1
|
Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P, Sottero B, Leonarduzzi G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment. Int J Mol Sci 2024; 25:13637. [PMID: 39769398 PMCID: PMC11727734 DOI: 10.3390/ijms252413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia. In addition to that, PCSK9 is also recognized to carry out diverse important activities in the brain, including control of neuronal differentiation, apoptosis, and, importantly, LDL receptors functionality. Moreover, PCSK9 appeared to be directly involved in some of the principal processes responsible for AD development, such as inflammation, oxidative stress, and Aβ deposition. On these bases, PCSK9 management might represent a promising approach for AD treatment. The purpose of this review is to elucidate the role of PCSK9, whether or not cholesterol-related, in AD pathogenesis and to give an updated overview of the most innovative therapeutic strategies developed so far to counteract the pleiotropic activities of both humoral and brain PCSK9, focusing in particular on their potentiality for AD management.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
- Division of Neurology Vand Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| |
Collapse
|
2
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
3
|
Bahl E, Jyoti A, Singh A, Siddqui A, Upadhyay SK, Jain D, Shah MP, Saxena J. Nanomaterials for intelligent CRISPR-Cas tools: improving environment sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67479-67495. [PMID: 38291210 DOI: 10.1007/s11356-024-32101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.
Collapse
Affiliation(s)
- Ekansh Bahl
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Arif Siddqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Ankleshwar, India
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India.
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
4
|
Tripathi D, Pandey P, Sharma S, Rai AK, Prabhu B.H. M. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. BIOIMPACTS : BI 2024; 15:30573. [PMID: 40256227 PMCID: PMC12008503 DOI: 10.34172/bi.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 04/22/2025]
Abstract
By integrating the cutting-edge principles of nanotechnology with medical science, nanomedicine offers unprecedented opportunities to develop advanced drug delivery systems that surpass the limitations of conventional therapies. These nanoscale systems are designed to enhance treatments' efficacy, specificity, and safety by optimizing pharmacokinetics and biodistribution, ensuring that therapeutic agents reach their intended targets with minimal side effects. The article provides an in-depth analysis of nanomaterials' pivotal role in overcoming challenges related to drug delivery, including the ability to bypass biological barriers, improve bioavailability, and achieve controlled release of drugs. Despite these promising advancements, the transition of nanomedicine from research to clinical practice faces significant hurdles. The review highlights key obstacles such as patient heterogeneity, physiological variability, and the complex ADME (Absorption, Distribution, Metabolism, Excretion) profiles of nanocarriers, which complicate treatment predictability and effectiveness. Moreover, the article addresses the issues of limited tissue penetration, variable patient responses, and the need for standardized protocols in nanomaterial characterization, all of which hinder the widespread clinical adoption of nanomedicine. Nevertheless, the potential of nanomedicine in revolutionizing personalized cancer therapy remains immense. The article advocates for increased translational research and international collaboration to overcome these challenges, paving the way for fully realizing nanomedicine's capabilities in precision oncology and beyond.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sakshi Sharma
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Awani K Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Manjunatha Prabhu B.H.
- Department of Food Protection and Infestation Control, CSIR- Central Food Technological Research Institute (CFTRI), Mysore-570012, Karnataka, India
| |
Collapse
|
5
|
Nevins S, McLoughlin CD, Oliveros A, Stein JB, Rashid MA, Hou Y, Jang MH, Lee KB. Nanotechnology Approaches for Prevention and Treatment of Chemotherapy-Induced Neurotoxicity, Neuropathy, and Cardiomyopathy in Breast and Ovarian Cancer Survivors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300744. [PMID: 37058079 PMCID: PMC10576016 DOI: 10.1002/smll.202300744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
Collapse
Affiliation(s)
- Sarah Nevins
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Callan D. McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Joshua B. Stein
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical
School, Rutgers University, the State University of New Jersey, 661 Hoes Ln W,
Piscataway, NJ, 08854, U.S.A
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers
University, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ
08854, U.S.A
| |
Collapse
|
6
|
Pan Z, Huang K, Li N, Duan P, Huang J, Yang D, Cheng Z, Ha Y, Oh J, Yue M, Zhu X, He D. LncRNA TSIX knockdown restores spinal cord injury repair through miR-30a/SOCS3 axis. Biotechnol Genet Eng Rev 2024; 40:765-787. [PMID: 37013868 DOI: 10.1080/02648725.2023.2190948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
Spinal cord injury (SCI) is a serious injury to the central nervous system. Previous studies have discovered that the development of SCI is associated with gene expression. The purpose of this study was to explore the significance of lncRNA TSIX in SCI and its underlying mechanism involved. An in vivo SCI mice model and an in vitro hypoxia-treated HT22 cells model were applied in this study. TSIX and SOCS3 expression in SCI tissues was measured by qRT-PCR, western blot and FISH assay. LV-sh-TSIX was injected into SCI mice intrathecally or subjected to HT22 cells to access the consequent alteration in inflammation response, cell apoptosis and functional recovery through ELISA, immunohistochemistry, TUNEL, flow cytometry assays and BMS scores. Then, the underlying mechanism of TSIX was analyzed by bioinformatics analysis and then confirmed by RIP, RNA pull-down and dual-luciferase reporter assay. It was identified that TSIX was up-regulated in HT22 cells under hypoxia operation and spinal cord tissues of SCI mice. TSIX knockdown improved the lesion size and BMS score and inhibited inflammation and cell apoptosis. MiR-30a was identified as a target for TSIX and SOCS3, and TSIX binds to miR-30a by competing with SOCS3, thereby counteracting miR-30a-mediated SOCS3 inhibition. In addition, LV-sh-TSIX effects were significantly overturned by miR-30a inhibition or SOCS3 over-expression. Knockdown of TSIX improved functional recovery and attenuated the inflammation response and cell apoptosis via miR-30a/SOCS3 axis. These results may provide a potential novel insight for SCI treatment.
Collapse
Affiliation(s)
- Zhimin Pan
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital, Shanghai, China
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Pingguo Duan
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsoo Oh
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mengyun Yue
- Department of Imaging, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University; Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
8
|
Sierri G, Patrucco M, Ferrario D, Renda A, Comi S, Ciprandi M, Fontanini V, Sica FS, Sesana S, Costa Verdugo M, Kravicz M, Salassa L, Busnelli M, Re F. Targeting specific brain districts for advanced nanotherapies: A review from the perspective of precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1991. [PMID: 39251878 PMCID: PMC11670049 DOI: 10.1002/wnan.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous studies are focused on nanoparticle penetration into the brain functionalizing them with ligands useful to cross the blood-brain barrier. However, cell targeting is also crucial, given that cerebral pathologies frequently affect specific brain cells or areas. Functionalize nanoparticles with the most appropriate targeting elements, tailor their physical parameters, and consider the brain's complex anatomy are essential aspects for precise therapy and diagnosis. In this review, we addressed the state of the art on targeted nanoparticles for drug delivery in diseased brain regions, outlining progress, limitations, and ongoing challenges. We also provide a summary and overview of general design principles that can be applied to nanotherapies, considering the areas and cell types affected by the most common brain disorders. We then emphasize lingering uncertainties that hinder the translational possibilities of nanotherapies for clinical use. Finally, we offer suggestions for continuing preclinical investigations to enhance the overall effectiveness of precision nanomedicine in addressing neurological conditions. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Giulia Sierri
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Michela Patrucco
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- PhD program in Neuroscience, School of Medicine and Surgery, University of Milano‐Bicocca, Italy
| | - Davide Ferrario
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Antonio Renda
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Susanna Comi
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Matilde Ciprandi
- Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | | | | | - Silvia Sesana
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | | | - Marcelo Kravicz
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - Luca Salassa
- Donostia International Physics Center (DIPC)DonostiaEuskadiSpain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika FakultateaEuskal Herriko Unibertsitatea UPV/EHUDonostiaSpain
- Basque Foundation for ScienceIkerbasqueBilbaoSpain
| | - Marta Busnelli
- Institute of Neuroscience, National Research CouncilItaly
| | - Francesca Re
- School of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| |
Collapse
|
9
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
10
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
11
|
Zhang W, Sun J, Liu F, Li S, Wang X, Su L, Liu G. Alleviative Effect of Lactoferrin Interventions Against the Hepatotoxicity Induced by Titanium Dioxide Nanoparticles. Biol Trace Elem Res 2024; 202:624-642. [PMID: 37191759 DOI: 10.1007/s12011-023-03702-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The current study was designed to investigate the alleviative effect of lactoferrin interventions against the hepatotoxicity induced by titanium dioxide nanoparticles (TiO2-NPs). Thirty male Wistar rats were divided into six groups with 5 rats in each group. The first and second groups were intragastrically administered normal saline and TiO2-NPs (100 mg/kg body weight) as the negative control (NC) and TiO2-NP groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to TiO2-NPs (100 mg/kg body weight). The sixth group was intragastrically administered Fuzheng Huayu (FZHY) capsules at a concentration of 4.6 g/kg body weight in addition to TiO2-NPs (100 mg/kg body weight) as the positive control group. After treatment for 4 weeks, the concentrations of lactoferrin were optimized based on the liver index and function results. Subsequently, the alleviative effects of lactoferrin interventions against TiO2-NP-induced hepatotoxicity in rat liver tissues, including the effects on histological damage, oxidative stress-related damage, inflammation, fibrosis, DNA damage, apoptosis, and gene expression, were investigated using histopathological, biochemical, and transcriptomic assays. The results showed that 200 mg/kg lactoferrin interventions for 4 weeks not only ameliorated the liver dysfunction and histopathological damage caused by TiO2-NP exposure but also inhibited the oxidative stress-related damage, inflammation, fibrosis, DNA damage, and apoptosis in the liver tissues of TiO2-NP-exposed rats. The transcriptomic results confirmed that the alleviative effect of lactoferrin interventions against the TiO2-NP exposure-induced hepatotoxicity was related to the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Jiaxin Sun
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Fangyuan Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Shubin Li
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Xianjue Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
12
|
Gebril HM, Aryasomayajula A, de Lima MRN, Uhrich KE, Moghe PV. Nanotechnology for microglial targeting and inhibition of neuroinflammation underlying Alzheimer's pathology. Transl Neurodegener 2024; 13:2. [PMID: 38173014 PMCID: PMC10765804 DOI: 10.1186/s40035-023-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered to have a multifactorial etiology. The hallmark of AD is progressive neurodegeneration, which is characterized by the deepening loss of memory and a high mortality rate in the elderly. The neurodegeneration in AD is believed to be exacerbated following the intercoupled cascades of extracellular amyloid beta (Aβ) plaques, uncontrolled microglial activation, and neuroinflammation. Current therapies for AD are mostly designed to target the symptoms, with limited ability to address the mechanistic triggers for the disease. In this study, we report a novel nanotechnology based on microglial scavenger receptor (SR)-targeting amphiphilic nanoparticles (NPs) for the convergent alleviation of fibril Aβ (fAβ) burden, microglial modulation, and neuroprotection. METHODS We designed a nanotechnology approach to regulate the SR-mediated intracellular fAβ trafficking within microglia. We synthesized SR-targeting sugar-based amphiphilic macromolecules (AM) and used them as a bioactive shell to fabricate serum-stable AM-NPs via flash nanoprecipitation. Using electron microscopy, in vitro approaches, ELISA, and confocal microscopy, we investigated the effect of AM-NPs on Aβ fibrilization, fAβ-mediated microglial inflammation, and neurotoxicity in BV2 microglia and SH-SY5Y neuroblastoma cell lines. RESULTS AM-NPs interrupted Aβ fibrilization, attenuated fAβ microglial internalization via targeting the fAβ-specific SRs, arrested the fAβ-mediated microglial activation and pro-inflammatory response, and accelerated lysosomal degradation of intracellular fAβ. Moreover, AM-NPs counteracted the microglial-mediated neurotoxicity after exposure to fAβ. CONCLUSIONS The AM-NP nanotechnology presents a multifactorial strategy to target pathological Aβ aggregation and arrest the fAβ-mediated pathological progression in microglia and neurons.
Collapse
Affiliation(s)
- Hoda M Gebril
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
| | - Aravind Aryasomayajula
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA
| | | | - Kathryn E Uhrich
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, CA, 92507, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ, 08854, USA.
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Sun W, Xie Q, Yan JJ, Huang Y, Zhou Y, Xiao H, Wang CQ. Observation of the Short-term Efficacy of Technetium-99 Conjugated with Methylene Diphosphonate Combined Therapy in the Treatment of Postmenopausal Osteoporosis. Comb Chem High Throughput Screen 2024; 27:1930-1937. [PMID: 38357942 DOI: 10.2174/0113862073266467231228124942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 02/16/2024]
Abstract
OBJECTIVE To investigate the short-term efficacy and safety of Yunke (technetium-99 conjugated methylene diphosphonate) combined with pulsed electromagnetic field (PEMF) and Gukang capsule in the treatment of postmenopausal osteoporosis (PMOP). METHODS A total of 112 patients with PMOP who received treatment in the Department of Nuclear Medicine of the hospital from January 2019 to June 2020 were selected and randomly divided into 4 groups of 28 patients each. Group A received Yunke and PEMFs, group B received Gukang capsules and PEMFs, group C received Yunke and Gukang capsules and PEMFs, and group D received PEMFs. All groups were given adequate amounts of calcium and active vitamin D. Intervention 2 sessions of 3 months each. Outcome measures were bone mineral density (BMD) and pain improvement. RESULTS Compared with 1 course of treatment, the symptoms of bone pain were relieved more significantly after 2 courses of treatment in group A (50.0% vs. 64.3%), group B (46.4% vs. 64.3%), group C (78.6% vs. 92.9%) and group D (21.4% vs. 28.6%) (P < 0.05). After 2 courses of treatment, bone pain symptoms were less relieved in group A (96.4% vs. 64.3%), group B (96.4% vs. 64.3%), and group D (96.4% vs. 28.6%) compared with group C (P < 0.05). Compared with group C, BMD values of L4 vertebrae and femoral neck were significantly decreased in groups A, B, and D (P < 0.05). Compared with those before treatment, BMD of L4 vertebrae and femoral neck increased significantly in groups A, B, C, and D after 2 courses of treatment (P < 0.05). CONCLUSION Yunke combined therapy can effectively relieve the pain symptoms, increase BMD, and reduce the risk of fracture in patients with PMOP in a short period, which is an effective method for the treatment of PMOP.
Collapse
Affiliation(s)
- Wen Sun
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Quan Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Juan-Juan Yan
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Ying Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Ying Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Huan Xiao
- Department of Nuclear Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Chao-Qun Wang
- Department of Nuclear Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| |
Collapse
|
14
|
Dadhwal P, Dhingra HK, Dwivedi V, Alarifi S, Kalasariya H, Yadav VK, Patel A. Hippophae rhamnoides L. (sea buckthorn) mediated green synthesis of copper nanoparticles and their application in anticancer activity. Front Mol Biosci 2023; 10:1246728. [PMID: 37692067 PMCID: PMC10484619 DOI: 10.3389/fmolb.2023.1246728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Green synthesis of nanoparticles has drawn huge attention in the last decade due to their eco-friendly, biocompatible nature. Phyto-assisted synthesis of metallic nanoparticles is widespread in the field of nanomedicine, especially for antimicrobial and anticancer activity. Here in the present research work, investigators have used the stem extract of the Himalayan plant Hippophae rhamnoides L, for the synthesis of copper nanoparticles (CuNPs). The synthesized of CuNPs were analyzed by using sophisticated instruments, i.e., Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), high-performance liquid chromatography (HPLC), and scanning electron microscope (SEM). The size of the synthesized CuNPs was varying from 38 nm to 94 nm which were mainly spherical in shape. Further, the potential of the synthesized CuNPs was evaluated as an anticancer agent on the Hela cell lines, by performing an MTT assay. In the MTT assay, a concentration-dependent activity of CuNPs demonstrated the lower cell viability at 100 μg/mL and IC50 value at 48 μg/mL of HeLa cancer cell lines. In addition to this, apoptosis activity was evaluated by reactive oxygen species (ROS), DAPI (4',6-diamidino-2-phenylindole) staining, Annexin V, and Propidium iodide (PI) staining, wherein the maximum ROS production was at a dose of 100 µg per mL of CuNPs with a higher intensity of green fluorescence. In both DAPI and PI staining, maximum nuclear condensation was observed with 100 μg/mL of CuNPs against HeLa cell lines.
Collapse
Affiliation(s)
- Pooja Dadhwal
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Vinay Dwivedi
- Biotechnology Engineering and Food Technology, Chandigarh University Chandigarh, Mohali, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
15
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Liu Y, Chang D, Zhou X. Development of Novel Herbal Compound Formulations Targeting Neuroinflammation: Network Pharmacology, Molecular Docking, and Experimental Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2558415. [PMID: 37266321 PMCID: PMC10232107 DOI: 10.1155/2023/2558415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Neuroinflammation plays an important role in the onset and progression of neurodegenerative diseases. The multicomponent and multitarget approach may provide a practical strategy to address the complex pathological mechanisms of neuroinflammation. This study aimed to develop synergistic herbal compound formulas to attenuate neuroinflammation using integrated network pharmacology, molecular docking, and experimental bioassays. Eight phytochemicals with anti-neuroinflammatory potential were selected in the present study. A compound-gene target-signaling pathway network was constructed to illustrate the mechanisms of action of each phytochemical and the interactions among them at the molecular level. Molecular docking was performed to verify the binding affinity of each phytochemical and its key gene targets. An experimental study was conducted to identify synergistic interactions among the eight phytochemicals, and the associated molecular mechanisms were examined by immunoblotting based on the findings from the network pharmacology analysis. Two paired combinations, andrographolide and 6-shogaol (AN-SG) (IC50 = 2.85 μg/mL), and baicalein-6-shogaol (BA-SG) (IC50 = 3.28 μg/mL), were found to synergistically (combination index <1) inhibit the lipopolysaccharides (LPS)-induced nitric oxide production in microglia N11 cells. Network pharmacology analysis suggested that MAPK14, MAPK8, and NOS3 were the top three relevant gene targets for the three phytochemicals, and molecular docking demonstrated strong binding affinities of the phytochemicals to their coded proteins. Immunoblotting suggested that the AN-SG and BA-SG both showed prominent effects in inhibiting inducible nitric oxide synthase (iNOS) (p < 0.01 and p < 0.05, respectively) and MAPKp-p38 (both p < 0.05) compared with those induced by the LPS stimulation only. The AN-SG combination exhibited greater inhibitions of the protein expressions of iNOS (p < 0.05 vs. individual components), which may partly explain the mechanisms of the synergy observed. This study established a practical approach to developing novel herbal-compound formulations using integrated network pharmacology analysis, molecular docking, and experimental bioassays. The study provides a scientific basis and new insight into the two synergistic combinations against neuroinflammation.
Collapse
Affiliation(s)
- Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
17
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
18
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Luxin Fan
- Department of Respiratory, Weifang People's Hospital, Weifang 261041, China
| | - Xiaodong Wang
- Microbiological Laboratory, Weifang Inspection and Testing Center, Weifang 261100, China
| | - Congcong Cheng
- Department of Oncology, Yidu Central Hospital of Weifang, Qingzhou 262500, China
| | - Shuxiao Wang
- Intravenous Drug Dispensing Center, Second Hospital of Shandong University, Jinan 250033, China
| | - Xuesong Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jiayu Cui
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Baogang Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
19
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
20
|
Qu Q, Park K, Zhou K, Wassel D, Farjo R, Criswell T, Ma JX, Zhang Y. Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy. Front Cell Dev Biol 2022; 10:1049678. [PMID: 36589744 PMCID: PMC9802579 DOI: 10.3389/fcell.2022.1049678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kyoungmin Park
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, United States
| | - Kevin Zhou
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Drew Wassel
- EyeCro LLC., Oklahoma City, OK, United States
| | - Rafal Farjo
- EyeCro LLC., Oklahoma City, OK, United States
| | - Tracy Criswell
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jian-xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Yuanyuan Zhang
- Institure for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: Yuanyuan Zhang,
| |
Collapse
|
21
|
Puri V, Kanojia N, Sharma A, Huanbutta K, Dheer D, Sangnim T. Natural product-based pharmacological studies for neurological disorders. Front Pharmacol 2022; 13:1011740. [PMID: 36419628 PMCID: PMC9676372 DOI: 10.3389/fphar.2022.1011740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
Central nervous system (CNS) disorders and diseases are expected to rise sharply in the coming years, partly because of the world's aging population. Medicines for the treatment of the CNS have not been successfully made. Inadequate knowledge about the brain, pharmacokinetic and dynamic errors in preclinical studies, challenges with clinical trial design, complexity and variety of human brain illnesses, and variations in species are some potential scenarios. Neurodegenerative diseases (NDDs) are multifaceted and lack identifiable etiological components, and the drugs developed to treat them did not meet the requirements of those who anticipated treatments. Therefore, there is a great demand for safe and effective natural therapeutic adjuvants. For the treatment of NDDs and other memory-related problems, many herbal and natural items have been used in the Ayurvedic medical system. Anxiety, depression, Parkinson's, and Alzheimer's diseases (AD), as well as a plethora of other neuropsychiatric disorders, may benefit from the use of plant and food-derived chemicals that have antidepressant or antiepileptic properties. We have summarized the present level of knowledge about natural products based on topological evidence, bioinformatics analysis, and translational research in this review. We have also highlighted some clinical research or investigation that will help us select natural products for the treatment of neurological conditions. In the present review, we have explored the potential efficacy of phytoconstituents against neurological diseases. Various evidence-based studies and extensive recent investigations have been included, which will help pharmacologists reduce the progression of neuronal disease.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Kampanart Huanbutta
- School of Pharmacy, Eastern Asia University, Rangsit, Pathum Thani, Thailand
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Muang, Chon Buri, Thailand
| |
Collapse
|