1
|
Tajti G, Gebetsberger L, Pamlitschka G, Aigner-Radakovics K, Leitner J, Steinberger P, Stockinger H, Ohradanova-Repic A. Cyclophilin-CD147 interaction enables SARS-CoV-2 infection of human monocytes and their activation via Toll-like receptors 7 and 8. Front Immunol 2025; 16:1460089. [PMID: 39963132 PMCID: PMC11830813 DOI: 10.3389/fimmu.2025.1460089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Monocytes and macrophages, as important constituents of the innate immune system, are equipped with multiple Toll-like-receptors (TLRs) to recognize invading pathogens, such as SARS-CoV-2, and mount an antiviral response. Nevertheless, their uncontrolled activation can lead to hyperinflammation seen in severe COVID-19. Surprisingly, we observed that recombinant SARS-CoV-2 Spike (S) and Nucleocapsid (N) proteins triggered only a weak proinflammatory response in human peripheral blood monocytes. By employing THP-1 and Jurkat NF-κB::eGFP reporter cell lines expressing specific TLRs, various TLR ligands and blocking antibodies, we determined that surface TLRs, including TLR2/1, TLR2/6 and TLR4 do not play a major role in SARS-CoV-2 sensing. However, monocytes are potently activated by the replication-competent SARS-CoV-2, and the response correlates with the viral uptake that is observed only in monocytes, but not in lymphocytes. We show that monocyte activation involves two distinct steps. Firstly, SARS-CoV-2 infects monocytes in a process independent of the S protein and the prime SARS-CoV-2 receptor angiotensin-converting enzyme 2. Instead, the alternative SARS-CoV-2 receptor CD147, which is highly expressed on monocytes, recognizes its well-known interaction partners cyclophilins A and B that are incorporated into SARS-CoV-2 virions. Secondly, upon viral uptake via the cyclophilin-CD147 interaction, that can be inhibited by specific CD147 blocking antibodies or competition with recombinant human cyclophilin A and B, SARS-CoV-2 RNA is recognized by TLR7/8 in endosomes, leading to upregulation of tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6, comprising the core hyperinflammatory signature. Taken together, our data reveal a novel mechanism how human monocytes sense SARS-CoV-2 and suggest that targeting the cyclophilin-CD147 axis might be beneficial to alleviate overt myeloid-driven inflammation triggered by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gabor Tajti
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Laura Gebetsberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Gregor Pamlitschka
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Katharina Aigner-Radakovics
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Judith Leitner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Steinberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
2
|
Roye Y, Miller C, Kalejaiye TD, Musah S. A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury. Matrix Biol Plus 2024; 24:100164. [PMID: 39582511 PMCID: PMC11585791 DOI: 10.1016/j.mbplus.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Carmen Miller
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham NC, USA
| | - Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
- MEDx Investigator, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
5
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
6
|
Mou X, Shah J, Roye Y, Du C, Musah S. An ultrathin membrane mediates tissue-specific morphogenesis and barrier function in a human kidney chip. SCIENCE ADVANCES 2024; 10:eadn2689. [PMID: 38838141 PMCID: PMC11152122 DOI: 10.1126/sciadv.adn2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Organ-on-chip (OOC) systems are revolutionizing tissue engineering by providing dynamic models of tissue structure, organ-level function, and disease phenotypes using human cells. However, nonbiological components of OOC devices often limit the recapitulation of in vivo-like tissue-tissue cross-talk and morphogenesis. Here, we engineered a kidney glomerulus-on-a-chip that recapitulates glomerular morphogenesis and barrier function using a biomimetic ultrathin membrane and human-induced pluripotent stem cells. The resulting chip comprised a proximate epithelial-endothelial tissue interface, which reconstituted the selective molecular filtration function of healthy and diseased kidneys. In addition, fenestrated endothelium was successfully induced from human pluripotent stem cells in an OOC device, through in vivo-like paracrine signaling across the ultrathin membrane. Thus, this device provides a dynamic tissue engineering platform for modeling human kidney-specific morphogenesis and function, enabling mechanistic studies of stem cell differentiation, organ physiology, and pathophysiology.
Collapse
Affiliation(s)
- Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Jessica Shah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Carolyn Du
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27710, USA
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
7
|
Chau CW, To A, Au-Yeung RKH, Tang K, Xiang Y, Ruan D, Zhang L, Wong H, Zhang S, Au MT, Chung S, Song E, Choi DH, Liu P, Yuan S, Wen C, Sugimura R. SARS-CoV-2 infection activates inflammatory macrophages in vascular immune organoids. Sci Rep 2024; 14:8781. [PMID: 38627497 PMCID: PMC11021416 DOI: 10.1038/s41598-024-59405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.
Collapse
Affiliation(s)
- Chiu Wang Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alex To
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Degong Ruan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Hera Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shihui Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong.
| |
Collapse
|
8
|
Carregari VC, Reis-de-Oliveira G, Crunfli F, Smith BJ, de Souza GF, Muraro SP, Saia-Cereda VM, Vendramini PH, Baldasso PA, Silva-Costa LC, Zuccoli GS, Brandão-Teles C, Antunes A, Valença AF, Davanzo GG, Virgillio-da-Silva JV, Dos Reis Araújo T, Guimarães RC, Chaim FDM, Chaim EA, Kawagosi Onodera CM, Ludwig RG, Saccon TD, Damásio ARL, Leiria LOS, Vinolo MAR, Farias AS, Moraes-Vieira PM, Mori MA, Módena JLP, Martins-de-Souza D. Diving into the proteomic atlas of SARS-CoV-2 infected cells. Sci Rep 2024; 14:7375. [PMID: 38548777 PMCID: PMC10978884 DOI: 10.1038/s41598-024-56328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.
Collapse
Affiliation(s)
- Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Stéfanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Veronica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro H Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paulo A Baldasso
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lícia C Silva-Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline F Valença
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo G Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - João Victor Virgillio-da-Silva
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | | | - Raphael Campos Guimarães
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
| | | | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Raissa Guimarães Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tatiana Dandolini Saccon
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - André R L Damásio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Osório S Leiria
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirão Preto, SP, Brazil
| | - Marco Aurélio R Vinolo
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Hematology-Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alessandro S Farias
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, 05403-000, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, São Paulo, Brazil
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José Luiz P Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, 04501-000, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Maliha ST, Fatemi R, Araf Y. COVID-19 and the brain: understanding the pathogenesis and consequences of neurological damage. Mol Biol Rep 2024; 51:318. [PMID: 38386201 DOI: 10.1007/s11033-024-09279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
SARS-CoV-2 has been known remarkably since December 2019 as a strain of pathogenic coronavirus. Starting from the earlier stages of the COVID-19 pandemic until now, we have witnessed many cases of neurological damage caused by SARS-CoV-2. There are many studies and research conducted on COVID-19-positive-patients that have found brain-related abnormalities with clear neurological symptoms, ranging from simple headaches to life-threatening strokes. For treating neurological damage, knowing the actual pathway or mechanism of causing brain damage via SARS-CoV-2 is very important. For this reason, we have tried to explain the possible pathways of brain damage due to SARS-CoV-2 with mechanisms and illustrations. The SARS-CoV-2 virus enters the human body by binding to specific ACE2 receptors in the targeted cells, which are present in the glial cells and CNS neurons of the human brain. It is found that direct and indirect infections with SARS-CoV-2 in the brain result in endothelial cell death, which alters the BBB tight junctions. These probable alterations can be the reason for the excessive transmission and pathogenicity of SARS-CoV-2 in the human brain. In this precise review, we have tried to demonstrate the neurological symptoms in the case of COVID-19-positive-patients and the possible mechanisms of neurological damage, along with the treatment options for brain-related abnormalities. Knowing the transmission mechanism of SARS-CoV-2 in the human brain can assist us in generating novel treatments associated with neuroinflammation in other brain diseases.
Collapse
Affiliation(s)
- Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Rabeya Fatemi
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Yusha Araf
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh.
| |
Collapse
|
10
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
12
|
Shahbaz MA, Kuivanen S, Lampinen R, Mussalo L, Hron T, Závodná T, Ojha R, Krejčík Z, Saveleva L, Tahir NA, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Singh P, Topinka J, Vapalahti O, Chew S, Balistreri G, Kanninen KM. Human-derived air-liquid interface cultures decipher Alzheimer's disease-SARS-CoV-2 crosstalk in the olfactory mucosa. J Neuroinflammation 2023; 20:299. [PMID: 38098019 PMCID: PMC10722731 DOI: 10.1186/s12974-023-02979-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Virology, 10117, Berlin, Germany
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Laura Mussalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tomáš Hron
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Numan Ahmad Tahir
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
13
|
Rai V. COVID-19 and Kidney: The Importance of Follow-Up and Long-Term Screening. Life (Basel) 2023; 13:2137. [PMID: 38004277 PMCID: PMC10672056 DOI: 10.3390/life13112137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Renal involvement and kidney injury are common in COVID-19 patients, and the symptoms are more severe if the patient already has renal impairment. Renal involvement in COVID-19 is multifactorial, and the renal tubule is mainly affected, along with podocyte injury during SARS-CoV-2 infection. Inflammation, complement activation, hypercoagulation, and crosstalk between the kidney and lungs, brain, and heart are contributory factors. Kidney injury during the acute phase, termed acute kidney injury (AKI), may proceed to chronic kidney disease if the patient is discharged with renal impairment. Both AKI and chronic kidney disease (CKD) increase mortality in COVID-19 patients. Further, COVID-19 infection in patients suffering from CKD is more severe and increases the mortality rate. Thus, it is important to address both categories of patients, either developing AKI or CKD after COVID-19 or previously having CKD, with proper management and treatment. This review discusses the pathophysiology involved in AKI and CKD in COVID-19 infection, followed by management and treatment of AKI and CKD. This is followed by a discussion of the importance of screening and treatment of CKD patients infected with COVID-19 and future perspectives to improve treatment in such patients.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
14
|
Xia X. Identification of host receptors for viral entry and beyond: a perspective from the spike of SARS-CoV-2. Front Microbiol 2023; 14:1188249. [PMID: 37560522 PMCID: PMC10407229 DOI: 10.3389/fmicb.2023.1188249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Identification of the interaction between the host membrane receptor and viral receptor-binding domain (RBD) represents a crucial step for understanding viral pathophysiology and for developing drugs against pathogenic viruses. While all membrane receptors and carbohydrate chains could potentially be used as receptors for viruses, prioritized searches focus typically on membrane receptors that are known to have been used by the relatives of the pathogenic virus, e.g., ACE2 used as a receptor for SARS-CoV is a prioritized candidate receptor for SARS-CoV-2. An ideal receptor protein from a viral perspective is one that is highly expressed in epithelial cell surface of mammalian respiratory or digestive tracts, strongly conserved in evolution so many mammalian species can serve as potential hosts, and functionally important so that its expression cannot be readily downregulated by the host in response to the infection. Experimental confirmation of host receptors includes (1) infection studies with cell cultures/tissues/organs with or without candidate receptor expression, (2) experimental determination of protein structure of the complex between the putative viral RDB and the candidate host receptor, and (3) experiments with mutant candidate receptor or homologues of the candidate receptor in other species. Successful identification of the host receptor opens the door for mechanism-based development of candidate drugs and vaccines and facilitates the inference of what other animal species are vulnerable to the viral pathogen. I illustrate these approaches with research on identification of the receptor and co-factors for SARS-CoV-2.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Yang Z, Zhang Q, Wu X, Hao S, Hao X, Jones E, Zhang Y, Qiu J, Xu L. Repurposing Niclosamide as a Novel Anti-SARS-CoV-2 Drug by Restricting Entry Protein CD147. Biomedicines 2023; 11:2019. [PMID: 37509657 PMCID: PMC10377517 DOI: 10.3390/biomedicines11072019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic, and the search for effective treatments has been limited. Furthermore, the rapid mutations of SARS-CoV-2 have posed challenges to existing vaccines and neutralizing antibodies, as they struggle to keep up with the increased viral transmissibility and immune evasion. However, there is hope in targeting the CD147-spike protein, which serves as an alternative point for the entry of SARS-CoV-2 into host cells. This protein has emerged as a promising therapeutic target for the development of drugs against COVID-19. Here, we demonstrate that the RNA-binding protein Human-antigen R (HuR) plays a crucial role in the post-transcriptional regulation of CD147 by directly binding to its 3'-untranslated region (UTR). We observed a decrease in CD147 levels across multiple cell lines upon HuR depletion. Furthermore, we identified that niclosamide can reduce CD147 by lowering the cytoplasmic translocation of HuR and reducing CD147 glycosylation. Moreover, our investigation revealed that SARS-CoV-2 infection induces an upregulation of CD147 in ACE2-expressing A549 cells, which can be effectively neutralized by niclosamide in a dose-dependent manner. Overall, our study unveils a novel regulatory mechanism of regulating CD147 through HuR and suggests niclosamide as a promising therapeutic option against COVID-19.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Qi Zhang
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
| | - Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xinbao Hao
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Thakur A, Liang L, Banerjee S, Zhang K. Single-Cell Transcriptomics Reveals Evidence of Endothelial Dysfunction in the Brains of COVID-19 Patients with Implications for Glioblastoma Progression. Brain Sci 2023; 13:brainsci13050762. [PMID: 37239234 DOI: 10.3390/brainsci13050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is implicated in various inflammatory diseases such as ischemic stroke, heart attack, organ failure, and COVID-19. Recent studies have shown that endothelial dysfunction in the brain is attributed to excessive inflammatory responses caused by the SARS-CoV-2 infection, leading to increased permeability of the blood-brain barrier and consequently neurological damage. Here, we aim to examine the single-cell transcriptomic landscape of endothelial dysfunction in COVID-19 and its implications for glioblastoma (GBM) progression. METHODS Single-cell transcriptome data GSE131928 and GSE159812 were obtained from the gene expression omnibus (GEO) to analyze the expression profiles of key players in innate immunity and inflammation between brain endothelial dysfunction caused by COVID-19 and GBM progression. RESULTS Single-cell transcriptomic analysis of the brain of COVID-19 patients revealed that endothelial cells had undergone significant transcriptomic changes, with several genes involved in immune responses and inflammation upregulated. Moreover, transcription factors were observed to modulate this inflammation, including interferon-regulated genes. CONCLUSIONS The results indicate a significant overlap between COVID-19 and GBM in the context of endothelial dysfunction, suggesting that there may be an endothelial dysfunction link connecting severe SARS-CoV-2 infection in the brain to GBM progression.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong 999077, China
| | - Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Sourav Banerjee
- Department of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400716, China
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
17
|
Csöbönyeiová M, Klein M, Kuniaková M, Varga I, Danišovič Ľ. Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. Int J Mol Sci 2023; 24:3459. [PMID: 36834870 PMCID: PMC9961667 DOI: 10.3390/ijms24043459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus's high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model to investigate all pathological processes underlining its activity and, more importantly, search for optimal drug therapy with minimal toxicity risk. The gold standard in disease modeling involves animal and monolayer culture models; however, these models do not fully reflect the response to human tissues affected by the virus. However, more physiological 3D in vitro culture models, such as spheroids and organoids derived from induced pluripotent stem cells (iPSCs), could serve as promising alternatives. Different iPSC-derived organoids, such as lung, cardiac, brain, intestinal, kidney, liver, nasal, retinal, skin, and pancreatic organoids, have already shown immense potential in COVID-19 modeling. In the present comprehensive review article, we summarize the current knowledge on COVID-19 modeling and drug screening using selected iPSC-derived 3D culture models, including lung, brain, intestinal, cardiac, blood vessels, liver, kidney, and inner ear organoids. Undoubtedly, according to reviewed studies, organoids are the state-of-the-art approach to COVID-19 modeling.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Marcela Kuniaková
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
18
|
Zhou H, Ren R, Yau SST. Utilizing the codon adaptation index to evaluate the susceptibility to HIV-1 and SARS-CoV-2 related coronaviruses in possible target cells in humans. Front Cell Infect Microbiol 2023; 12:1085397. [PMID: 36760235 PMCID: PMC9905242 DOI: 10.3389/fcimb.2022.1085397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
Comprehensive identification of possible target cells for viruses is crucial for understanding the pathological mechanism of virosis. The susceptibility of cells to viruses depends on many factors. Besides the existence of receptors at the cell surface, effective expression of viral genes is also pivotal for viral infection. The regulation of viral gene expression is a multilevel process including transcription, translational initiation and translational elongation. At the translational elongation level, the translational efficiency of viral mRNAs mainly depends on the match between their codon composition and cellular translational machinery (usually referred to as codon adaptation). Thus, codon adaptation for viral ORFs in different cell types may be related to their susceptibility to viruses. In this study, we selected the codon adaptation index (CAI) which is a common codon adaptation-based indicator for assessing the translational efficiency at the translational elongation level to evaluate the susceptibility to two-pandemic viruses (HIV-1 and SARS-CoV-2) of different human cell types. Compared with previous studies that evaluated the infectivity of viruses based on codon adaptation, the main advantage of our study is that our analysis is refined to the cell-type level. At first, we verified the positive correlation between CAI and translational efficiency and strengthened the rationality of our research method. Then we calculated CAI for ORFs of two viruses in various human cell types. We found that compared to high-expression endogenous genes, the CAIs of viral ORFs are relatively low. This phenomenon implied that two kinds of viruses have not been well adapted to translational regulatory machinery in human cells. Also, we indicated that presumptive susceptibility to viruses according to CAI is usually consistent with the results of experimental research. However, there are still some exceptions. Finally, we found that two viruses have different effects on cellular translational mechanisms. HIV-1 decouples CAI and translational efficiency of endogenous genes in host cells and SARS-CoV-2 exhibits increased CAI for its ORFs in infected cells. Our results implied that at least in cases of HIV-1 and SARS-CoV-2, CAI can be regarded as an auxiliary index to assess cells' susceptibility to viruses but cannot be used as the only evidence to identify viral target cells.
Collapse
Affiliation(s)
- Haoyu Zhou
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruohan Ren
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Zhili College, Tsinghua University, Beijing, China
| | - Stephen Shing-Toung Yau
- Yanqi Lake Beijing Institute of Mathematical Sciences and Applications (BIMSA), Beijing, China,Department of Mathematical Sciences, Tsinghua University, Beijing, China,*Correspondence: Stephen Shing-Toung Yau,
| |
Collapse
|
19
|
Nicosia RF. Kidney Disease and Viral Infection in COVID-19: Why Are Kidney Organoid and Biopsy Studies Not in Agreement? Nephron Clin Pract 2023; 147:458-464. [PMID: 36649676 PMCID: PMC9893001 DOI: 10.1159/000528460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023] Open
Abstract
CONTEXT The clinical course of coronavirus disease-19 (COVID-19) can be complicated by acute kidney injury and proteinuria. Kidney cells express receptors for SARS-CoV-2, the virus responsible for COVID-19. Direct infection of the kidney parenchyma by SARS-CoV-2 has been proposed as the cause of renal dysfunction in COVID-19. Subject of Review: Kidney organoids derived from human embryonic stem cells or induced pluripotent cells can be reproducibly infected by SARS-CoV-2 in vitro and used to study therapeutics. However, kidney biopsy studies of COVID-19 patients with renal dysfunction have shown no evidence of viral infection. Second Opinion: Kidney organoids are susceptible to SARS-CoV-2 infection, which is probably facilitated by their limited architectural complexity and maturation compared to the intact organ and by the in vitro culture conditions. Conversely, kidneys in COVID-19 patients appear resistant to infection and may be injured through indirect mechanisms mediated by the host response to the respiratory viral infection, genetic susceptibility to the immune response, physiological disturbances, and therapies. More studies are needed to better understand why kidney organoids are more susceptible than mature kidneys to SARS-CoV-2 infection and further characterize the mechanisms of kidney injury in COVID-19.
Collapse
Affiliation(s)
- Roberto F. Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Hromić-Jahjefendić A, Barh D, Uversky V, Aljabali AA, Tambuwala MM, Alzahrani KJ, Alzahrani FM, Alshammeri S, Lundstrom K. Can COVID-19 Vaccines Induce Premature Non-Communicable Diseases: Where Are We Heading to? Vaccines (Basel) 2023; 11:vaccines11020208. [PMID: 36851087 PMCID: PMC9960675 DOI: 10.3390/vaccines11020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
According to the WHO, as of January 2023, more than 850 million cases and over 6.6 million deaths from COVID-19 have been reported worldwide. Currently, the death rate has been reduced due to the decreased pathogenicity of new SARS-CoV-2 variants, but the major factor in the reduced death rates is the administration of more than 12.8 billion vaccine doses globally. While the COVID-19 vaccines are saving lives, serious side effects have been reported after vaccinations for several premature non-communicable diseases (NCDs). However, the reported adverse events are low in number. The scientific community must investigate the entire spectrum of COVID-19-vaccine-induced complications so that necessary safety measures can be taken, and current vaccines can be re-engineered to avoid or minimize their side effects. We describe in depth severe adverse events for premature metabolic, mental, and neurological disorders; cardiovascular, renal, and autoimmune diseases, and reproductive health issues detected after COVID-19 vaccinations and whether these are causal or incidental. In any case, it has become clear that the benefits of vaccinations outweigh the risks by a large margin. However, pre-existing conditions in vaccinated individuals need to be taken into account in the prevention and treatment of adverse events.
Collapse
Affiliation(s)
- Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India
- Correspondence: (D.B.); (K.L.)
| | - Vladimir Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Alaa A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Murtaza M. Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, UK
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saleh Alshammeri
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Kenneth Lundstrom
- PanTherapeutics, Route de Lavaux 49, CH1095 Lutry, Switzerland
- Correspondence: (D.B.); (K.L.)
| |
Collapse
|
21
|
Eve A. Transitions in development - an interview with Samira Musah. Development 2023; 150:dev201539. [PMID: 36637122 DOI: 10.1242/dev.201539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Samira Musah is an Assistant Professor in the Departments of Biomedical Engineering and Medicine at Duke University, USA. Samira's research focuses on leveraging pluripotent stem cells, bioengineering and organ-on-a-chip technologies to understand more about human kidney development, disease and therapy. We met with Samira over Microsoft Teams to hear more about her path to independence, mentors and her love of yoga.
Collapse
|
22
|
Kalejaiye TD, Barreto AD, Musah S. Translating Organoids into Artificial Kidneys. CURRENT TRANSPLANTATION REPORTS 2022; 9:276-286. [PMID: 36311696 PMCID: PMC9592871 DOI: 10.1007/s40472-022-00383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
Purpose of Review
Kidney disease affects more than 13% of the world population, and current treatment options are limited to dialysis and organ transplantation. The generation of kidney organoids from human-induced pluripotent stem (hiPS) cells could be harnessed to engineer artificial organs and help overcome the challenges associated with the limited supply of transplantable kidneys. The purpose of this article is to review the progress in kidney organoid generation and transplantation and highlight some existing challenges in the field. We also examined possible improvements that could help realize the potential of organoids as artificial organs or alternatives for kidney transplantation therapy. Recent Findings Organoids are useful for understanding the mechanisms of kidney development, and they provide robust platforms for drug screening, disease modeling, and generation of tissues for organ replacement therapies. Efforts to design organoids rely on the ability of cells to self-assemble and pattern themselves into recognizable tissues. While existing protocols for generating organoids result in multicellular structures reminiscent of the developing kidney, many do not yet fully recapitulate the complex cellular composition, structure, and functions of the intact kidney. Recent advances toward achieving these goals include identifying cell culture conditions that produce organoids with improved vasculature and cell maturation and functional states. Still, additional improvements are needed to enhance tissue patterning, specialization, and function, and avoid tumorigenicity after transplantation. Summary This report focuses on kidney organoid studies, advancements and limitations, and future directions for improvements towards transplantation.
Collapse
Affiliation(s)
- Titilola D. Kalejaiye
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA
| | - Amanda D. Barreto
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA
| | - Samira Musah
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Cell Biology, Duke University, Durham, NC USA ,Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, and Duke MEDx Initiative, Durham, NC USA
| |
Collapse
|
23
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022; 13:5943. [PMID: 36209212 PMCID: PMC9547573 DOI: 10.1038/s41467-022-33623-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/27/2022] [Indexed: 01/08/2023] Open
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Sophia Mah
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Curran CS, Kopp JB. RAGE pathway activation and function in chronic kidney disease and COVID-19. Front Med (Lausanne) 2022; 9:970423. [PMID: 36017003 PMCID: PMC9395689 DOI: 10.3389/fmed.2022.970423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/23/2022] Open
Abstract
The multi-ligand receptor for advanced glycation end-products (RAGE) and its ligands are contributing factors in autoimmunity, cancers, and infectious disease. RAGE activation is increased in chronic kidney disease (CKD) and coronavirus disease 2019 (COVID-19). CKD may increase the risk of COVID-19 severity and may also develop in the form of long COVID. RAGE is expressed in essentially all kidney cell types. Increased production of RAGE isoforms and RAGE ligands during CKD and COVID-19 promotes RAGE activity. The downstream effects include cellular dysfunction, tissue injury, fibrosis, and inflammation, which in turn contribute to a decline in kidney function, hypertension, thrombotic disorders, and cognitive impairment. In this review, we discuss the forms and mechanisms of RAGE and RAGE ligands in the kidney and COVID-19. Because various small molecules antagonize RAGE activity in animal models, targeting RAGE, its co-receptors, or its ligands may offer novel therapeutic approaches to slowing or halting progressive kidney disease, for which current therapies are often inadequate.
Collapse
Affiliation(s)
- Colleen S. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Dhanya CR, Shailaja A, Mary AS, Kandiyil SP, Savithri A, Lathakumari VS, Veettil JT, Vandanamthadathil JJ, Madhavan M. RNA Viruses, Pregnancy and Vaccination: Emerging Lessons from COVID-19 and Ebola Virus Disease. Pathogens 2022; 11:800. [PMID: 35890044 PMCID: PMC9322689 DOI: 10.3390/pathogens11070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic viruses with an RNA genome represent a challenge for global human health since they have the tremendous potential to develop into devastating pandemics/epidemics. The management of the recent COVID-19 pandemic was possible to a certain extent only because of the strong foundations laid by the research on previous viral outbreaks, especially Ebola Virus Disease (EVD). A clear understanding of the mechanisms of the host immune response generated upon viral infections is a prime requisite for the development of new therapeutic strategies. Hence, we present here a comparative study of alterations in immune response upon SARS-CoV-2 and Ebola virus infections that illustrate many common features. Vaccination and pregnancy are two important aspects that need to be studied from an immunological perspective. So, we summarize the outcomes and immune responses in vaccinated and pregnant individuals in the context of COVID-19 and EVD. Considering the significance of immunomodulatory approaches in combating both these diseases, we have also presented the state of the art of such therapeutics and prophylactics. Currently, several vaccines against these viruses have been approved or are under clinical trials in various parts of the world. Therefore, we also recapitulate the latest developments in these which would inspire researchers to look for possibilities of developing vaccines against many other RNA viruses. We hope that the similar aspects in COVID-19 and EVD open up new avenues for the development of pan-viral therapies.
Collapse
Affiliation(s)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610105, India;
| | | | - Ambili Savithri
- Department of Biochemistry, Sree Narayana College, Kollam 691001, India;
| | | | | | | | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
| |
Collapse
|
26
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
27
|
Badeti S, Jiang Q, Naghizadeh A, Tseng HC, Bushkin Y, Marras SAE, Nisa A, Tyagi S, Chen F, Romanienko P, Yehia G, Evans D, Lopez-Gonzalez M, Alland D, Russo R, Gause W, Shi L, Liu D. Development of a Novel Human CD147 Knock-in NSG Mouse Model to Test SARS-CoV-2 Viral Infection. RESEARCH SQUARE 2022:rs.3.rs-1431484. [PMID: 35475172 PMCID: PMC9040682 DOI: 10.21203/rs.3.rs-1431484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: 1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; 2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and 3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. Results: Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD- scid IL2Rgamma null (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show 1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; 2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; 3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. Conclusions: hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fei Chen
- Rutgers New Jersey Medical School
| | | | | | | | | | | | | | | | | | | |
Collapse
|