology, School of Allied Medical Sciences, Ahvaz Jundi-Shapour University of Medical Sciences, Ahvaz, Iran
| | - Haniyeh Nazari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, 19395-1495, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pezeshkian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, 817467344, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Fatemeh Naderi Noukabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 19835-178, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, 14114, Iran.
| |
Collapse
|
2
|
Zhou X, Berenger E, Shi Y, Shirokova V, Kochetkova E, Becirovic T, Zhang B, Kaminskyy VO, Esmaeilian Y, Hosaka K, Lindskog C, Hydbring P, Ekman S, Cao Y, Genander M, Iwanicki M, Norberg E, Vakifahmetoglu-Norberg H. Chaperone-mediated autophagy regulates the metastatic state of mesenchymal tumors. EMBO Mol Med 2025; 17:747-774. [PMID: 40055574 PMCID: PMC11982252 DOI: 10.1038/s44321-025-00210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 04/11/2025] Open
Abstract
Tumors often recapitulate programs to acquire invasive and dissemination abilities, during which pro-metastatic proteins are distinctively stabilized in cancer cells to drive further progression. Whether failed protein degradation affects the metastatic programs of cancer remains unknown. Here, we show that the human cancer cell-specific knockout (KO) of LAMP-2A, a limiting protein for chaperone-mediated autophagy (CMA), promotes the aggressiveness of mesenchymal tumors. Deficient CMA resulted in widespread tumor cell dissemination, invasion into the vasculature and cancer metastasis. In clinical samples, metastatic lesions showed suppressed LAMP-2A expression compared to primary tumors from the same cancer patients. Mechanistically, while stimulating TGFβ signaling dampens LAMP-2A levels, genetic suppression of CMA aggravated TGFβ signaling in cancer cells and tumors. Conversely, pharmacological inhibition of TGFβ signaling repressed the growth of LAMP-2A KO-driven tumors. Furthermore, we found that multiple EMT-driving proteins, such as TGFβR2, are degraded by CMA. Our study demonstrates that the tumor suppressive function of CMA involves negative regulation of TGFβ-driven EMT and uncovers a mechanistic link between CMA and a major feature of metastatic invasiveness.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Eva Berenger
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Yong Shi
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tina Becirovic
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Yashar Esmaeilian
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, 171 64, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 171 64, Stockholm, Sweden
- Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Marcin Iwanicki
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | | |
Collapse
|
3
|
Bathe OF. Tumor metabolism as a factor affecting diversity in cancer cachexia. Am J Physiol Cell Physiol 2025; 328:C908-C920. [PMID: 39870605 DOI: 10.1152/ajpcell.00677.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes. Importantly, these features often occur independently, with their combined presence exacerbating poor prognoses. Tumor plays a pivotal role in driving these host changes, either by acting as a metabolic parasite or by releasing mediators that disrupt normal tissue function. This review explores the diversity of tumor metabolism. It highlights the potential for tumor-specific metabolic phenotypes to influence systemic effects, including fat redistribution and sarcopenia. Addressing this tumor-host metabolic interplay requires personalized approaches that disrupt tumor metabolism while preserving host health. Promising strategies include targeted pharmacological interventions and anticachexia agents like growth differentiation factor 15 (GDF-15) inhibitors. Nutritional modifications such as ketogenic diets and omega-3 fatty acid supplementation also merit further investigation. In addition to preserving muscle, these therapies will need to be evaluated for their capability to improve survival and quality of life. This review underscores the need for further research into tumor-driven metabolic effects on the host and the development of integrative treatment strategies to address the interconnected challenges of cancer progression and cachexia.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Acharjee A, Shivaji U, Santacroce G, Akiror S, Jeffery L, Varnai C, Reynolds G, Zardo D, Majumder S, Amamou A, Gkoutos GV, Iacucci M, Ghosh S. Novel Transcriptomic Signatures in Fibrostenotic Crohn's Disease: Dysregulated Pathways, Promising Biomarkers, and Putative Therapeutic Targets. Inflamm Bowel Dis 2025:izaf021. [PMID: 39977234 DOI: 10.1093/ibd/izaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND Fibrosis is a common complication in Crohn's disease (CD), often leading to intestinal strictures. This study aims to explore the transcriptomic signature of fibrostenotic ileal CD for a comprehensive characterization of biological and cellular mechanisms underlying intestinal fibrosis. METHODS Nine CD patients undergoing surgery for fibrotic ileal strictures were prospectively recruited. RNA was extracted from fresh resected samples for bulk transcriptomics. Differentially expressed genes (DEGs) were identified (adj. P value < .05), and machine learning analyses were employed to compare gene expression patterns between strictures and non-strictured margins. Pathway enrichment analysis pinpointed relevant pathways. Furthermore, a random forest model was constructed to evaluate the significance of targeted genes. Relevant genes were subsequently validated through qPCR and further analyzed using a publicly available bulk RNA-seq dataset (GSE192786). Single-cell RNA sequencing (scRNA-seq) analysis was performed using the 10× Chromium Controller platform. RESULTS Bulk transcriptomics revealed unique transcriptomes with 81 DEGs, 64 significantly up-regulated, and 17 down-regulated in strictures compared to non-strictured margins. Up-regulated genes were mainly associated with inflammation, matrix and tissue remodeling, adipogenesis and cellular stress, while down-regulated genes were linked to epithelial barrier integrity. LY96, AKAP11, SRM, GREM1, EHD2, SERPINE1, HDAC1, and FGF2 showed high specificity for strictures. scRNA-seq linked up-regulated GREM1 exclusively to fibroblasts, while EHD2 and FGF2 showed upregulation in both fibroblasts and endothelial cells. LY96 and SRM were expressed by immune cells, whereas HDAC1, AKAP11, and SERPINE1 showed low expression across all cellular subsets. CONCLUSIONS This study comprehensively characterizes resected CD ileal strictures, elucidating main dysregulated pathways and identifying promising biomarkers and putative therapeutic targets.
Collapse
Affiliation(s)
- Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
| | - Uday Shivaji
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Giovanni Santacroce
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Sarah Akiror
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Louisa Jeffery
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Csilla Varnai
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gary Reynolds
- Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, UK
| | - Davide Zardo
- Department of Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Snehali Majumder
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Asma Amamou
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Georgios V Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, UK
| | - Marietta Iacucci
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Chen S, Wang S, Liao S, Blakney AK. Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS BIO & MED CHEM AU 2025; 5:154-165. [PMID: 39990935 PMCID: PMC11843334 DOI: 10.1021/acsbiomedchemau.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025]
Abstract
The current rapid advancement in ribonucleic acid (RNA) therapeutics research depends on innovations in drug delivery, especially the development of a lipid-nanoparticle (LNP)-based system. The conventional LNP formulation typically contains four components, including an ionizable cationic lipid, a phospholipid, cholesterol or a cholesterol derivative, and poly(ethylene glycol) (PEG)-lipid, with each contributing to the formulation's overall stability and effectiveness. Among these four types of lipids, the phospholipid component is often known to provide structural support for the nanoparticles but is also a class of bioactive molecules with strong cell signaling potential. This study explores the possibility of incorporating some known structurally related bioactive phospholipids as the fifth component of a conventional four-component LNP formulation and assesses the impacts of such an approach on the physicochemical properties and biological functions of the mRNA LNP formulation. We screened a library of mRNA LNP formulations containing 7 different structurally related bioactive phospholipids at molar concentrations of 5%, 15% and 30% in addition to a conventional four-component LNP formulation (base). We observed differences in physicochemical properties between the mRNA LNP formulations that could be attributed to both the types of phospholipids examined and the molar concentrations used. Cryo-EM analysis revealed structural similarity between the Base formulation and the other formulations. We also characterized the protein expression level in HeLa cells and picked up a distinct cytokine panel signature for each formulation in human peripheral blood mononuclear cells (hPBMCs). Further immunophenotyping analysis showed that most cells that were transfected were CD4+ T cells, and the addition of the different bioactive phospholipids slightly altered cellular tropism. This exploratory study illustrates how adding the bioactive phospholipid can be used to modulate the LNP function, further expanding the design space for RNA LNP formulations and potentiating LNPs for use as RNA therapeutics.
Collapse
Affiliation(s)
- Sunny
P. Chen
- School
of Biomedical Engineering, University of
British Columbia, Vancouver V6T 1Z3, Canada
- Michael
Smith Laboratories, University of British
Columbia, Vancouver V6T 1Z4, Canada
| | - Shuangyu Wang
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver V6T 2A1, Canada
| | - Suiyang Liao
- School
of Biomedical Engineering, University of
British Columbia, Vancouver V6T 1Z3, Canada
- Michael
Smith Laboratories, University of British
Columbia, Vancouver V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, Vancouver V6T 2A1, Canada
| | - Anna K. Blakney
- School
of Biomedical Engineering, University of
British Columbia, Vancouver V6T 1Z3, Canada
- Michael
Smith Laboratories, University of British
Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
6
|
Chen LY, Yang SY, Chou JL, Chou HL, Yeh CC, Chiu CC, Lai HC, Chan MWY, Jhang JS. The Role of SMAD7 in the Epigenetic Regulation of TGF-β Targets in the Metastasis of Ovarian Cancer. Mol Carcinog 2025; 64:290-304. [PMID: 39540800 DOI: 10.1002/mc.23843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The role of TGF-β signaling in the epigenetic modifications involved in ovarian cancer is not fully understood. This study investigated the relationship between TGF-β signaling, epigenetic modifications, and cellular behaviors in ovarian cancer. We found that E-cadherin, a key cell adhesion molecule, underwent epigenetic silencing via promoter DNA hypermethylation in ovarian cancer cell lines and that this was accompanied by the upregulation of vimentin, which is indicative of a mesenchymal and invasive phenotype. DNA-demethylating agents restored E-cadherin expression, which suggests that TGF-β signaling mediates this epigenetic silencing. Overexpression of SMAD7, an inhibitory component of TGF-β signaling, reversed E-cadherin silencing, which suggests a role of SMAD7 in modulating the epigenetic status. Functionally, SMAD7 overexpression inhibited the migration and invasion in ovarian cancer cells, which suggests its therapeutic potential for suppressing metastasis. Clinically, ovarian cancer patients with high SMAD7 expression had significantly longer disease-free survival. Mechanistically, SMAD7 overexpression decreased the acetylation of H3K9 and the binding of the transcriptional repressor TWIST1 at the E-cadherin promoter, which promoted its demethylation and reactivation. Disruption of TGF-β signaling upregulated SMAD4 target genes, which are silenced by epigenetic mechanisms, a finding that suggests broader therapeutic implications. Overall, our results provide insights into the role of TGF-β-mediated epigenetic regulation in ovarian cancer metastasis and underscore the therapeutic potential of targeting TGF-β signaling and its downstream effectors. Further research is needed to elucidate the underlying mechanisms and validate these therapeutic strategies.
Collapse
Affiliation(s)
- Lin-Yu Chen
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Dalin Township, Chiayi, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jian-Liang Chou
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Research and Development, Instrument Center, National Defense Medical Center, Taipei, Taiwan
| | - Han-Lin Chou
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Chinese Medicine, Sanyi Tzuchi Chinese Medicine Hospital, The Buddhist Tzuchi Medical Foundation, Miaoli, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Diseases Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Siang Jhang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Chinese Medicine, Sanyi Tzuchi Chinese Medicine Hospital, The Buddhist Tzuchi Medical Foundation, Miaoli, Taiwan
- Department of Chinese Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, Taiwan
| |
Collapse
|
7
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mitochondrial DNA expression require motor neuron to muscle TGF-β/Activin signaling in Drosophila. iScience 2025; 28:111611. [PMID: 39850360 PMCID: PMC11754121 DOI: 10.1016/j.isci.2024.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025] Open
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, loss of Actβ reduces levels of nuclearly encoded genes required for mtDNA replication, transcription, and translation and mtDNA levels. Direct RNAi knockdown of nuclearly encoded mtDNA expression factors in muscle also results in decreased glycogen stores. Lastly, expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis, and mtDNA expression factors.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Khiat N, Girouard J, Kana Tsapi ES, Vaillancourt C, Van Themsche C, Reyes-Moreno C. TGFβ1 Restores Energy Homeostasis of Human Trophoblast Cells Under Hyperglycemia In Vitro by Inducing PPARγ Expression, AMPK Activation, and HIF1α Degradation. Cells 2025; 14:45. [PMID: 39791746 PMCID: PMC11720224 DOI: 10.3390/cells14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function. While HIF1α promotes glycolysis over mitochondrial respiration, PPARγ and AMPK encourage the opposite. However, the interplay between TGFβ1 and these energy-sensing regulators in trophoblast cell glucose metabolism remains unclear. This study aimed to investigate whether and how TGFβ1 regulates energy metabolism in trophoblast cells exposed to normal and high glucose conditions. The trophoblast JEG-3 cells were incubated in normal (5 mM) and high (25 mM) glucose conditions for 24 h in the absence and the presence of TGFβ1. The protein expression levels of phosphor (p)-SMAD2, GLUT1/3, HIF1α, PPARγ, p-AMPK, and specific OXPHOS protein subunits were determined by western blotting, and ATP and lactate production by bioluminescent assay kits. JEG-3 cells exposed to 25 mM glucose decreased ATP production but did not affect lactate production. These changes led to a reduction in the expression levels of GLUT1/3, mitochondrial respiratory chain proteins, and PPARγ, coinciding with an increase in HIF1α expression. Conversely, TGFβ1 treatment at 25 mM glucose reduced HIF1α expression while enhancing the expression levels of GLUT1/3, PPARγ, p-AMPK, and mitochondrial respiratory chain proteins, thereby rejuvenating ATP production. Our findings reveal that high glucose conditions disrupt cellular glucose metabolism in trophoblast cells by perturbing mitochondrial oxidative respiration and decreasing ATP production. Treatment with TGFβ1 appears to counteract this trend, probably by enhancing both glycolytic and mitochondrial metabolism, suggesting a potential regulatory role of TGFβ1 in placental trophoblast cell glucose metabolism.
Collapse
Affiliation(s)
- Nihad Khiat
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Julie Girouard
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Emmanuelle Stella Kana Tsapi
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Cathy Vaillancourt
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
- Institut National de la Recherche Scientifique (INRS)-Centre Armand Frappier Santé Biotechnologie and Research Centre CIUSSS-Nord-de-l’île-de-Montréal, Laval, QC H7V 1B7, Canada
| | - Céline Van Themsche
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| | - Carlos Reyes-Moreno
- Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada; (N.K.); (J.G.); (E.S.K.T.); (C.V.T.)
- Centre de Recherche Interuniversitaire en Reproduction et Développement-Réseau Québécois en Reproduction (CIRD-RQR), Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada;
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Université du Québec, Québec, QC G1K 9H7, Canada
| |
Collapse
|
9
|
Chen X, Yue Y, Wang H, Liu L. ASPP2 Upregulation as a Novel Approach to TGF-β2-Induced Proliferative Vitreoretinopathy In Vivo and In Vitro. Curr Eye Res 2025; 50:74-81. [PMID: 39113261 DOI: 10.1080/02713683.2024.2388686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) can cause blindness and the pathogenesis is unclear. Transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) of RPE cells is vital. P53 protein 2 (ASPP2) was previously reported to inhibit EMT in PVR rats, but the specific mechanism is unveiled. METHODS TGF-β was used to induce EMT in ARPE-19 cells, and evaluated by immunofluorescence and western blot. ARPE-19 cells were transfected with scrambled/ASPP2-lentivirus, followed by TGF-β treatment. After that, alterations of EMT and autophagy were measured by western blot and transmission electron microscopy. Moreover, TGF-β and ARPE-19 cells treated with scrambled/ASPP2-lentivirus were employed to establish the PVR model via intravitreal injection to SD rats, and retinal changes as well as EMT and autophagy activity were evaluated accordingly. RESULTS ASPP2 expression was decreased during TGF-β-induced EMT in ARPE-19 cells. In vitro, EMT and autophagy was activated by TGF-β, which could be partly reversed by ASPP2 upregulation. In vivo, ASPP2 upregulation protected against structural and functional changes in PVR retinas. Additionally, expressions of EMT and autophagy markers in retinas were inhibited by ASPP2 upregulation. CONCLUSIONS ASPP2 upregulation inhibited the EMT and autophagy process caused by TGF-β in ARPE-19 cells. Correspondingly, upregulation of ASPP2 alleviated intraocular fibrosis and protected visual function in PVR rats.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Ophthalmology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yankun Yue
- Department of Ophthalmology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Haiwei Wang
- Department of Ophthalmology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Lu Liu
- Department of Ophthalmology, Fuxing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Yuan Y, Wang Y, Yan Y, Kim E, Bai J, Zhao Y, Ma Q, Gu W, Song H. FBLN1 regulates ferroptosis in acute respiratory distress syndrome by reducing free ferrous iron by inhibiting the TGF-β/Smad pathway. PLoS One 2024; 19:e0314750. [PMID: 39671383 PMCID: PMC11643259 DOI: 10.1371/journal.pone.0314750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) / acute lung injury (ALI) is a serious medical disease characterized by pulmonary dysfunction and inflammation. This study aims to determine the main molecular modules linked to ARDS and investigate the role of Fibulin-1 (FBLN1) in regulating ferroptosis in ARDS. METHODS Weighted Gene Co-expression Network Analysis (WGCNA) was employed on the GSE263867 dataset to find key modules associated with ALI. Differentially expressed genes (DEGs) and protein-protein interaction (PPI) networks were analyzed. MLE-12 cells were treated with lipopolysaccharide (LPS) to induce ferroptosis. In vitro studies were conducted to investigate the effects of FBLN1 and Transforming Growth Factor Beta 1 (TGF-β) overexpression on cell viability, oxidative stress markers, and ferroptosis-related proteins. RESULTS WGCNA identified the turquoise module as significantly negatively correlated with ARDS. Five key overlapping genes (GRIA1, OGN, COL14A1, FBLN1, and COL6A3) were significantly downregulated in ARDS samples. LPS treatment induced ferroptosis in MLE-12 cells, indicated by increased malondialdehyde (MDA), lipid reactive oxygen species (ROS), and ferrous iron (Fe2⁺) levels, and decreased cell viability and glutathione (GSH) levels. FBLN1 overexpression partially reversed these effects. Additionally, FBLN1 inhibited the TGF-β/Smad signaling pathway, as shown by decreased TGF-β and p-Smad protein levels. TGF-β overexpression exacerbated LPS-induced oxidative stress and ferroptosis, reducing cell viability and GSH levels. FBLN1 overexpression counteracted this effect, suggesting antagonistic roles for FBLN1 and TGF-β in regulating ferroptosis. CONCLUSION This study highlights FBLN1 as a critical regulator of ferroptosis in ARDS. Targeting the TGF-β/Smad pathway to modulate FBLN1 expression offers a potential therapeutic strategy to alleviate oxidative stress and mitigate pulmonary injury in inflammatory lung diseases.
Collapse
Affiliation(s)
- Yaping Yuan
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Youbo Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufeng Yan
- Department of Neurosurgery, Jinshan Hospital, Fudan University, Zhujing Town, Jinshan District, Shanghai, China
| | - Edward Kim
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
| | - Jin Bai
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- CRT Medical Union, Time International, Beijing, China
| | - Yang Zhao
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- CRT Medical Union, Time International, Beijing, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Haihan Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- Department of Immunology, DICAT National Biomedical Computation Centre, Vancouver, BC, Canada
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
11
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
12
|
Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, Liu Q, Chen W, Zhou Y, Mao H. The Spermine Oxidase/Spermine Axis Coordinates ATG5-Mediated Autophagy to Orchestrate Renal Senescence and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306912. [PMID: 38775007 PMCID: PMC11304251 DOI: 10.1002/advs.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-β1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-β1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.
Collapse
Affiliation(s)
- Dan Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Xiaohui Lu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Hongyu Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yating Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Simin Jiang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Guanglan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yiping Xu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Kefei Wu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Xianrui Dou
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| |
Collapse
|
13
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
14
|
Bretscher H, O’Connor MB. Glycogen homeostasis and mtDNA expression require motor neuron to muscle TGFβ/Activin Signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600699. [PMID: 39131342 PMCID: PMC11312462 DOI: 10.1101/2024.06.25.600699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Maintaining metabolic homeostasis requires coordinated nutrient utilization between intracellular organelles and across multiple organ systems. Many organs rely heavily on mitochondria to generate (ATP) from glucose, or stored glycogen. Proteins required for ATP generation are encoded in both nuclear and mitochondrial DNA (mtDNA). We show that motoneuron to muscle signaling by the TGFβ/Activin family member Actβ positively regulates glycogen levels during Drosophila development. Remarkably, we find that levels of stored glycogen are unaffected by altering cytoplasmic glucose catabolism. Instead, Actβ loss reduces levels of mtDNA and nuclearly encoded genes required for mtDNA replication, transcription and translation. Direct RNAi mediated knockdown of these same nuclearly encoded mtDNA expression factors also results in decreased glycogen stores. Lastly, we find that expressing an activated form of the type I receptor Baboon in muscle restores both glycogen and mtDNA levels in actβ mutants, thereby confirming a direct link between Actβ signaling, glycogen homeostasis and mtDNA expression.
Collapse
Affiliation(s)
- Heidi Bretscher
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Awad K, Kakkola L, Julkunen I. High Glucose Increases Lactate and Induces the Transforming Growth Factor Beta-Smad 1/5 Atherogenic Pathway in Primary Human Macrophages. Biomedicines 2024; 12:1575. [PMID: 39062148 PMCID: PMC11275184 DOI: 10.3390/biomedicines12071575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hundreds of millions of people worldwide are expected to suffer from diabetes mellitus. Diabetes is characterized as a dynamic and heterogeneous disease that requires deeper understanding of the pathophysiology, genetics, and metabolic shaping of this disease and its macro/microvascular complications. Macrophages play an essential role in regulating local immune responses, tissue homeostasis, and disease pathogenesis. Here, we have analyzed transforming growth factor beta 1 (TGFβ1)/Smad signaling in primary human macrophages grown in normal (NG) and high-glucose (HG; +25 mM glucose) conditions. Cell culture lactate concentration and cellular phosphofructokinase (PFK) activity were increased in HG concentrations. High glucose levels in the growth media led to increased macrophage mRNA expression of TGFβ1, and TGFβ-regulated HAMP and PLAUR mRNA levels, while the expression of TGFβ receptor II remained unchanged. Stimulation of cells with TGFβ1 protein lead to Smad2 phosphorylation in both NG and HG conditions, while the phosphorylation of Smad1/5 was detected only in response to TGFβ1 stimulation in HG conditions. The use of the specific Alk1/2 inhibitor dorsomorphin and the Alk5 inhibitor SB431542, respectively, revealed that HG conditions led TGFβ1 to activation of Smad1/5 signaling and its downstream target genes. Thus, high-glucose activates TGFβ1 signaling to the Smad1/5 pathway in primary human macrophages, which may contribute to cellular homeostasis in a harmful manner, priming the tissues for diabetic complications.
Collapse
Affiliation(s)
- Kareem Awad
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland; (L.K.); (I.J.)
- Medical Faculty, Ruprecht-Karls-University of Heidelberg, 69117 Heidelberg, Germany
- Academy of Scientific Research & Technology (ASRT-STARS), Cairo 11516, Egypt
- Institute of Pharmaceutical and Drug Industries Research, National Research Centre, Giza 12622, Egypt
| | - Laura Kakkola
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland; (L.K.); (I.J.)
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland; (L.K.); (I.J.)
- Clinical Microbiology, Turku University Hospital, 20521 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
16
|
Lu X, Liu J, Feng L, Huang Y, Xu Y, Li C, Wang W, Kan Y, Yang J, Zhang M. BATF promotes tumor progression and association with FDG PET-derived parameters in colorectal cancer. J Transl Med 2024; 22:558. [PMID: 38862971 PMCID: PMC11165778 DOI: 10.1186/s12967-024-05367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
PURPOSE The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription‑quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yanfeng Xu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yin Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
17
|
Lewis A, Humphreys DT, Pan-Castillo B, Berti G, Felice C, Gordon H, Gadhok R, Nijhuis A, Mehta S S, Eleid L, Iqbal S, Armuzzi A, Minicozzi A, Giannoulatou E, ChinAleong J, Feakins R, Sagi-Kiss V, Barisic D, Koufaki MI, Bundy JG, Lindsay JO, Silver A. Epigenetic and Metabolic Reprogramming of Fibroblasts in Crohn's Disease Strictures Reveals Histone Deacetylases as Therapeutic Targets. J Crohns Colitis 2024; 18:895-907. [PMID: 38069679 PMCID: PMC11147807 DOI: 10.1093/ecco-jcc/jjad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 06/05/2024]
Abstract
BACKGROUND AND AIMS No effective therapeutic intervention exists for intestinal fibrosis in Crohn's disease [CD]. We characterized fibroblast subtypes, epigenetic and metabolic changes, and signalling pathways in CD fibrosis to inform future therapeutic strategies. METHODS We undertook immunohistochemistry, metabolic, signalling pathway and epigenetic [Transposase-Accessible Chromatin using sequencing] analyses associated with collagen production in CCD-18Co intestinal fibroblasts and primary fibroblasts isolated from stricturing [SCD] and non-stricturing [NSCD] CD small intestine. SCD/NSCD fibroblasts were cultured with TGFβ and valproic acid [VPA]. RESULTS Stricturing CD was characterized by distinct histone deacetylase [HDAC] expression profiles, particularly HDAC1, HDAC2, and HDAC7. As a proxy for HDAC activity, reduced numbers of H3K27ac+ cells were found in SCD compared to NSCD sections. Primary fibroblasts had increased extracellular lactate [increased glycolytic activity] and intracellular hydroxyproline [increased collagen production] in SCD compared to NSCD cultures. The metabolic effect of TGFβ stimulation was reversed by the HDAC inhibitor VPA. SCD fibroblasts appeared 'metabolically primed' and responded more strongly to both TGFβ and VPA. Treatment with VPA revealed TGFβ-dependent and TGFβ-independent Collagen-I production in CCD-18Co cells and primary fibroblasts. VPA altered the epigenetic landscape with reduced chromatin accessibility at the COL1A1 and COL1A2 promoters. CONCLUSIONS Increased HDAC expression profiles, H3K27ac hypoacetylation, a significant glycolytic phenotype and metabolic priming characterize SCD-derived as compared to NSCD fibroblasts. Our results reveal a novel epigenetic component to Collagen-I regulation and TGFβ-mediated CD fibrosis. HDAC inhibitor therapy may 'reset' the epigenetic changes associated with fibrosis.
Collapse
Affiliation(s)
- Amy Lewis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Belen Pan-Castillo
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Giulio Berti
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Carla Felice
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
- Department of Internal Medicine University of Padua, Internal Medicine 1 Unit, Ca' Foncello Hospital, Treviso, Italy
| | - Hannah Gordon
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Radha Gadhok
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Anke Nijhuis
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Shameer Mehta S
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Liliane Eleid
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Sidra Iqbal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | | | - Annamaria Minicozzi
- Department of Colorectal Surgery, Division of Surgery & Perioperative Care, The Royal London Hospital, Whitechapel, London E1 1BB, UK
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanne ChinAleong
- Department of Histopathology, The Royal London Hospital, London E1 1BB, UK
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - Virag Sagi-Kiss
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - Dora Barisic
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - Margarita-Ioanna Koufaki
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - Jacob G Bundy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, London E1 2AT, UK
| |
Collapse
|
18
|
Chandrasekaran P, Weiskirchen R. The signaling pathways in obesity-related complications. J Cell Commun Signal 2024; 18:e12039. [PMID: 38946722 PMCID: PMC11208128 DOI: 10.1002/ccs3.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Obesity, a rapidly expanding epidemic worldwide, is known to exacerbate many medical conditions, making it a significant factor in multiple diseases and their associated complications. This threatening epidemic is linked to various harmful conditions such as type 2 diabetes mellitus, hypertension, metabolic dysfunction-associated steatotic liver disease, polycystic ovary syndrome, cardiovascular diseases (CVDs), dyslipidemia, and cancer. The rise in urbanization and sedentary lifestyles creates an environment that fosters obesity, leading to both psychosocial and medical complications. To identify individuals at risk and ensure timely treatment, it is crucial to have a better understanding of the pathophysiology of obesity and its comorbidities. This comprehensive review highlights the relationship between obesity and obesity-associated complications, including type 2 diabetes, hypertension, (CVDs), dyslipidemia, polycystic ovary syndrome, metabolic dysfunction-associated steatotic liver disease, gastrointestinal complications, and obstructive sleep apnea. It also explores the potential mechanisms underlying these associations. A thorough analysis of the interplay between obesity and its associated complications is vital in developing effective therapeutic strategies to combat the exponential increase in global obesity rates and mitigate the deadly consequences of this polygenic condition.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical Chemistry (IFMPEGKC)RWTH University Hospital AachenAachenGermany
| |
Collapse
|
19
|
Fadilah F, Ermanto B, Bowolaksono A, Asmarinah A, Maidarti M, Prawiningrum AF, Hafidzhah MA, Erlina L, Paramita RI, Wiweko B. Prediction of the Signaling Pathway in Polycystic Ovary Syndrome Using an Integrated Bioinformatics Approach. Gynecol Obstet Invest 2024; 89:485-511. [PMID: 38810612 DOI: 10.1159/000539228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/01/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The purpose of this study was to define the underlying biological mechanisms of polycystic ovarian syndrome (PCOS) utilizing the protein-protein interaction networks (PPINs) that were constructed based on the putative disease-causing genes for PCOS. DESIGN No animals were used in this research because this is an in silico study that mainly uses software and online analysis tools. Participants/Materials, Settings: Gene datasets related to PCOS were obtained from Genecards. METHODS The PPINs of PCOS were created using the String Database after genes related to PCOS were obtained from Genecards. After that, we performed an analysis of the hub-gene clusters extracted from the PPIN using the ShinyGO algorithm. In the final step of this research project, functional enrichment analysis was used to investigate the primary biological activities and signaling pathways that were associated with the hub clusters. RESULTS The Genecards database provided the source for the identification of a total of 1,072 potential genes related to PCOS. The PPIN that was generated by using the genes that we collected above contained a total of 82 genes and three different types of cluster interaction interactions. In addition, after conducting research on the PPIN with the shinyGO plug-in, 19 of the most important gene clusters were discovered. The primary biological functions that were enriched in the key clusters that were developed were ovarian steroidogenesis, the breast cancer pathway, regulation of lipid and glucose metabolism by the AMPK pathway, and ovarian steroidogenesis. The integrated analysis that was performed in the current study demonstrated that these hub clusters and their connected genes are closely associated with the pathogenesis of PCOS. LIMITATIONS Several of the significant genes that were identified in this study, such as ACVR1, SMAD5, BMP6, SMAD3, SMAD4, and anti-mullerian hormone. It is necessary to do additional research using large samples, several centers, and multiple ethnicities in order to verify these findings. CONCLUSIONS The integrated analysis that was performed in the current study demonstrated that these hub clusters and their connected genes are closely associated with the pathogenesis of PCOS. This information may possibly bring unique insights for the treatment of PCOS as well as the investigation of its underlying pathogenic mechanism.
Collapse
Affiliation(s)
- Fadilah Fadilah
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Biobank Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Budi Ermanto
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanism in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Central Jakarta, Indonesia
| | - Asmarinah Asmarinah
- Biobank Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Mila Maidarti
- Reproductive Immunoendocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Yasmin IVF Clinic, Dr. Ciptomangunkusumo General Hospital, Central Jakarta, Indonesia
- Human Reproduction, Infertility and Family Planning Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Aisyah Fitriannisa Prawiningrum
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Muhammad Aldino Hafidzhah
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Linda Erlina
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Rafika Indah Paramita
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Bioinformatics Core Facilities, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Budi Wiweko
- Reproductive Immunoendocrinology Division, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
- Yasmin IVF Clinic, Dr. Ciptomangunkusumo General Hospital, Central Jakarta, Indonesia
- Human Reproduction, Infertility and Family Planning Cluster, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| |
Collapse
|
20
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
21
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
22
|
Scisciola L, Paolisso P, Belmonte M, Gallinoro E, Delrue L, Taktaz F, Fontanella RA, Degrieck I, Pesapane A, Casselman F, Puocci A, Franzese M, Van Praet F, Torella M, Marfella R, De Feo M, Bartunek J, Paolisso G, Barbato E, Barbieri M, Vanderheyden M. Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: The BIO-AS study. Eur J Heart Fail 2024; 26:471-482. [PMID: 38247224 DOI: 10.1002/ejhf.3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
AIM Cardiac remodelling plays a major role in the prognosis of patients with aortic stenosis (AS) and could impact the benefits of aortic valve replacement. Our study aimed to evaluate the expression of sodium-glucose cotransporter 2 (SGLT2) gene and protein in patients with severe AS stratified in high gradient (HG) and low flow-low gradient (LF-LG) AS and its association with cardiac functional impairments. METHODS AND RESULTS Gene expression and protein levels of main biomarkers of cardiac fibrosis (galectin-3, sST2, serpin-4, procollagen type I amino-terminal peptide, procollagen type I carboxy-terminal propeptide, collagen, transforming growth factor [TGF]-β), inflammation (growth differentiation factor-15, interleukin-6, nuclear factor-κB [NF-κB]), oxidative stress (superoxide dismutase 1 [SOD1] and 2 [SOD2]), and cardiac metabolism (sodium-hydrogen exchanger, peroxisome proliferator-activated receptor [PPAR]-α, PPAR-γ, glucose transporter 1 [GLUT1] and 4 [GLUT4]) were evaluated in blood samples and heart biopsies of 45 patients with AS. Our study showed SGLT2 gene and protein hyper-expression in patients with LF-LG AS, compared to controls and HG AS (p < 0.05). These differences remained significant even after adjusting for age, gender, body mass index, history of diabetes mellitus, arterial hypertension, and coronary artery disease. SGLT2 gene expression was positively correlated with: (i) TGF-β (r = 0.72, p < 0.001) and collagen (r = 0.73, p < 0.001) as markers of fibrosis; (ii) NF-κB (r = 0.36, p < 0.01) and myocardial interleukin-6 (r = 0.68, p < 0.001) as markers of inflammation: (iii) SOD2 (r = -0.38, p < 0.006) as a marker of oxidative stress; (iv) GLUT4 (r = 0.33, p < 0.02) and PPAR-α (r = 0.36, p < 0.01) as markers of cardiac metabolism. CONCLUSION In patients with LF-LG AS, SGLT2 gene and protein were hyper-expressed in cardiomyocytes and associated with myocardial fibrosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Lucia Scisciola
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Emanuele Gallinoro
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Leen Delrue
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Ivan Degrieck
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Armando Puocci
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | | - Michele Torella
- Department of Translation Medical Science, University of Campania 'Luigi Vanvitelli' and Monaldi Hospital, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marisa De Feo
- Department of Translation Medical Science, University of Campania 'Luigi Vanvitelli' and Monaldi Hospital, Naples, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Science, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | | |
Collapse
|
23
|
Mukund K, Alva-Ornelas JA, Maddox AL, Murali D, Veraksa D, Saftics A, Tomsic J, Frankhouser D, Razo M, Jovanovic-Talisman T, Seewaldt VL, Subramaniam S. Molecular Atlas of HER2+ Breast Cancer Cells Treated with Endogenous Ligands: Temporal Insights into Mechanisms of Trastuzumab Resistance. Cancers (Basel) 2024; 16:553. [PMID: 38339304 PMCID: PMC10854992 DOI: 10.3390/cancers16030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Trastuzumab therapy in HER2+ breast cancer patients has mixed success owing to acquired resistance to therapy. A detailed understanding of downstream molecular cascades resulting from trastuzumab resistance is yet to emerge. In this study, we investigate the cellular mechanisms underlying acquired resistance using trastuzumab-sensitive and -resistant cancer cells (BT474 and BT474R) treated with endogenous ligands EGF and HRG across time. We probe early receptor organization through microscopy and signaling events through multiomics measurements and assess the bioenergetic state through mitochondrial measurements. Integrative analyses of our measurements reveal significant alterations in EGF-treated BT474 HER2 membrane dynamics and robust downstream activation of PI3K/AKT/mTORC1 signaling. EGF-treated BT474R shows a sustained interferon-independent activation of the IRF1/STAT1 cascade, potentially contributing to trastuzumab resistance. Both cell lines exhibit temporally divergent metabolic demands and HIF1A-mediated stress responses. BT474R demonstrates inherently increased mitochondrial activity. HRG treatment in BT474R leads to a pronounced reduction in AR expression, affecting downstream lipid metabolism with implications for treatment response. Our results provide novel insights into mechanistic changes underlying ligand treatment in BT474 and BT474R and emphasize the pivotal role of endogenous ligands. These results can serve as a framework for furthering the understanding of trastuzumab resistance, with therapeutic implications for women with acquired resistance.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Jackelyn A. Alva-Ornelas
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Adam L. Maddox
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Divya Murali
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Darya Veraksa
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Jerneja Tomsic
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - David Frankhouser
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Meagan Razo
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Victoria L. Seewaldt
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Shankar Subramaniam
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| |
Collapse
|
24
|
Dave A, Park EJ, Pezzuto JM. Multi-Organ Nutrigenomic Effects of Dietary Grapes in a Mouse Model. Antioxidants (Basel) 2023; 12:1821. [PMID: 37891900 PMCID: PMC10604885 DOI: 10.3390/antiox12101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
As a whole food, the potential health benefits of table grapes have been widely studied. Some individual constituents have garnered great attention, particularly resveratrol, but normal quantities in the diet are meniscal. On the other hand, the grape contains hundreds of compounds, many of which have antioxidant potential. Nonetheless, the achievement of serum or tissue concentrations of grape antioxidants sufficient to mediate a direct quenching effect is not likely, which supports the idea of biological responses being mediated by an indirect catalytic-type response. We demonstrate herein with Hsd:ICR (CD-1® Outbred, 18-24 g, 3-4 weeks old, female) mice that supplementation of a semi-synthetic diet with a grape surrogate, equivalent to the human consumption of 2.5 servings per day for 12 months, modulates gene expression in the liver, kidney, colon, and ovary. As might be expected when sampling changes in a pool of over 35,000 genes, there are numerous functional implications. Analysis of some specific differentially expressed genes suggests the potential of grape consumption to bolster metabolic detoxification and regulation of reactive oxygen species in the liver, cellular metabolism, and anti-inflammatory activity in the ovary and kidney. In the colon, the data suggest anti-inflammatory activity, suppression of mitochondrial dysfunction, and maintaining homeostasis. Pathway analysis reveals a combination of up- and down-regulation in the target tissues, primarily up-regulated in the kidney and down-regulated in the ovary. More broadly, based on these data, it seems logical to conclude that grape consumption leads to modulation of gene expression throughout the body, the consequence of which may help to explain the broad array of activities demonstrated in diverse tissues such as the brain, heart, eye, bladder, and colon. In addition, this work further supports the profound impact of nutrigenomics on mammalian phenotypic expression.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.)
- Department of Pharmaceutical and Administrative Science, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| |
Collapse
|
25
|
Hayton C, Ahmed W, Cunningham P, Piper-Hanley K, Pearmain L, Chaudhuri N, Leonard C, Blaikley JF, Fowler SJ. Changes in lung epithelial cell volatile metabolite profile induced by pro-fibrotic stimulation with TGF- β1. J Breath Res 2023; 17:046012. [PMID: 37619557 DOI: 10.1088/1752-7163/acf391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Volatile organic compounds (VOCs) have shown promise as potential biomarkers in idiopathic pulmonary fibrosis. Measuring VOCs in the headspace ofin vitromodels of lung fibrosis may offer a method of determining the origin of those detected in exhaled breath. The aim of this study was to determine the VOCs associated with two lung cell lines (A549 and MRC-5 cells) and changes associated with stimulation of cells with the pro-fibrotic cytokine, transforming growth factor (TGF)-β1. A dynamic headspace sampling method was used to sample the headspace of A549 cells and MRC-5 cells. These were compared to media control samples and to each other to identify VOCs which discriminated between cell lines. Cells were then stimulated with the TGF-β1 and samples were compared between stimulated and unstimulated cells. Samples were analysed using thermal desorption-gas chromatography-mass spectrometry and supervised analysis was performed using sparse partial least squares-discriminant analysis (sPLS-DA). Supervised analysis revealed differential VOC profiles unique to each of the cell lines and from the media control samples. Significant changes in VOC profiles were induced by stimulation of cell lines with TGF-β1. In particular, several terpenoids (isopinocarveol, sativene and 3-carene) were increased in stimulated cells compared to unstimulated cells. VOC profiles differ between lung cell lines and alter in response to pro-fibrotic stimulation. Increased abundance of terpenoids in the headspace of stimulated cells may reflect TGF-β1 cell signalling activity and metabolic reprogramming. This may offer a potential biomarker target in exhaled breath in IPF.
Collapse
Affiliation(s)
- Conal Hayton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Waqar Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Peter Cunningham
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Karen Piper-Hanley
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Laurence Pearmain
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nazia Chaudhuri
- School of Medicine, The University of Ulster, Magee Campus, Londonderry, United Kingdom
| | - Colm Leonard
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - John F Blaikley
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- NIHR-Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
26
|
Kim H, Jang Y, Ryu J, Seo D, Lee S, Choi S, Kim D, Moh S, Shin J. The Dipeptide Gly-Pro (GP), Derived from Hibiscus sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway. Int J Mol Sci 2023; 24:13616. [PMID: 37686422 PMCID: PMC10487435 DOI: 10.3390/ijms241713616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
TGF-β1, a key fibrotic cytokine, enhances both the expression and translocation of the activating transcriptional factor 4 (ATF4) and activates the serine/glycine biosynthesis pathway, which is crucial for augmenting collagen production. Targeting the TGF-β1-ATF4-serine/glycine biosynthesis pathway might offer a promising therapeutic approach for fibrotic diseases. In this study, we aimed to identify a proline-containing dipeptide in Hibiscus sabdariffa plant cells that modulates collagen synthesis. We induced Hibiscus sabdariffa plant cells and screened for a proline-containing dipeptide that can suppress TGF-β1-induced collagen synthesis in fibroblasts. Analyses were conducted using LC-MS/MS, RT-qPCR, Western blot analysis, and immunocytochemistry. We identified Gly-Pro (GP) from the extract of Hibiscus sabdariffa plant cells as a dipeptide capable of suppressing TGF-β1-induced collagen production. GP inhibited the phosphorylation of Smad2/3 and reduced the expression of ATF4, which is upregulated by TGF-β1. Notably, GP also decreased the expression of enzymes involved in the serine/glycine biosynthesis and glucose metabolism pathways, such as PHGDH, PSAT1, PSPH, SHMT2, and SLC2A1. Our findings indicate that the peptide GP, derived from Hibiscus sabdariffa plant cells, exhibits potent anti-fibrotic effects, potentially through its regulation of the TGF-β1-ATF4-serine/glycine biosynthesis pathway.
Collapse
Affiliation(s)
- HaiVin Kim
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - YoungSu Jang
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - JaeSang Ryu
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - DaHye Seo
- Department of Biomedical Science, College of Life Science, Graduate School, CHA University, Seongnam 13488, Republic of Korea; (H.K.); (Y.J.); (D.S.)
| | - Sak Lee
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - SungSoo Choi
- Daesang Holdings, Jung-gu, Seoul 04513, Republic of Korea;
| | - DongHyun Kim
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| | - SangHyun Moh
- Plant Cell Research Institute of BIO-FD&C Co., Ltd., Incheon 21990, Republic of Korea;
| | - JungU Shin
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea; (J.R.); (D.K.)
| |
Collapse
|
27
|
Zhang T, Cui M, Li Y, Cheng Y, Gao Z, Wang J, Zhang T, Han G, Yin R, Wang P, Tian W, Liu W, Hu J, Wang Y, Liu Z, Zhang H. Pax transactivation domain-interacting protein is required for preserving hematopoietic stem cell quiescence via regulating lysosomal activity. Haematologica 2023; 108:2410-2421. [PMID: 36924252 PMCID: PMC10483346 DOI: 10.3324/haematol.2022.282224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Hematopoietic stem cells (HSC) maintain lifetime whole blood hematopoiesis through self-renewal and differentiation. In order to sustain HSC stemness, most HSC reside in a quiescence state, which is affected by diverse cellular stress and intracellular signal transduction. How HSC accommodate those challenges to preserve lifetime capacity remains elusive. Here we show that Pax transactivation domain-interacting protein (PTIP) is required for preserving HSC quiescence via regulating lysosomal activity. Using a genetic knockout mouse model to specifically delete Ptip in HSC, we find that loss of Ptip promotes HSC exiting quiescence, and results in functional exhaustion of HSC. Mechanistically, Ptip loss increases lysosomal degradative activity of HSC. Restraining lysosomal activity restores the quiescence and repopulation potency of Ptip-/- HSC. Additionally, PTIP interacts with SMAD2/3 and mediates transforming growth factor-β signaling-induced HSC quiescence. Overall, our work uncovers a key role of PTIP in sustaining HSC quiescence via regulating lysosomal activity.
Collapse
Affiliation(s)
- Tong Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Manman Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Yashu Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Ying Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Zhuying Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Tiantian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Guoqiang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan
| | - Peipei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Wen Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Jin Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan
| | - Yuhua Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan.
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China;.
| |
Collapse
|
28
|
Shen S, Wei J, Kang W, Wang T. Elucidating shared biomarkers and pathways in kidney stones and diabetes: insights into novel therapeutic targets and the role of resveratrol. J Transl Med 2023; 21:491. [PMID: 37480086 PMCID: PMC10360253 DOI: 10.1186/s12967-023-04356-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these conditions require further investigation. METHODS To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using molecular docking simulation and first-principles calculations. RESULTS The study identified 11 potential target genes associated with kidney stones and diabetes through the intersection of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorption on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these conditions. CONCLUSIONS Overall, this investigation illuminates the discovery of common molecular mechanisms underlying kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address any limitations in the study.
Collapse
Affiliation(s)
- Shanlin Shen
- Department of Urology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiafeng Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Tengteng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
29
|
Kayhan M, Vouillamoz J, Rodriguez DG, Bugarski M, Mitamura Y, Gschwend J, Schneider C, Hall A, Legouis D, Akdis CA, Peter L, Rehrauer H, Gewin L, Wenger RH, Khodo SN. Intrinsic TGF-β signaling attenuates proximal tubule mitochondrial injury and inflammation in chronic kidney disease. Nat Commun 2023; 14:3236. [PMID: 37270534 PMCID: PMC10239443 DOI: 10.1038/s41467-023-39050-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive TGF-β signaling and mitochondrial dysfunction fuel chronic kidney disease (CKD) progression. However, inhibiting TGF-β failed to impede CKD in humans. The proximal tubule (PT), the most vulnerable renal segment, is packed with giant mitochondria and injured PT is pivotal in CKD progression. How TGF-β signaling affects PT mitochondria in CKD remained unknown. Here, we combine spatial transcriptomics and bulk RNAseq with biochemical analyses to depict the role of TGF-β signaling on PT mitochondrial homeostasis and tubulo-interstitial interactions in CKD. Male mice carrying specific deletion of Tgfbr2 in the PT have increased mitochondrial injury and exacerbated Th1 immune response in the aristolochic acid model of CKD, partly, through impaired complex I expression and mitochondrial quality control associated with a metabolic rewiring toward aerobic glycolysis in the PT cells. Injured S3T2 PT cells are identified as the main mediators of the maladaptive macrophage/dendritic cell activation in the absence of Tgfbr2. snRNAseq database analyses confirm decreased TGF-β receptors and a metabolic deregulation in the PT of CKD patients. This study describes the role of TGF-β signaling in PT mitochondrial homeostasis and inflammation in CKD, suggesting potential therapeutic targets that might be used to mitigate CKD progression.
Collapse
Affiliation(s)
- Merve Kayhan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Medicine and Cell Physiology, Hospital and University of Geneva, Geneva, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Zurich, Switzerland
| | - Leary Peter
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Leslie Gewin
- Department of Internal Medicine, Division of Nephrology, Washington University, St. Louis, USA
- Department of Medicine, St. Louis Veterans Affairs, St. Louis, USA
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
30
|
Ferrazzi EM. The Interplay between Maternal Nutrition and Oxidative Stress. Nutrients 2023; 15:2194. [PMID: 37432332 DOI: 10.3390/nu15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
This Special Issue of Nutrients, "The Interplay between Maternal Nutrition and Oxidative Stress", was designed to contribute to our understanding of "oxidative stress" in pregnancy [...].
Collapse
Affiliation(s)
- Enrico Maria Ferrazzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Mother, Child and Neonate, 20122 Milan, MI, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, MI, Italy
| |
Collapse
|
31
|
Cai Z, Li Z, Wei Q, Yang F, Li T, Ke C, He Y, Wang J, Ni B, Lin M, Li L. MiR-24-3p regulates the differentiation of adipose-derived stem cells toward pericytes and promotes fat grafting vascularization. FASEB J 2023; 37:e22935. [PMID: 37086094 DOI: 10.1096/fj.202202037rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Adipose-derived stem cells (ADSCs) enhance fat graft survival by promoting neovascularization. The mechanism that promotes ADSCs differentiation toward pericytes was not known. We treated ADSCs with conditional medium (CM) from endothelial cells (ECs) or human recombinant transforming growth factor β (TGF-β) to induce differentiation into pericytes. Pericytes markers, including platelet-derived growth factor receptor β (PDGFRβ), alpha-smooth muscle actin (α-SMA), and desmin, were examined. Pericytes differentiation markers, migration, and their association with ECs were examined in ADSCs transfected with miR-24-3p mimics and inhibitors. Bioinformatics target prediction platforms and luciferase assays were used to investigate whether PDGFRβ was directly targeted by miR-24-3p. In vivo, fat mixed with ADSCs transfected with miR-24-3p mimics or inhibitors was implanted subcutaneously on the lower back region of nude mice. Fat grafts were harvested and analyzed at 2, 4, 6, and 8 weeks. Results showed that endogenous TGF-β derived from CM from EC or human recombinant TGF-β promoted migration, association with ECs, and induced expression of pericyte markers (PDGFRβ, α-SMA, Desmin) in ADSCs. MiR-24-3p directly targeted PDGFRβ in ADSCs by lucifer reporter assays. Inhibition of miR-24-3p promoted pericytes differentiation, migration, and association with ECs in ADSCs. Inhibition of miR-24-3p in ADSCs promoted survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis, whereas overexpression of miR-24-3p in ADSCs yielded the opposite results. Collectively, TGF-β released by ECs induced ADSCs differentiation toward pericytes through miR-24-3p. Downregulation of miR-24-3p in ADSCs induced survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis after fat grafting.
Collapse
Affiliation(s)
- Zhongming Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zihao Li
- Department of First Clinical Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qing Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fangfang Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chen Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yucang He
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingping Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Binting Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ming Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
32
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
33
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
34
|
Puzio M, Moreton N, Sullivan M, Scaife C, Glennon JC, O'Connor JJ. An Electrophysiological and Proteomic Analysis of the Effects of the Superoxide Dismutase Mimetic, MnTMPyP, on Synaptic Signalling Post-Ischemia in Isolated Rat Hippocampal Slices. Antioxidants (Basel) 2023; 12:antiox12040792. [PMID: 37107167 PMCID: PMC10135248 DOI: 10.3390/antiox12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic stress and the increased production of reactive oxygen species (ROS) are two main contributors to neuronal damage and synaptic plasticity in acute ischemic stroke. The superoxide scavenger MnTMPyP has been previously reported to have a neuroprotective effect in organotypic hippocampal slices and to modulate synaptic transmission after in vitro hypoxia and oxygen-glucose deprivation (OGD). However, the mechanisms involved in the effect of this scavenger remain elusive. In this study, two concentrations of MnTMPyP were evaluated on synaptic transmission during ischemia and post-ischemic synaptic potentiation. The complex molecular changes supporting cellular adaptation to metabolic stress, and how these are modulated by MnTMPyP, were also investigated. Electrophysiological data showed that MnTMPyP causes a decrease in baseline synaptic transmission and impairment of synaptic potentiation. Proteomic analysis performed on MnTMPyP and hypoxia-treated tissue indicated an impairment in vesicular trafficking mechanisms, including reduced expression of Hsp90 and actin signalling. Alterations of vesicular trafficking may lead to reduced probability of neurotransmitter release and AMPA receptor activity, resulting in the observed modulatory effect of MnTMPyP. In OGD, protein enrichment analysis highlighted impairments in cell proliferation and differentiation, such as TGFβ1 and CDKN1B signalling, in addition to downregulation of mitochondrial dysfunction and an increased expression of CAMKII. Taken together, our results may indicate modulation of neuronal sensitivity to the ischemic insult, and a complex role for MnTMPyP in synaptic transmission and plasticity, potentially providing molecular insights into the mechanisms mediating the effects of MnTMPyP during ischemia.
Collapse
Affiliation(s)
- Martina Puzio
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mairéad Sullivan
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Caitriona Scaife
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeffrey C Glennon
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
35
|
Sung H, Vaziri A, Wilinski D, Woerner RKR, Freddolino L, Dus M. Nutrigenomic regulation of sensory plasticity. eLife 2023; 12:e83979. [PMID: 36951889 PMCID: PMC10036121 DOI: 10.7554/elife.83979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the D. melanogaster gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons' responses to sugar and the flies' ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.
Collapse
Affiliation(s)
- Hayeon Sung
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Anoumid Vaziri
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
| | - Daniel Wilinski
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Riley KR Woerner
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
| | - Lydia Freddolino
- Department of Biological Chemistry, The University of Michigan Medical SchoolAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical SchoolAnn ArborUnited States
| | - Monica Dus
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of MichiganAnn ArborUnited States
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of MichiganAnn ArborUnited States
- The Michigan Neuroscience InstituteAnn ArborUnited States
| |
Collapse
|
36
|
Fuentes-Fayos AC, G-García ME, Pérez-Gómez JM, Montero-Hidalgo AJ, Martín-Colom J, Doval-Rosa C, Blanco-Acevedo C, Torres E, Toledano-Delgado Á, Sánchez-Sánchez R, Peralbo-Santaella E, Ortega-Salas RM, Jiménez-Vacas JM, Tena-Sempere M, López M, Castaño JP, Gahete MD, Solivera J, Luque RM. Metformin and simvastatin exert additive antitumour effects in glioblastoma via senescence-state: clinical and translational evidence. EBioMedicine 2023; 90:104484. [PMID: 36907105 PMCID: PMC10024193 DOI: 10.1016/j.ebiom.2023.104484] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.g., metformin/statins) are emerging as efficient antitumour agents for several cancers. Herein, we evaluated the in vitro/in vivo effects of metformin and/or statins on key clinical/functional/molecular/signalling parameters in glioblastoma patients/cells. METHODS An exploratory-observational-randomized retrospective glioblastoma patient cohort (n = 85), human glioblastoma/non-tumour brain human cells (cell lines/patient-derived cell cultures), mouse astrocytes progenitor cell cultures, and a preclinical xenograft glioblastoma mouse model were used to measure key functional parameters, signalling-pathways and/or antitumour progression in response to metformin and/or simvastatin. FINDINGS Metformin and simvastatin exerted strong antitumour actions in glioblastoma cell cultures (i.e., proliferation/migration/tumoursphere/colony-formation/VEGF-secretion inhibition and apoptosis/senescence induction). Notably, their combination additively altered these functional parameters vs. individual treatments. These actions were mediated by the modulation of key oncogenic signalling-pathways (i.e., AKT/JAK-STAT/NF-κB/TGFβ-pathways). Interestingly, an enrichment analysis uncovered a TGFβ-pathway activation, together with AKT inactivation, in response to metformin + simvastatin combination, which might be linked to an induction of the senescence-state, the associated secretory-phenotype, and to the dysregulation of spliceosome components. Remarkably, the antitumour actions of metformin + simvastatin combination were also observed in vivo [i.e., association with longer overall-survival in human, and reduction in tumour-progression in a mouse model (reduced tumour-size/weight/mitosis-number, and increased apoptosis)]. INTERPRETATION Altogether, metformin and simvastatin reduce aggressiveness features in glioblastomas, being this effect significantly more effective (in vitro/in vivo) when both drugs are combined, offering a clinically relevant opportunity that should be tested for their use in humans. FUNDING Spanish Ministry of Science, Innovation and Universities; Junta de Andalucía; CIBERobn (CIBER is an initiative of Instituto de Salud Carlos III, Spanish Ministry of Health, Social Services and Equality).
Collapse
Affiliation(s)
- Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| | - Miguel E G-García
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Julia Martín-Colom
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Carlos Doval-Rosa
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Cristóbal Blanco-Acevedo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Encarnación Torres
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Álvaro Toledano-Delgado
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Esther Peralbo-Santaella
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Flow Cytometry Unit, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004, Cordoba, Spain
| | - Rosa M Ortega-Salas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Pathology Service, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Miguel López
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain; NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Juan Solivera
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Department of Neurosurgery, Reina Sofia University Hospital, 14004, Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology, Immunology, University of Cordoba, 14004, Cordoba, Spain; Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain.
| |
Collapse
|
37
|
Salmond RJ. Regulation of T Cell Activation and Metabolism by Transforming Growth Factor-Beta. BIOLOGY 2023; 12:297. [PMID: 36829573 PMCID: PMC9953227 DOI: 10.3390/biology12020297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
Transforming growth factor beta (TGFβ) receptor signalling regulates T cell development, differentiation and effector function. Expression of the immune-associated isoform of this cytokine, TGFβ1, is absolutely required for the maintenance of immunological tolerance in both mice and humans, whilst context-dependent TGFβ1 signalling regulates the differentiation of both anti- and pro-inflammatory T cell effector populations. Thus, distinct TGFβ-dependent T cell responses are implicated in the suppression or initiation of inflammatory and autoimmune diseases. In cancer settings, TGFβ signals contribute to the blockade of anti-tumour immune responses and disease progression. Given the key functions of TGFβ in the regulation of immune responses and the potential for therapeutic targeting of TGFβ-dependent pathways, the mechanisms underpinning these pleiotropic effects have been the subject of much investigation. This review focuses on accumulating evidence suggesting that modulation of T cell metabolism represents a major mechanism by which TGFβ influences T cell immunity.
Collapse
Affiliation(s)
- Robert J Salmond
- Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
38
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
39
|
Gui Y, Tao J, Wang Y, Palanza Z, Qiao Y, Hargis G, Kreutzer DL, Liu S, Bastacky SI, Wang Y, Yu Y, Fu H, Zhou D. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522608. [PMID: 36711748 PMCID: PMC9881848 DOI: 10.1101/2023.01.03.522608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the fibrotic kidneys, the extent of a formed deleterious microenvironment is determined by cellular mechanical forces. This process requires metabolism for energy; however, how cellular mechanics and metabolism are connected remains unclear. Our proteomics revealed that actin filament binding and cell metabolism are the two most dysregulated events in the fibrotic kidneys. As a prominent actin stabilizer, Calponin 2 (CNN2) is predominantly expressed in fibroblasts and pericytes. CNN2 knockdown preserves kidney function and alleviates fibrosis. Global proteomics profiled that CNN2 knockdown enhanced the activities of the key rate-limiting enzymes and regulators of fatty acid oxidation (FAO) in diseased kidneys. Inhibiting carnitine palmitoyltransferase 1α in the FAO pathway results in lipid accumulation and extracellular matrix deposition in the fibrotic kidneys, which were restored after CNN2 knockdown. In patients, increased serum CNN2 levels are correlated with lipid content. Bioinformatics and chromatin immunoprecipitation showed that CNN2 interactor, estrogen receptor 2 (ESR2) binds peroxisome proliferator-activated receptor-α (PPARα) to transcriptionally regulate FAO downstream target genes expression amid kidney fibrosis. In vitro , ESR2 knockdown repressed the mRNA levels of PPARα and the key genes in the FAO pathway. Conversely, activation of PPARα reduced CNN2-induced matrix inductions. Our results suggest that balancing cell mechanics and metabolism is crucial to develop therapeutic strategies to halt kidney fibrosis.
Collapse
|
40
|
Cheng X, Yan Z, Su Z, Liu J. The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:962974. [PMID: 36385772 PMCID: PMC9650414 DOI: 10.3389/fnmol.2022.962974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Deciphering the physiological function of TGF-β (the transforming growth factor beta) family ligands is import for understanding the role of TGF-β in animals' development and aging. Here, we investigate the function of TIG-2, one of the ligands in Caenorhabditis elegans TGF-β family, in animals' behavioral modulation. Our results show that a loss-of-function mutation in tig-2 gene result in slower locomotion speed in the early adulthood and an increased density of cholinergic synapses, but a decreased neurotransmitter release at neuromuscular junctions (NMJs). Further tissue-specific rescue results reveal that neuronal and intestinal TIG-2 are essential for the formation of cholinergic synapses at NMJs. Interestingly, tig-2(ok3416) mutant is characterized with reduced muscle mitochondria content and adenosine triphosphate (ATP) production, although the function of muscle acetylcholine receptors and the morphology muscle fibers in the mutant are comparable to that in wild-type animals. Our result suggests that TIG-2 from different neuron and intestine regulates worm locomotion by modulating synaptogenesis and neurotransmission at NMJs, as well as energy metabolism in postsynaptic muscle cells.
Collapse
Affiliation(s)
- Xinran Cheng
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Zhenzhen Yan
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zexiong Su
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, Kim JW, Yoon BK, Ahn HS, Fang S. Single-cell sequencing of PBMC characterizes the altered transcriptomic landscape of classical monocytes in BNT162b2-induced myocarditis. Front Immunol 2022; 13:979188. [PMID: 36225942 PMCID: PMC9549039 DOI: 10.3389/fimmu.2022.979188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most dangerous threat to public health worldwide for the last few years, which led to the development of the novel mRNA vaccine (BNT162b2). However, BNT162b2 vaccination is known to be associated with myocarditis. Here, as an attempt to determine the pathogenesis of the disease and to develop biomarkers to determine whether subjects likely proceed to myocarditis after vaccination, we conducted a time series analysis of peripheral blood mononuclear cells of a patient with BNT162b2-induced myocarditis. Single-cell RNA sequence analysis identified monocytes as the cell clusters with the most dynamic changes. To identify distinct gene expression signatures, we compared monocytes of BNT162b2-induced myocarditis with monocytes under various conditions, including SARS-CoV-2 infection, BNT162b2 vaccination, and Kawasaki disease, a disease similar to myocarditis. Representative changes in the transcriptomic profile of classical monocytes include the upregulation of genes related to fatty acid metabolism and downregulation of transcription factor AP-1 activity. This study provides, for the first time, the importance of classical monocytes in the pathogenesis of myocarditis following BNT162b2 vaccination and presents the possibility that vaccination affects monocytes, further inducing their differentiation and infiltration into the heart.
Collapse
Affiliation(s)
- Nahee Hwang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yune Huh
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyeon Bu
- Divison of Cardiology, Department of Internal medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, South Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Se Hwan Kwon
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Jae-woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| | - Hyo-Suk Ahn
- Divison of Cardiology, Department of Internal medicine, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Seoul, South Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Bo Kyung Yoon, ; Hyo-Suk Ahn, ; Sungsoon Fang,
| |
Collapse
|
42
|
Mandò C, Abati S, Anelli GM, Favero C, Serati A, Dioni L, Zambon M, Albetti B, Bollati V, Cetin I. Epigenetic Profiling in the Saliva of Obese Pregnant Women. Nutrients 2022; 14:2122. [PMID: 35631263 PMCID: PMC9146705 DOI: 10.3390/nu14102122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal obesity is associated with inflammation and oxidative stress, strongly impacting the intrauterine environment with detrimental consequences for both mother and offspring. The saliva is a non-invasive biofluid reflecting both local and systemic health status. This observational study aimed to profile the epigenetic signature in the saliva of Obese (OB) and Normal-Weight (NW) pregnant women. Sixteen NW and sixteen OB Caucasian women with singleton spontaneous pregnancies were enrolled. microRNAs were quantified by the OpenArray Platform. The promoter region methylation of Suppressor of Cytokine Signaling 3 (SOCS3) and Transforming Growth Factor Beta 1 (TGF-Beta1) was assessed by pyrosequencing. There were 754 microRNAs evaluated: 20 microRNAs resulted in being differentially expressed between OB and NW. microRNA pathway enrichment analysis showed a significant association with the TGF-Beta signaling pathway (miTALOS) and with fatty acids biosynthesis/metabolism, lysine degradation, and ECM-receptor interaction pathways (DIANA-miRPath). Both SOCS3 and TGF-Beta1 were significantly down-methylated in OB vs. NW. These results help to clarify impaired mechanisms involved in obesity and pave the way for the understanding of specific damaged pathways. The characterization of the epigenetic profile in saliva of pregnant women can represent a promising tool for the identification of obesity-related altered mechanisms and of possible biomarkers for early diagnosis and treatment of pregnancy-adverse conditions.
Collapse
Affiliation(s)
- Chiara Mandò
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
| | - Silvio Abati
- Department of Dentistry, University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Anaïs Serati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20054 Segrate, Italy
| | - Laura Dioni
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Marta Zambon
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, 20154 Milan, Italy;
| | - Benedetta Albetti
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (C.F.); (L.D.); (B.A.); (V.B.)
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Cetin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.M.A.); (A.S.); (I.C.)
- Department of Woman, Mother and Child, Luigi Sacco and Vittore Buzzi Children Hospital, ASST Fatebenefratelli-Sacco, 20154 Milan, Italy;
| |
Collapse
|