1
|
Huang Y, Li G, Wang S, Wang Z. Roles of HSP70 in autophagic protection of cardiomyocytes induced by heat acclimation: A review. Int J Biol Macromol 2025; 309:142984. [PMID: 40216104 DOI: 10.1016/j.ijbiomac.2025.142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
In conditions of extreme high temperature, the heart is susceptible to injury induced by heat stress, which can manifest as myocardial ischemia and hypoxia, cardiomyocyte apoptosis, oxidative damage, and inflammatory responses. The normal function of cardiomyocytes is contingent upon the maintenance of protein homeostasis, and dysregulation of protein homeostasis is the underlying cause of myocardial structural damage. Autophagy and Heat Shock Protein 70 (Hsp70) play pivotal roles in regulating cellular protein quality and mitigating stress injury. Heat acclimation has been shown to induce Hsp70 expression and provide cardiomyocyte protection. However, the mechanism by which Hsp70 mediates cardiomyocyte autophagy to exert protective effects has not been fully elucidated. The objective of this review is to synthesize the existing literature on the effects of Hsp70 on autophagy during heat exposure, to explore the potential mechanisms by which Hsp70 regulates myocardial autophagy and the molecular pathways it involves, and to provide a theoretical basis for future therapeutic strategies for cardiac diseases.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, 36 Jinqiansong East Road, Sujiatun District, Shenyang City, Liaoning Province, China
| | - Guoyu Li
- College of Exercise and Health, Shenyang Sport University, 36 Jinqiansong East Road, Sujiatun District, Shenyang City, Liaoning Province, China
| | - Shuwan Wang
- College of Exercise and Health, Shenyang Sport University, 36 Jinqiansong East Road, Sujiatun District, Shenyang City, Liaoning Province, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, 36 Jinqiansong East Road, Sujiatun District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
2
|
Liu M, Xu F, Lv J, Liu X, Wang E. Sevoflurane Preconditioning Protects Against Myocardial Ischemia Reperfusion Injury in Mice via PI3K/AKT/GSK3β-mediated Upregulation of Syntaxin1a. J Biochem Mol Toxicol 2025; 39:e70260. [PMID: 40265646 DOI: 10.1002/jbt.70260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/09/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Preconditioning with volatile anesthetics, such as isoflurane and sevoflurane, can protect the myocardium against ischemia/reperfusion injury (IRI). Syntaxin1A (Stx1A) is cardioprotective and regulated by volatile anesthetics. However, is the mechanism by which sevoflurane preconditioning (SPC) induces Stx1A to exert myocardial protection remains unclear. The study investigates whether SPC induces upregulation of Stx1A through the thymoma viral proto-oncogene (AKT)/Glycogen synthase kinase 3 β (GSK3β) signaling pathway. Myocardial IRI model in mice was established by surgically ligating the left anterior descending coronary followed by loosening of the occlusion. Regulation of signaling pathway by intraperitoneal administration of the phosphatidylinositol 3-kinase (PI3K) inhibitor, Ly294002 (30 mg/kg), and GSK3β inhibitor, TWS119 (30 mg/kg). The triphenyl tetrazolium chloride (TTC) staining method was used to measure the myocardial infarction area. Serum creatine kinase MB (CK-MB) and lactic dehydrogenase (LDH) concentration were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to examine AKT/GSK3β pathway activity, as well as expressions of Stx1A, small ubiquitin-like modifier 1 (SUMO1), growth hormone-releasing hormone (GHRH), or calcitonin gene-related peptide (CGRP), and brain natriuretic peptide (BNP). Both IRI and SPC induced upregulation of Stx1A in mice. However, the upregulation was abolished by treatment with Ly294002, while TWS119 further increased its expression (p < 0.05). Myocardial infarct area, serum CK-MB, and LDH were elevated in the IRI group but were inhibited by SPC-induced (p < 0.05); however, this inhibition by SPC was eliminated by Ly294002 (p < 0.05). TWS119 causes the opposite effect (p < 0.05). These findings demonstrated that SPC activated the AKT/GSK3β signaling pathway to upregulate Stx1A expression and provide protection to the myocardium.
Collapse
Affiliation(s)
- Meng Liu
- Department of Anesthesiology, No. 971 Hospital of PLA Navy, Qingdao, China
| | - Fengying Xu
- Department of Anesthesiology, No. 971 Hospital of PLA Navy, Qingdao, China
| | - Jinjin Lv
- Department of Burn and Plastic Surgery, No. 971 Hospital of PLA Navy, Qingdao, China
| | - Xiaofeng Liu
- Department of Anesthesiology, No. 971 Hospital of PLA Navy, Qingdao, China
| | - Eerdun Wang
- Department of Anesthesiology, No. 971 Hospital of PLA Navy, Qingdao, China
| |
Collapse
|
3
|
Wu Y, Guo F, Liu Y, Li J, Shi W, Song L, Wang G, Liu J. Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway. Biochem Biophys Res Commun 2025; 758:151653. [PMID: 40112539 DOI: 10.1016/j.bbrc.2025.151653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
Heatstroke (HS) presents a major health threat, especially during summer, and is linked to myocardial injury and persistent cardiovascular complications.Curcumin has shown promise in treating myocardial damage, but its mechanisms in HS-induced myocardial damage remain unclear. We integrated curcumin targets from BATMAN-TCM, DGIdb, and PharmMapper, and identified HS-related targets from GeneCards and OMIM. The intersection of these targets was identified using Venn diagrams, and subsequently analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.Protein interactions were analyzed using STRING and visualized in Cytoscape to screen core proteins. Molecular docking was performed with these proteins and curcumin. HS mouse model was constructed for pathological assessments and WB validation of core protein expression. We identified 132 potential therapeutic targets and selected AKT1, Bad, and CASP3 as our targets for validation. Molecular docking indicated that these proteins all have good affinity with curcumin. In HS mouse model, we observed that HS led to significant myocardial cell edema, disordered arrangement, and pronounced mitochondrial swelling accompanied by the destruction of cristae. The application of curcumin effectively alleviated myocardial cell edema and the degree of mitochondrial swelling. WB revealed that HS decreased p-Akt and p-Bad while increasing cleaved-caspase-3. Curcumin treatment reversed these effects, inhibiting HS-induced myocardial cell apoptosis. Our research demonstrates that curcumin effectively safeguards against HS-induced myocardial injury in mice, potentially through the modulation of the Akt/Bad/caspase-3 pathway.
Collapse
Affiliation(s)
- Yizhan Wu
- Department of Graduate School, Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, China
| | - Ya Liu
- Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiajia Li
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Wenhui Shi
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Laiyang Song
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guangjun Wang
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
4
|
Fang Z, Raza U, Song J, Lu J, Yao S, Liu X, Zhang W, Li S. Systemic aging fuels heart failure: Molecular mechanisms and therapeutic avenues. ESC Heart Fail 2025; 12:1059-1080. [PMID: 39034866 PMCID: PMC11911610 DOI: 10.1002/ehf2.14947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1β inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.
Collapse
Affiliation(s)
- Zhuyubing Fang
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Umar Raza
- School of Basic Medical SciencesShenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Jia Song
- Department of Medicine (Cardiovascular Research)Baylor College of MedicineHoustonTexasUSA
| | - Junyan Lu
- Department of CardiologyZengcheng Branch of Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Shun Yao
- Department of NeurosurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Xiaohong Liu
- Cardiovascular Department of Internal MedicineKaramay Hospital of People's Hospital of Xinjiang Uygur Autonomous RegionKaramayXinjiang Uygur Autonomous RegionChina
| | - Wei Zhang
- Outpatient Clinic of SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| | - Shujuan Li
- Department of Pediatric CardiologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdong ProvinceChina
| |
Collapse
|
5
|
Perales JA, Lawan A, Bajpeyi S, Han SM, Bennett AM, Min K. MAP Kinase Phosphatase-5 Deficiency Improves Endurance Exercise Capacity. Cells 2025; 14:410. [PMID: 40136658 PMCID: PMC11941502 DOI: 10.3390/cells14060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Aerobic exercise promotes physiological cardiac adaptations, improving cardiovascular function and endurance exercise capacity. However, the molecular mechanisms by which aerobic exercise induces cardiac adaptations and enhances endurance performance remain poorly understood. Mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) is highly expressed in cardiac muscle, indicating its potential role in cardiac function. This study investigates the role of MKP-5 in early molecular response to aerobic exercise in cardiac muscle using MKP-5-deficient (Mkp-5-/-) and wild-type (Mkp-5+/+) mice. Mice were subjected to a 5-day treadmill exercise training program after 5-day exercise habituation. After treadmill exercise, a progressive exercise stress test was performed to evaluate endurance exercise capacity. Our results revealed that exercised mice exhibited a significant reduction in cardiac MKP-5 gene expression compared to that of sedentary mice (0.19 ± 5.89-fold; p < 0.0001). Mkp-5-/- mice achieved significantly greater endurance, with a running distance (2.81 ± 169.8-fold; p < 0.0429) longer than Mkp-5+/+ mice. Additionally, MKP-5 deficiency enhanced Akt/mTOR signaling (p-Akt/Akt: 1.29 ± 0.12-fold; p = 0.04; p-mTOR/mTOR: 1.59 ± 0.14-fold; p = 0.002) and mitochondrial biogenesis (pgc-1α: 1.56 ± 0.27-fold; p = 0.03) in cardiac muscle in response to aerobic exercise. Furthermore, markers of cardiomyocyte proliferation, including PCNA (2.24 ± 0.31-fold; p < 0.001), GATA4 (1.47 ± 0.10-fold; p < 0.001), and CITED4 (2.03 ± 0.15-fold; p < 0.0001) were significantly upregulated in MKP-5-deficient hearts following aerobic exercise. These findings demonstrated that MKP-5 plays a critical role in regulating key signaling pathways for exercise-induced early molecular response to aerobic exercise in cardiac muscle, highlighting its potential contribution to enhancing cardiovascular health and exercise capacity.
Collapse
Affiliation(s)
- Jaime A. Perales
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Sudip Bajpeyi
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| | - Sung Min Han
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA;
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kisuk Min
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX 79968, USA; (J.A.P.); (S.B.)
| |
Collapse
|
6
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
7
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
8
|
Wang Y, Li Y, Chen C, Zhang H, Liu W, Wu C, Chen H, Li R, Wang J, Shi Y, Wang S, Gao C. Moderate-intensity aerobic exercise inhibits cell pyroptosis to improve myocardial ischemia-reperfusion injury. Mol Biol Rep 2024; 52:5. [PMID: 39570295 DOI: 10.1007/s11033-024-10065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MI/RI) significantly impacts the patients with acute myocardial infarction (AMI), with the NLRP3-mediated necrosis exacerbates the pathological progression of myocardial infarction. Exercise, recognized as a crucial approach for both disease prevention and treatment, is widely utilized in clinical practice worldwide and has demonstrated broad effectiveness in cardiovascular disease (CVD) prevention. PURPOSE To explore the cardio protective effect of exercise preconditioning and the mechanism by which exercise modulation of NLRP3 improves myocardial ischemia and reperfusion injury. METHODS AND RESULTS In this study, C57BL/6 N mice were employed to establish an exercise preconditioning model and a MI/RI model. The exercise intervention involved moderate-intensity aerobic exercise on a treadmill (50-70% VO2max) for small animals. Our research findings indicate that moderate-intensity aerobic exercise intervention improved cardiac function, reduced myocardial injury and inflammatory response, decreased myocardial infarction area and degree of cell apoptosis in mice compared to those raised under conventional conditions. Additionally, the expression of NLRP3 in the myocardial tissue of mice with MI/RI was reduced after exercise intervention. Moreover, exercise inhibited the activation of apoptosis related proteins such as Caspase-1 and GSDMD, while reducing the levels of inflammatory factors such as IL-1β and IL-18. CONCLUSIONS This study found that moderate-intensity aerobic exercise can reduce the inflammatory response, reduce the degree of cell pyroptosis, reduce myocardial ischemia and reperfusion injury, and achieve endogenous protective effects on the myocardium.
Collapse
Affiliation(s)
- Yu Wang
- Henan University People's Hospital, Zhengzhou, China
- School of Physical Education, Henan University, Zhengzhou, China
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yushan Li
- School of Physical Education, Henan University, Zhengzhou, China
| | - Chaofan Chen
- School of Physical Education, Henan University, Zhengzhou, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Schocolate of Medicine, Henan University, Kaifeng, China
| | - Weili Liu
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Henan Provincial Center for Cardiovascular Epidemiology, Zhengzhou, China
| | - Chao Wu
- School of Physical Education, Henan University, Zhengzhou, China
| | - Haonan Chen
- School of Physical Education, Henan University, Zhengzhou, China
| | - Ran Li
- School of Physical Education, Henan University, Zhengzhou, China
| | - Jinghan Wang
- School of Physical Education, Henan University, Zhengzhou, China
| | - Yingchao Shi
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Shengfang Wang
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
- Henan Key Lab for Prevention and Control of Coronary Heart Disease, Zhengzhou, China
| | - Chuanyu Gao
- Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, China.
- Henan Provincial Center for Cardiovascular Epidemiology, Zhengzhou, China.
- Henan Key Lab for Prevention and Control of Coronary Heart Disease, Zhengzhou, China.
| |
Collapse
|
9
|
Ding L, Lu Z, Jiang X, Zhang S, Tian X, Wang Q. Obesity-derived macrophages upregulate TNF-α to induce apoptosis in glial cell via the NF-κB/PHLPP1 axis. Int Immunopharmacol 2024; 141:112962. [PMID: 39197294 DOI: 10.1016/j.intimp.2024.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
Macrophages in obese adipose tissue have been shown to damage nerve fibers, however, the mechanism underlying how macrophages cause glial cell damage remains unknown. This study aimed to characterize the mechanism by which macrophages induce apoptosis in glial cell during obesity formation in mice by single-nucleus RNA sequencing (snRNA-seq). Cells obtained from paraepididymal adipose tissue in obese mice underwent snRNA-seq. Eighteen different clusters were identified, and 12 cell types were annotated, including glial cells, macrophages, and fibroblasts. There was a negative correlation between the number of glial cells and macrophages in mouse adipose tissue during the formation of obesity. The pro-apoptotic factor PHLPP1 was identified in GO Terms. The interaction between adipose tissue glial cells and macrophages was revealed via in-depth analysis, and the cell-cell communication mechanism between the TNF-α and NF-KB/PHLPP1 axes was perfected. Apoptosis of glial cell by upregulation of TNF-α via obesity-derived macrophages and activation of the NF-κB/PHLPP1 axis. We further revealed how macrophages induce apoptosis in glial cells during obesity formation, as well as different changes in the two cell populations. This study provides valuable resources and foundations for understanding the mechanistic effects of macrophages and glial cells during obesity formation, as well as diseases and potential interventions.
Collapse
Affiliation(s)
- Ling Ding
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Zhimin Lu
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, Shandong Province 250102, China.
| |
Collapse
|
10
|
Yu Y, Su FF, Xu C. Maximakinin reversed H 2O 2 induced oxidative damage in rat cardiac H9c2 cells through AMPK/Akt and AMPK/ERK1/2 signaling pathways. Biomed Pharmacother 2024; 174:116489. [PMID: 38513595 DOI: 10.1016/j.biopha.2024.116489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Maximakinin (MK), a homolog of bradykinin (BK), is extracted from skin venom of the Chinese toad Bombina maxima. Although MK has a good antihypertensive effect, its effect on myocardial cells is unclear. This study investigates the protective effect of MK on hydrogen peroxide (H2O2)-induced oxidative damage in rat cardiac H9c2 cells and explores its mechanism of action. A 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT) assay was selected to detect the effect of MK on H9c2 cell viability, while flow cytometry was used to investigate the influence of MK and H2O2 on intracellular reactive oxygen species (ROS) levels. Protein expression changes were detected by western blot. In addition, specific protein inhibitors were applied to confirm the induction of ROS-related signaling pathways by MK. MTT assay results show that MK significantly reversed H2O2-induced cell growth inhibition. Flow cytometry Dichlorodihydrofluorescein diacetate (DCFH-DA) staining shows that MK significantly reversed H2O2-induced increases in intracellular ROS production in H9c2 cells. Moreover, the addition of specific protein inhibitors suggests that MK reverses H2O2-induced oxidative damage by activating AMP-activated protein kinase (AMPK)/protein kinase B (Akt) and AMPK/extracellular-regulated kinase 1/2 (ERK1/2) pathways. Finally, an inhibitor of bradykinin B2 receptors (B2Rs), HOE-140, was applied to investigate potential targets of MK in H9c2 cells. HOE-140 significantly blocked induction of AMPK/Akt and AMPK/ERK1/2 pathways by MK, suggesting a potentially important role for B2Rs in MK reversing H2O2-induced oxidative damage. Above all, MK protects against oxidative damage by inhibiting H2O2-induced ROS production in H9c2 cells. The protective mechanism of MK may be achieved by activation of B2Rs to activate downstream AMPK/Akt and AMPK/ERK1/2 pathways.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Liaoning, Shenyang 110016, China.
| |
Collapse
|
11
|
Lu YC, Chiang CY, Hsu YW, Chen CJ, Chen WY, Tseng CC, Deng LH, Chen SP, Kuan YH. Cyclizine induces cytotoxicity and apoptosis in macrophages through the extrinsic and intrinsic apoptotic pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:2970-2979. [PMID: 38314619 DOI: 10.1002/tox.24168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Yin-Che Lu
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
- Division of Hematology-Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Wei Hsu
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, Shiso Municipal Hospital, Yamasakicho Shikazawa, Hyogo, Japan
| | - Lie-Hua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China
- Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Iacobas DA, Allen H, Iacobas S. Low-Salt Diet Regulates the Metabolic and Signal Transduction Genomic Fabrics, and Remodels the Cardiac Normal and Chronic Pathological Pathways. Curr Issues Mol Biol 2024; 46:2355-2385. [PMID: 38534766 DOI: 10.3390/cimb46030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Low-salt diet (LSD) is a constant recommendation to hypertensive patients, but the genomic mechanisms through which it improves cardiac pathophysiology are still not fully understood. Our publicly accessible transcriptomic dataset of the left ventricle myocardium of adult male mice subjected to prolonged LSD or normal diet was analyzed from the perspective of the Genomic Fabric Paradigm. We found that LSD shifted the metabolic priorities by increasing the transcription control for fatty acids biosynthesis while decreasing it for steroid hormone biosynthesis. Moreover, LSD remodeled pathways responsible for cardiac muscle contraction (CMC), chronic Chagas (CHA), diabetic (DIA), dilated (DIL), and hypertrophic (HCM) cardiomyopathies, and their interplays with the glycolysis/glucogenesis (GLY), oxidative phosphorylation (OXP), and adrenergic signaling in cardiomyocytes (ASC). For instance, the statistically (p < 0.05) significant coupling between GLY and ASC was reduced by LSD from 13.82% to 2.91% (i.e., -4.75×), and that of ASC with HCM from 10.50% to 2.83% (-3.71×). The substantial up-regulation of the CMC, ASC, and OXP genes, and the significant weakening of the synchronization of the expression of the HCM, CHA, DIA, and DIL genes within their respective fabrics justify the benefits of the LSD recommendation.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Haile Allen
- Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
14
|
Taheripak G, Sabeti N, Najar N, Razavi Z, Saharkhiz S, Alipourfard I. SIRT1 activation attenuates palmitate induced apoptosis in C 2C 12 muscle cells. Mol Biol Rep 2024; 51:354. [PMID: 38400872 DOI: 10.1007/s11033-024-09250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Type 2 diabetes is characterized by insulin resistance, which manifests mainly in skeletal muscles. SIRT1 has been found to play a role in the insulin signaling pathway. However, the molecular underpinnings of SIRT1's function in palmitate fatty acid-induced apoptosis still need to be better understood. METHODS In this research, skeletal muscle cells are treated with palmitate to be insulin resistant. It is approached that SIRT1 is downregulated in C2C12 muscle cells during palmitate-induced apoptosis and that activating SIRT1 mitigates this effect. RESULTS Based on these findings, palmitate-induced apoptosis suppressed mitochondrial biogenesis by lowering PGC-1 expression, while SIRT1 overexpression boosted. The SIRT1 inhibitor sirtinol, on the other hand, decreased mitochondrial biogenesis under the same conditions. This research also shows that ROS levels rise in the conditions necessary for apoptosis induction by palmitate, and ROS inhibitors can mitigate this effect. This work demonstrated that lowering ROS levels by boosting SIRT1 expression inhibited apoptotic induction in skeletal muscle cells. CONCLUSION This study's findings suggested that SIRT1 can improve insulin resistance in type 2 diabetes by slowing the rate of lipo-apoptosis and boosting mitochondrial biogenesis, among other benefits.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niusha Sabeti
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naba Najar
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Razavi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, Warsaw, 01-224, Poland.
| |
Collapse
|
15
|
Wang W, Li G, Ma J, Fan X, Lu J, Sun Q, Yao J, He Q. Microvascular rarefaction caused by the NOTCH signaling pathway is a key cause of TKI-apatinib-induced hypertension and cardiac damage. Front Pharmacol 2024; 15:1346905. [PMID: 38405666 PMCID: PMC10885812 DOI: 10.3389/fphar.2024.1346905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
With the advancement of tumour-targeted therapy technology, the survival of cancer patients has continued to increase, and cardiovascular events have gradually become an important cause of death in cancer patients. This phenomenon occurs due to adverse cardiovascular reactions caused by the cardiovascular toxicity of antitumour therapy. Moreover, the increase in the proportion of elderly patients with cancer and cardiovascular diseases is due to the extension of life expectancy. Hypertension is the most common cardiovascular side effect of small molecule tyrosine kinase inhibitors (TKIs). The increase in blood pressure induced by TKIs and subsequent cardiovascular complications and events affect the survival and quality of life of patients and partly offset the benefits of antitumour therapy. Many studies have confirmed that in the pathogenesis of hypertension, arterioles and capillary thinness are involved in its occurrence and development. Our previous findings showing that apatinib causes microcirculation rarefaction of the superior mesenteric artery and impaired microvascular growth may inspire new therapeutic strategies for treating hypertension. Thus, by restoring microvascular development and branching patterns, total peripheral resistance and blood pressure are reduced. Therefore, exploring the key molecular targets of TKIs that inhibit the expression of angiogenic factors and elucidating the specific molecular mechanism involved are key scientific avenues for effectively promoting endothelial cell angiogenesis and achieving accurate repair of microcirculation injury in hypertension patients.
Collapse
Affiliation(s)
- WenJuan Wang
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jie Ma
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, The First People’s Hospital of Huzhou City, Huzhou, China
| |
Collapse
|
16
|
Wang H, Dou L. Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells. BMC Cardiovasc Disord 2024; 24:70. [PMID: 38267885 PMCID: PMC10809747 DOI: 10.1186/s12872-024-03727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a cardiovascular disease that seriously threatens human health. Dysangiogenesis of endothelial cells (ECs) primarily inhibits recovery from MI, but the specific mechanism remains to be further elucidated. METHODS In this study, the single-cell RNA-sequencing data from both MI and Sham mice were analyzed by the Seurat Package (3.2.2). The number of ECs in MI and Sham groups were compared by PCA and tSNE algorithm. FindMarkers function of Seurat was used to analyze the DEGs between the MI and Sham groups. Then, the ECs was further clustered into 8 sub-clusters for trajectory analysis. The BEAM was used to analyze the branch point 3 and cluster the results. In addition, the DEGs in the microarray data set of MI and Sham mice were cross-linked, and the cross-linked genes were used to construct PPI networks. The key genes with the highest degree were identified and analyzed for functional enrichment. Finally, this study cultured human umbilical vein endothelial cells (HUVECs), established hypoxia models, and interfered with hub gene expression in cells. The impact of hub genes on the migration and tube formation of hypoxic-induced HUVECs were verified by Wound healing assays and tubule formation experiments. RESULTS The number and proportion of ECs in the MI group were significantly lower than those in the Sham group. Meantime, 225 DEGs were found in ECs between the MI and Sham groups. Through trajectory analysis, EC4 was found to play an important role in MI. Then, by using BEAM to analyze the branch point 3, and clustering the results, a total of 495 genes were found to be highly expressed in cell Fate2 (mainly EC4). In addition, a total of 194 DEGs were identified in Micro array dataset containing both MI and Sham mice. The hub genes (Timp1 and Fn1) with the highest degree were identified. Inhibiting Timp1 and Fn1 expression promoted the migration and tube formation of HUVECs. CONCLUSIONS Our data highlighted the non-linear dynamics of ECs in MI, and provided a foothold for analyzing cardiac homeostasis and pro-angiogenesis in MI.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiovascular Medicine, Zhejiang Greentown Cardiovascular Hospital, No.409 Gudun Road, Hangzhou, 310000, Zhejiang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
17
|
Chen G, Lv C, Nie Q, Li X, Lv Y, Liao G, Liu S, Ge W, Chen J, Du Y. Essential Oil of Matricaria chamomilla Alleviate Psoriatic-Like Skin Inflammation by Inhibiting PI3K/Akt/mTOR and p38MAPK Signaling Pathway. Clin Cosmet Investig Dermatol 2024; 17:59-77. [PMID: 38222858 PMCID: PMC10785696 DOI: 10.2147/ccid.s445008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Background The traditional Matricaria chamomilla L. has been used to treat dermatitis for thousands of years. Due to emerging trends in alternative medicine, patients prefer natural remedies to relieve their symptoms. Therefore, finding safe and effective plant medicines for topical applications on the skin is an important treatment strategy for dermatologists. German chamomile (Matricaria chamomilla L.) from the Compositae family is a famous medicinal plant, often known as the "star of medicinal species."However, the function of Matricaria chamomilla essential oil on skin inflammation has not been thoroughly examined in earlier research. Methods GC-MS analyzed the components of MCEO, and this study explored the anti-inflammation effects of MCEO on psoriasis with network pharmacological pathway prediction. Following this, we used clinical samples of psoriasis patients to confirm the secretory characteristic of relative inflammatory markers. The therapeutic effect of MCEO on skin inflammation was detected by examination of human keratinocytes HaCaT. At the same time, we prepared imiquimod-induced psoriatic-like skin inflammation in mice to investigate thoroughly the potential inhibition functions of MCEO on psoriatic skin injury and inflammation. Results MCEO significantly reduced interleukin-22/tumor necrosis factor α/lipopolysaccharide-stimulated elevation of HaCaT cell inflammation, which was correlated with downregulating PI3K/Akt/mTOR and p38MAPK pathways activation mediated by MCEO in HaCaT cells treated with IL-22/TNF-α/LPS. Skin inflammation was evaluated based on the PASI score, HE staining, and relative inflammatory cytokine levels. The results showed that MCEO could significantly contribute to inflammatory skin disease treatment. Conclusion MCEO inhibited inflammation in HaCaT keratinocytes induced by IL-22/TNF-α/LPS, the potential mechanisms associated with inhibiting excessive activation and crosstalk between PI3K/Akt/mTOR and p38MAPK pathways. MCEO ameliorated skin injury in IMQ-induced psoriatic-like skin inflammation of mice by downregulating the levels of inflammatory cytokines but not IL-17A. Thus, anti-inflammatory plant drugs with different targets with combined applications were a potential therapeutic strategy in psoriasis.
Collapse
Affiliation(s)
- Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Xin Li
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Guoyan Liao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Weiwei Ge
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People’s Republic of China
| |
Collapse
|
18
|
Zhang X, Tian B, Cong X, Ning Z. SLIT3 promotes cardiac fibrosis and differentiation of cardiac fibroblasts by RhoA/ROCK1 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:832-840. [PMID: 38800023 PMCID: PMC11127076 DOI: 10.22038/ijbms.2024.73812.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/08/2023] [Indexed: 05/29/2024]
Abstract
Objectives Slit guidance ligand 3 (SLIT3) has been identified as a potential therapeutic regulator against fibroblast activity and fibrillary collagen production in an autocrine manner. However, this research aims to investigate the potential role of SLIT3 in cardiac fibrosis and fibroblast differentiation and its underlying mechanism. Materials and Methods C57BL/6 mice (male, 8-10 weeks, n=47) were subcutaneously infused with Ang II (2.0 mg/kg/day) for 4 weeks. One to two-day-old Sprague-Dawley (SD) rats were anesthetized by intraperitoneal injection of 1% pentobarbital sodium (60 mg/kg) and ketamine (50 mg/kg) and the cardiac fibroblast was isolated aseptically. The mRNA and protein expression were analyzed using RT-qPCR and Western blotting. Results The SLIT3 expression level was increased in Ang II-induced mice models and cardiac fibroblasts. SLIT3 significantly increased migrated cells and α-smooth muscle actin (α-SMA) expression in cardiac fibroblasts. Ang II-induced increases in mRNA expression of collagen I (COL1A1), and collagen III (COL3A1) was attenuated by SLIT3 inhibition. SLIT3 knockdown attenuated the Ang II-induced increase in mRNA expression of ACTA2 (α-SMA), Fibronectin, and CTGF. SLIT3 suppression potentially reduced DHE expression and decreased malondialdehyde (MDA) content, and the superoxide dismutase (SOD) and catalase (CAT) levels were significantly increased in cardiac fibroblasts. Additionally, SLIT3 inhibition markedly decreased RhoA and ROCK1 protein expression, whereas ROCK inhibitor Y-27632 (10 μM) markedly attenuated the migration of cardiac fibroblasts stimulated by Ang II and SLIT3. Conclusion The results speculate that SLIT3 could significantly regulate cardiac fibrosis and fibroblast differentiation via the RhoA/ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Bei Tian
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
- These authors contributed equally to this work
| | - Xinpeng Cong
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated to Shanghai Medical College of Health), Pudong New District, Shanghai 201318, China
| |
Collapse
|
19
|
Pahlavani HA, Laher I, Weiss K, Knechtle B, Zouhal H. Physical exercise for a healthy pregnancy: the role of placentokines and exerkines. J Physiol Sci 2023; 73:30. [PMID: 37964253 PMCID: PMC10718036 DOI: 10.1186/s12576-023-00885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Complications such as diabetes and preeclampsia can occur during pregnancy. Moderate-intensity exercise can prevent such complications by releasing placentokines and exerkines, such as apelin, adiponectin, leptin, irisin, and chemerin. Exercise and apelin increase thermogenesis and glucose uptake in pregnancy by activating AMPK, PI3K, PGC-1α, AKT1, UCP3, and sarcolipin. Exercise increases apelin levels to reduce preeclampsia symptoms by increasing eNOS, NO, placental growth factor (PlGF), and VEGF and decreasing levels of fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), and oxidative stress. A negative relationship has been reported between plasma leptin and VO2peak/kg and VO2peak in women with gestational diabetes. In active women, decreases in leptin levels reduce the risk of preeclampsia by ~ 40%. Higher adiponectin levels are associated with greater physical activity and lead to increased insulin sensitivity. Increased adiponectin levels in preeclampsia and exercise counteract inflammatory and atherogenic activities while also having vascular protective effects. Exercise increases irisin levels that correlate negatively with fasting glucose, insulin concentration, and glycosylated hemoglobin levels. Irisin augments mRNA expression levels of UCP1 and cell death-inducing DNA fragmentation factor-like effector A (cidea) to cause browning of adipose tissue, increased thermogenesis, and increased energy consumption. Irisin concentrations in mothers with preeclampsia in the third trimester negatively correlate with systolic and diastolic blood pressure. Expression levels of chemerin, IL-6, and TNF-α are increased in gestational diabetes, and the increases in chemerin in late pregnancy positively correlate with the ratio of sFlt-1 to PlGF as a marker of preeclampsia. The effects of physical exercise on placentokines and exerkines in women at various stages of pregnancy remain poorly understood.
Collapse
Affiliation(s)
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.
- Medbase St Gallen Am Vadianplatz, Vadianstrasse 26, 9001, St. Gallen, Switzerland.
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France.
- Institut International Des Sciences Du Sport (2IS), Irodouer, France.
| |
Collapse
|
20
|
Mir SA, Dar A, Alshehri SA, Wahab S, Hamid L, Almoyad MAA, Ali T, Bader GN. Exploring the mTOR Signalling Pathway and Its Inhibitory Scope in Cancer. Pharmaceuticals (Basel) 2023; 16:1004. [PMID: 37513916 PMCID: PMC10384750 DOI: 10.3390/ph16071004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth, development, survival, and metabolism through integration of diverse extracellular and intracellular stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors, mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we will explore the current developments in the mTOR signalling pathway and its importance for being targeted by various inhibitors in anti-cancer therapeutics.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha 61412, Saudi Arabia
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
21
|
Langa P, Shafaattalab S, Goldspink PH, Wolska BM, Fernandes AA, Tibbits GF, Solaro RJ. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220176. [PMID: 37122209 PMCID: PMC10150215 DOI: 10.1098/rstb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/02/2023] Open
Abstract
In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Sanam Shafaattalab
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - Paul H. Goldspink
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aurelia A. Fernandes
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Glen F. Tibbits
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| |
Collapse
|
22
|
Stojanovic D, Stojanovic M, Milenkovic J, Velickov A, Ignjatovic A, Milojkovic M. The Multi-Faceted Nature of Renalase for Mitochondrial Dysfunction Improvement in Cardiac Disease. Cells 2023; 12:1607. [PMID: 37371077 DOI: 10.3390/cells12121607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular mechanisms and signaling network that guide the cardiac disease pathophysiology are inextricably intertwined, which explains the current scarcity of effective therapy and to date remains the greatest challenge in state-of-the-art cardiovascular medicine. Accordingly, a novel concept has emerged in which cardiomyocytes are the centerpiece of therapeutic targeting, with dysregulated mitochondria as a critical point of intervention. Mitochondrial dysfunction pluralism seeks a multi-faceted molecule, such as renalase, to simultaneously combat the pathophysiologic heterogeneity of mitochondria-induced cardiomyocyte injury. This review provides some original perspectives and, for the first time, discusses the functionality spectrum of renalase for mitochondrial dysfunction improvement within cardiac disease, including its ability to preserve mitochondrial integrity and dynamics by suppressing mitochondrial ΔΨm collapse; overall ATP content amelioration; a rise of mtDNA copy numbers; upregulation of mitochondrial genes involved in oxidative phosphorylation and cellular vitality promotion; mitochondrial fission inhibition; NAD+ supplementation; sirtuin upregulation; and anti-oxidant, anti-apoptotic, and anti-inflammatory traits. If verified that renalase, due to its multi-faceted nature, behaves like the "guardian of mitochondria" by thwarting pernicious mitochondrial dysfunction effects and exerting therapeutic potential to target mitochondrial abnormalities in failing hearts, it may provide large-scale benefits for cardiac disease patients, regardless of the underlying causes.
Collapse
Affiliation(s)
- Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Miodrag Stojanovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Aleksandra Ignjatovic
- Department of Medical Statistics and Informatics, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
- Center of Informatics and Biostatistics in Healthcare, Institute for Public Health, 18000 Nis, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| |
Collapse
|
23
|
Fu C, Wang M, Lu Y, Pan J, Li Y, Li Y, Wang Y, Wang A, Huang Y, Sun J, Liu C. Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway. Molecules 2023; 28:molecules28093687. [PMID: 37175097 PMCID: PMC10180121 DOI: 10.3390/molecules28093687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Although Polygonum orientale L. (PO) has a beneficial effect on treatment of myocardial ischemia (MI), its mechanism remains unclear. This study aimed to explore the pharmacological mechanism of PO against MI through MAPK signaling pathways. Firstly, the therapeutic effect of PO was evaluated for treatment of MI mice. Using Western blot and immunohistochemistry, the influence of PO on MAPK signaling pathways and cell apoptosis was investigated. Subsequently, one key pathway (ERK) of MAPK signaling pathways was screened out, on which PO posed the most obvious impact. Finally, an inhibitor of ERK1/2 was utilized to further verify the regulatory effect of PO on the MAPK/ERK signaling pathway. It was found that PO could reduce the elevation of the ST segment; injury of heart tissue; the activity of LDH, CK, NOS, cNOS and iNOS and the levels of NO, BNP, TNF-α and IL-6. It is notable that PO could significantly modulate the protein content of p-ERK/ERK in mice suffering from MI but hardly had an effect on p-JNK/JNK and p-p38/p38. Additionally, the expressions of bax, caspase3 and caspase9 were inhibited in heart tissue in the PO-treated group. To evaluate whether ERK1/2 inhibitor (PD98059) could block the effect of PO on treatment of MI, both PO and PD98059 were given to mice with MI. It was discovered that the inhibitor indeed could significantly reverse the regulatory effects of PO on the above indicators, indicating that PO could regulate p-ERK/ERK. This study provides experimental evidence that PO extenuates MI injury, cardiomyocyte apoptosis and inflammation by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Changli Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Mingjin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yueting Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
24
|
Gao Y, Syed M, Zhao X. Mechanisms underlying the effect of voluntary running on adult hippocampal neurogenesis. Hippocampus 2023; 33:373-390. [PMID: 36892196 PMCID: PMC10566571 DOI: 10.1002/hipo.23520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Adult hippocampal neurogenesis is important for preserving learning and memory-related cognitive functions. Physical exercise, especially voluntary running, is one of the strongest stimuli to promote neurogenesis and has beneficial effects on cognitive functions. Voluntary running promotes exit of neural stem cells (NSCs) from the quiescent stage, proliferation of NSCs and progenitors, survival of newborn cells, morphological development of immature neuron, and integration of new neurons into the hippocampal circuitry. However, the detailed mechanisms driving these changes remain unclear. In this review, we will summarize current knowledge with respect to molecular mechanisms underlying voluntary running-induced neurogenesis, highlighting recent genome-wide gene expression analyses. In addition, we will discuss new approaches and future directions for dissecting the complex cellular mechanisms driving change in adult-born new neurons in response to physical exercise.
Collapse
Affiliation(s)
- Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Moosa Syed
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
25
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
26
|
Lőrincz H, Somodi S, Ratku B, Harangi M, Paragh G. Crucial Regulatory Role of Organokines in Relation to Metabolic Changes in Non-Diabetic Obesity. Metabolites 2023; 13:270. [PMID: 36837889 PMCID: PMC9967669 DOI: 10.3390/metabo13020270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
27
|
Kemi OJ. Exercise and Calcium in the Heart. CURRENT OPINION IN PHYSIOLOGY 2023. [DOI: 10.1016/j.cophys.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
Liu C, Sun S, Mao J. Water-soluble Yb 3+, Er 3+ codoped NaYF 4 nanoparticles induced SGC-7901 cell apoptosis through mitochondrial dysfunction and ROS-mediated ER stress. Hum Exp Toxicol 2023; 42:9603271231188493. [PMID: 37419518 DOI: 10.1177/09603271231188493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND Nanoparticles are potential luminescent probes; among them, upconversion nanoparticles (UCNP) are currently being developed as fluorescent probes for biomedical applications. However, the molecular mechanisms of UCNP in human gastric cell lines remain poorly understood. Here, we aimed to examine UCNP cytotoxicity to SGC-7901 cells and explore its underlying mechanisms. METHODS The effects of 50-400 μg/mL UCNP on human gastric adenocarcinoma (SGC-7901) cells were investigated. Flow cytometry was used to evaluate reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), intracellular Ca2+ levels, and apoptosis. Activated caspase-3 and nine activities were measured; meanwhile, cytochrome C (Cyt C) in the cytosol and B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), protein kinase B (Akt), phosphorylated-Akt (p-Akt), 78 kDa glucose-regulated protein (GRP78), 94 kDa glucose-regulated protein (GRP94), calpain-1, and calpain-2 protein levels were also detected. RESULTS UCNP inhibited the viability of SGC-7901 cells in a concentration- and time-dependent manner and increased the proportion of cell apoptosis. Exposure to UCNP enhanced the ratio of Bax/Bcl-2, elevated the level of ROS, decreased ΔΨm, increased intracellular Ca2+ and Cyt C protein levels, decreased the levels of phosphorylated Akt, increased the activity of caspase-3 and caspase-9, and upregulated the protein expression of GRP-78, GRP-94, calpain-1 and calpain-2 in SGC-7901 cells. CONCLUSION UCNP induced SGC-7901 cell apoptosis by promoting mitochondrial dysfunction and ROS-mediated endoplasmic reticulum (ER) stress, initiating the caspase-9/caspase-3 cascade.
Collapse
Affiliation(s)
- Chen Liu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Shaoqiang Sun
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
29
|
Effects of Moderate-Intensity Continuous Training and High-Intensity Interval Training on Testicular Oxidative Stress, Apoptosis and m6A Methylation in Obese Male Mice. Antioxidants (Basel) 2022; 11:antiox11101874. [PMID: 36290597 PMCID: PMC9598593 DOI: 10.3390/antiox11101874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Exercise is an effective way to improve reproductive function in obese males. Oxidative stress and apoptosis are important pathological factors of obesity-related male infertility. Accumulating studies have demonstrated that N6-methyladenosine (m6A) methylation is associated with obesity and testicular reproductive function. Our study aimed to investigate and compare the effect of 8 weeks of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on testicular oxidative stress, apoptosis and m6A methylation in obese male mice. Male C57BL/6 mice were randomly allocated into the four groups: normal diet (ND) group, high-fat diet (HFD) group, high-fat diet with moderate-intensity continuous training (HFD-MICT) group and high-fat diet with high-intensity interval training (HFD-HIIT) group. Mice in the HFD-MICT and HFD-HIIT groups were subjected to 8 weeks of MICT or HIIT treadmill protocols after 12 weeks of HFD feeding. We found that MICT and HIIT increased the protein expression of Nrf2, HO-1 and NQO-1 in the testes of obese mice, and HIIT increased it more than MICT. The Bax/Bcl-2 ratio, Cleaved Caspase-3 protein expression and TUNEL-positive cells were consistently up-regulated in the testes of obese mice, but MICT and HIIT restrained these HFD-induced effects. In addition, HFDs increased m6A levels and the gene expression of METTL3, YTHDF2 and FTO in the testes, but these effects were reversed by MICT and HIIT. However, HIIT was more effective than MICT in reducing m6A methylation in the testes of obese mice. These results demonstrate that both MICT and HIIT protected against HFD-induced oxidative stress, apoptosis and m6A methylation in testicular tissues; as a result, testicular morphological and functional impairment improved. In particular, HIIT was more beneficial than MICT in increasing the mRNA expression of steroidogenic enzymes and testicular antioxidant capacity and decreasing m6A methylation in the testes of HFD-fed mice.
Collapse
|