1
|
Sangfuang N, Xie Y, McCoubrey LE, Taub M, Favaron A, Mai Y, Gaisford S, Basit AW. Investigating the bidirectional interactions between senotherapeutic agents and human gut microbiota. Eur J Pharm Sci 2025; 209:107098. [PMID: 40216167 DOI: 10.1016/j.ejps.2025.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Biological ageing is a time-dependent process that has implications for health and disease. Cellular senescence is a key driver in ageing and age-related diseases. Senotherapeutic agents have been shown to slow biological ageing by eliminating senescent mammalian cells. Given the increasing awareness of the gut microbiome in regulating human health, this study aimed to investigate the effects of senotherapeutic agents as pharmacological interventions on the human gut microbiota. In this study, the bidirectional effects of four senotherapeutic agents, quercetin, fisetin, dasatinib, and sirolimus, with the gut microbiota sourced from healthy human donors were investigated. The results revealed that quercetin was completely biotransformed by the gut microbiota within six hours, while dasatinib was the most stable of the four compounds. Additionally, metagenomic analysis confirmed that all four compounds increased the abundance of bacterial species associated with healthy ageing (e.g., Bacteroides fragilis, Bifidobacterium longum, and Veillonella parvula), and decreased the abundance of pathogenic bacteria primarily associated with age-related diseases (e.g., Enterococcus faecalis and Streptococcus spp.). The findings from this study provide a comprehensive understanding of the pharmacobiomics of senotherapeutic interventions, highlighting the potential of microbiome-targeted senolytics in promoting healthy ageing.
Collapse
Affiliation(s)
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-Sen University, Shenzen 518107, China
| | - Laura E McCoubrey
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Drug Product Development, GSK R&D, Ware SG12 0GX, UK
| | - Marissa Taub
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Alessia Favaron
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzen), Sun Yat-Sen University, Shenzen 518107, China.
| | - Simon Gaisford
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W Basit
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Okatsu K, Kawaguchi T, Watanabe K, Taguchi Y, Takeuchi R, Okamoto A, Iwasa Y, Tomita T, Saeki Y, Sato Y, Narumi T, Fukai S. Adaptor-Specific Peptide Inhibitors of the Ubiquitin-Chain-Dependent Unfolding Activity of the Human p97(VCP)-UFD1-NPL4 Complex. J Med Chem 2025. [PMID: 40421687 DOI: 10.1021/acs.jmedchem.5c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The AAA-ATPase p97, a key component of the ubiquitin-proteasome system (UPS), collaborates with its cofactor, the UFD1-NPL4 (UN) heterodimer, to unfold ubiquitinated substrates leading to proteasomal degradation. In this study, we report the development of novel peptide inhibitors that specifically target the p97-UN complex. These inhibitors are designed based on the NPL4-binding motif (NBM) of UFD1 and disrupt the interaction between p97 and the UN heterodimer. Our results demonstrate that these peptides effectively inhibit the unfolding activity of p97-UN, suggesting their potential as a therapeutic strategy for diseases associated with UPS dysfunction, such as cancer and neurodegenerative disorders. This work provides the first mechanistic insights into the inhibition of p97-UN by high-affinity peptide inhibitors and introduces promising candidates for drug development targeting the stable p97-UN complex in cells.
Collapse
Affiliation(s)
- Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takaya Kawaguchi
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Kohei Watanabe
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Yoshinori Taguchi
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Reon Takeuchi
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Akinori Okamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuyuki Iwasa
- Division of Protein Metabolism, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takuya Tomita
- Division of Protein Metabolism, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Saeki
- Division of Protein Metabolism, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tetsuo Narumi
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu 432-8561, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
4
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
5
|
Durán-Cristiano SC, de Diego-García L, Martín-Gil A, Carracedo G. The Role of the Ubiquitin System in Eye Diseases. Life (Basel) 2025; 15:504. [PMID: 40141848 PMCID: PMC11943997 DOI: 10.3390/life15030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental process that regulates various biological functions, including immune response, cell cycle, oxidative stress, migration, and cellular proliferation. This system is responsible for the degradation of proteins, while proteasomes play a significant role in mechanisms involved in health and human diseases. The participation of the UPS in immune response is particularly relevant, leading to the involvement of immunoproteasomes. This specialized proteasome is involved in the processing and presentation of antigenic peptides, making it crucial for proper immune function. Moreover, the impact of the UPS is considered essential in understanding several diseases, such as neurodegenerative disorders, infections, and vascular diseases. The dysregulation of the UPS may contribute to the pathogenesis of these conditions, highlighting its importance as a potential therapeutic target. Interestingly, the UPS is also related to ocular structures, playing a role in visual perception and ocular homeostasis. This involvement in the regulation of various ocular processes suggests its potential impact on both anterior and posterior eye pathologies. This review aims to discuss the general considerations of the UPS and provide information about its participation in anterior and posterior eye pathologies. By understanding its role in ocular health and disease, researchers and clinicians may explore novel therapeutic strategies targeting the UPS for the treatment of various eye conditions. In conclusion, the UPS is a crucial player in biological processes, with far-reaching implications in health and disease, including the anterior and posterior segments of the eye. Further research in this field may lead to the development of innovative therapies and a better understanding of the complex mechanisms underlying various eye disorders.
Collapse
Affiliation(s)
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Alba Martín-Gil
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| |
Collapse
|
6
|
Parker D, Davidson K, Osmulski PA, Gaczynska M, Pickering AM. Proteasome Augmentation Mitigates Age-Related Cognitive Decline in Mice. Aging Cell 2025; 24:e14492. [PMID: 39945352 PMCID: PMC11896255 DOI: 10.1111/acel.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 03/14/2025] Open
Abstract
The aging brain experiences a significant decline in proteasome function. The proteasome is critical for many key neuronal functions including neuronal plasticity, and memory formation/retention. Treatment with proteasome inhibitors impairs these processes. Our study reveals a marked reduction in 20S and 26S proteasome activities in aged mice brains, including in the hippocampus, this is driven by reduced functionality of aged proteasome. The decline in proteasome activity is matched by a decline in 20S proteasome assembly. In contrast, 26S proteasome assembly was found to increase with age, though 26S proteasome activity was still found to decline. Our data suggests that age-related declines in proteasome activity is driven predominantly by reduced functionality of proteasome rather than altered composition. By overexpressing the proteasome subunit PSMB5 in the neurons of mice to increase the proteasome content and thus enhance its functionality, we slowed age-related declines in spatial learning and memory. We then showed acute treatment with a proteasome activator to rescue spatial learning and memory deficits in aged mice. These findings highlight the potential of proteasome augmentation as a therapeutic strategy to mitigate age-related cognitive declines.
Collapse
Affiliation(s)
- Danitra Parker
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kanisa Davidson
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Pawel A. Osmulski
- Department of Molecular MedicineUTHealth San AntonioSan AntonioTexasUSA
| | - Maria Gaczynska
- Department of Molecular MedicineUTHealth San AntonioSan AntonioTexasUSA
| | - Andrew M. Pickering
- Department of Integrative Biology and PharmacologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- Institute on AgingThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
7
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Davidson K, Bano M, Parker D, Osmulski P, Gaczynska M, Pickering AM. β-Amyloid impairs Proteasome structure and function. Proteasome activation mitigates amyloid induced toxicity and cognitive deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.23.619877. [PMID: 39484574 PMCID: PMC11526959 DOI: 10.1101/2024.10.23.619877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Alzheimer's Disease (AD) is the leading cause of dementia globally, affecting around 50 million people and marked by cognitive decline and the accumulation of β-amyloid plaques and hyperphosphorylated tau. The limited treatment options and numerous failed clinical trials targeting β-amyloid (Aβ) highlight the need for novel approaches. Lowered proteasome activity is a consistent feature in AD, particularly in the hippocampus. Impaired proteasome function in AD is hypothesized to stem from direct inhibition by β-amyloid or hyperphosphorylated tau, disrupting critical neuronal processes such as memory formation and synaptic plasticity. Objectives This study tests the hypothesis that AD related deficits are driven in part by impaired proteasome function as a consequence of inhibition by Aβ. We evaluated how proteasome function is modulated by Aβ and the capacity of two proteasome-activating compounds, TAT1-8,9-TOD and TAT1-DEN to rescue Aβ-induced impairment in vitro, as well as survival deficits in cell culture and Aβ-induced cognitive deficits in Drosophila and mouse models. Results Our study demonstrates that oligomeric β-amyloid binds to the 20S proteasome and impairs its activity and conformational stability. The oligomers also destabilize the 26S proteasome to release the free 20S proteasome. Treatment with proteasome activators TAT1-8,9TOD and TAT1-DEN rescue the 20S proteasome function and reduces cell death caused by Aβ42 toxicity in SK-N-SH cells. In Drosophila models overexpressing Aβ42, oral administration of proteasome agonists delayed mortality and restored cognitive function. Chronic treatment with TAT1-DEN protected against deficits in working memory caused by Aβ42 in mice and in hAPP(J20) mice with established deficits, acute TAT1-DEN treatment significantly improved spatial learning, with treated mice performing comparably to controls. Conclusions Aβ has dual impacts on 20S and 26S proteasome function and stability. Proteasome activation using TAT1-8,9TOD and TAT1-DEN shows promise in mitigating AD-like deficits by protecting against amyloid toxicity and enhancing proteasome function. These findings suggest that targeting proteasome activity could be a viable therapeutic approach for AD, warranting further investigation into the broader impacts of proteasome modulation on AD pathology.
Collapse
|
9
|
Counts SE, Beck JS, Maloney B, Malek‐Ahmadi M, Ginsberg SD, Mufson EJ, Lahiri DK. Posterior cingulate cortex microRNA dysregulation differentiates cognitive resilience, mild cognitive impairment, and Alzheimer's disease. Alzheimers Dement 2025; 21:e70019. [PMID: 40008917 PMCID: PMC11863362 DOI: 10.1002/alz.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/27/2025]
Abstract
INTRODUCTION MicroRNA (miRNA) activity is increasingly appreciated as a key regulator of pathophysiologic pathways in Alzheimer's disease (AD). However, the role of miRNAs during the progression of AD, including resilience and prodromal syndromes such as mild cognitive impairment (MCI), remains underexplored. METHODS We performed miRNA-sequencing on samples of posterior cingulate cortex (PCC) obtained post mortem from Rush Religious Orders Study participants diagnosed ante mortem with no cognitive impairment (NCI), MCI, or AD. NCI subjects were subdivided as low pathology (Braak stage I/II) or high pathology (Braak stage III/IV), suggestive of resilience. Bioinformatics approaches included differential expression, messenger RNA (mRNA) target prediction, interactome modeling, functional enrichment, and AD risk modeling. RESULTS We identified specific miRNA groups, mRNA targets, and signaling pathways distinguishing AD, MCI, resilience, ante mortem neuropsychological test performance, post mortem neuropathological burden, and AD risk. DISCUSSION These findings highlight the potential of harnessing miRNA activity to manipulate disease-modifying pathways in AD, with implications for precision medicine. HIGHLIGHTS MicroRNA (MiRNA) dysregulation is a well-established feature of Alzheimer's disease (AD). Novel miRNAs also distinguish subjects with mild cognitive impairment and putative resilience. MiRNAs correlate with cognitive performance and neuropathological burden. Select miRNAs are associated with AD risk with age as a significant covariate. MiRNA pathways include insulin, prolactin, kinases, and neurite plasticity.
Collapse
Affiliation(s)
- Scott E. Counts
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
- Department of Family MedicineMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - John S. Beck
- Department of Translational NeuroscienceMichigan State University College of Human MedicineGrand RapidsMichiganUSA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Malek‐Ahmadi
- Banner Alzheimer's InstitutePhoenixArizonaUSA
- Department of Biomedical InformaticsUniversity of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Stephen D. Ginsberg
- Center for Dementia ResearchNathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Elliott J. Mufson
- Departments of Translational Neuroscience and NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| | - Debomoy K. Lahiri
- Departments of Psychiatry and Medical and Molecular GeneticsIndiana Alzheimer’s Disease Research Center, Indiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
10
|
Sharma R, Kour A, Dewangan HK. Enhancements in Parkinson's Disease Management: Leveraging Levodopa Optimization and Surgical Breakthroughs. Curr Drug Targets 2025; 26:17-32. [PMID: 39350551 DOI: 10.2174/0113894501319817240919103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 02/19/2025]
Abstract
Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.
Collapse
Affiliation(s)
- Ritika Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Avneet Kour
- Chitkara College of Pharmacy, Chitkara University, Punjab-140401, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
11
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
da Silva J, Andrade L, Rodrigues P, Cordeiro L, Lima G, Lopes J, Castillo E, Martins R, Assunção A, Vieira J, Busalaf M, Adamec J, Sartori J, Padilha P. Plasma Proteome Alterations of Laying Hens Subjected to Heat Stress and Fed a Diet Supplemented with Pequi Oil ( Caryocar brasiliense Camb.): New Insights in the Identification of Heat Stress Biomarkers. Biomolecules 2024; 14:1424. [PMID: 39595600 PMCID: PMC11591700 DOI: 10.3390/biom14111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Heat stress can disrupt the balance between the heat poultry release into the environment and the heat they generate. Pequi oil has antioxidant properties, which may mitigate the heat stress effects. This study aimed to investigate the response of laying hens to pequi oil supplementation under heat stress using a proteomic approach. A total of 96 Lohmann White laying hens with 26 weeks old were housed in a completely randomized design with a 2 × 2 factorial arrangement. They were housed in two climate chambers, thermal comfort temperature ± 24.04 °C with the relative humidity ± 66.35 and heat stress (HS) ± 31.26 °C with the relative humidity ± 60.62. They were fed two diets: a control diet (CON), basal diet (BD) without additives, and with Pequi oil (PO), BD + 0.6% PO. After 84 days, plasma samples were analyzed using Shotgun and LC-MS/MS. Proteins related to anti-inflammation, transport, and the immune system were differentially expressed in hens fed PO and CON under heat stress compared to those in thermoneutral environments. This helps protect against oxidative stress and may support the body's ability to manage heat-induced damage, stabilizing protein expression under stress conditions. The ovotransferrin proteins, fibrinogen isoforms, apolipoprotein A-I, Proteasome activator subunit 4, Transthyretin, and the enzyme serine Peptidase Inhibitor_Kazal Type 5, which presented Upregulated (Up) equal to 1, present characteristics that may be crucial for enhancing the adaptive responses of hens to thermal stress, thereby increasing their tolerance and minimizing the negative effects of heat on egg production. The data presented in this manuscript provides new insights into the plasma proteome alterations of laying hens fed a diet supplemented with pequi oil during heat stress challenges.
Collapse
Affiliation(s)
- Joyce da Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Luane Andrade
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Paola Rodrigues
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Laís Cordeiro
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Gabrieli Lima
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Júlia Lopes
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Elis Castillo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Renata Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Andrey Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - José Vieira
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| | - Marília Busalaf
- Faculty of Dentistry of Bauru (FOB), University of São Paulo (USP), Bauru 17012-901, SP, Brazil;
| | - Jiri Adamec
- School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA 70112, USA;
| | - José Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.d.S.); (L.A.); (P.R.); (L.C.); (G.L.); (J.L.); (E.C.); (R.M.); (A.A.); (J.S.)
| | - Pedro Padilha
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-693, SP, Brazil;
| |
Collapse
|
13
|
Pickering AM. Altered Proteasome Composition in Aging Brains, Genetic Proteasome Augmentation Mitigates Age-Related Cognitive Declines, and Acute Proteasome Agonist Treatment Rescues Age-Related Cognitive Deficits in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618893. [PMID: 39463960 PMCID: PMC11507914 DOI: 10.1101/2024.10.17.618893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The aging brain experiences a significant decline in proteasome function, The proteasome is critical for many key neuronal functions including neuronal plasticity, and memory formation/retention. Treatment with proteasome inhibitors impairs these processes. Our study reveals a marked reduction in 20S and 26S proteasome activities in aged mice brains driven by reduced functionality of aged proteasome. This is matched by a decline in 20S proteasome but an increase in 26S proteasome. Our data suggests this may be a compensatory response to reduced functionality. By overexpressing the proteasome subunit PSMB5 in the neurons of mice, enhancing proteasome function, we slowed age-related declines in spatial learning and memory as well neuromuscular declines. We then showed acute treatment with a proteasome activator to rescue spatial learning and memory deficits in aged mice. These findings highlight the potential of proteasome augmentation as a therapeutic strategy to mitigate age-related cognitive declines.
Collapse
|
14
|
Kim BY, Sohn E, Lee MY, Jeon WY, Jo K, Kim YJ, Jeong SJ. Neurodegenerative pathways and metabolic changes in the hippocampus and cortex of mice exposed to urban particulate matter: Insights from an integrated interactome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173673. [PMID: 38839008 DOI: 10.1016/j.scitotenv.2024.173673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Recently, urban particulate matter (UPM) exposure has been associated with the development of brain disorders. This study uses bioinformatic analyses to elucidate the molecular unexplored mechanisms underlying the effects of UPM exposure on the brain. Mice are exposed to UPM (from 3 days to 20 weeks), and their behavioral patterns measured. We measure pathology and gene expression in the hippocampus and cortical regions of the brain. An integrated interactome of genes is established, which enriches information on metabolic processes. Using this network, we isolate the core genes that are differentially expressed in the samples. We observe cognitive loss and pathological changes in the brains of mice at 16 or 20 weeks of exposure. Through network analysis of core-differential genes and measurement of pathway activity, we identify differences in the response to UPM exposure between the hippocampus and cortex. However, neurodegenerative disease pathways are implicated in both tissues following short-term exposure to UPM. There were also significant changes in metabolic function in both tissues depending on UPM exposure time. Additionally, the cortex of UPM-exposed mice shows more similarities with psychiatric disorders than with neurodegenerative diseases. The connectivity map database is used to isolate genes contributing to changes in expression due to UPM exposure. New approaches for inhibiting or preventing the brain damage caused by UPM exposure can be developed by targeting the functions and selected genes identified in this study.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - Eunjin Sohn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Mee-Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Woo-Young Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Kyuhyung Jo
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Yu Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Soo-Jin Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| |
Collapse
|
15
|
Sung CC, Lam WY, Chung KKK. The role of polo-like kinases 2 in the proteasomal and lysosomal degradation of alpha-synuclein in neurons. FASEB J 2024; 38:e70121. [PMID: 39436202 PMCID: PMC11580719 DOI: 10.1096/fj.202401035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the degeneration of dopaminergic neurons in the brain stem. PD is mostly sporadic, but familial PD (FPD) cases are recorded in different studies. The first gene mutation that is linked to FPD is α-synuclein (α-syn). It was then found that α-syn is also accumulated in Lewy body (LB), a classical pathological hallmark in PD patients. Different studies have shown that α-syn accumulation and aggregation can be a crucial factor contributing to the degeneration of dopaminergic neurons in PD. α-syn has been found to be degraded by the ubiquitin proteasomal system (UPS) and autophagy-lysosomal pathway (ALP). In this study, we initially explored how α-syn phosphorylation by GRK6, PLK2 and CK2α would facilitate its degradation in relation to the UPS or ALP. Unexpectedly, we found that the degradation of α-syn through PLK2 phosphorylation could be modulated by UPS and ALP in a novel mechanism. Specially, attenuation of UPS could increase the amount of PLK2 and then could facilitate the phosphorylation and degradation of α-syn through ALP. To test this further in vivo, we attenuate the proteasomal activity in a well-established A53T α-syn transgenic PD mouse model. We found that attenuation of proteasomal activity in the A53T α-syn transgenic mice could reduce the accumulation of α-syn in the striatum and midbrain. Based on our results, this study provides a new insight into how α-syn is degraded through the UPS and ALP.
Collapse
Affiliation(s)
- Chun Chau Sung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Wai Yun Lam
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Kenny K. K. Chung
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
16
|
Gao R, Wu Y, Wang Y, Yang Z, Mao Y, Yang Y, Yang C, Chen Z. Ubiquitination and De-Ubiquitination in the Synthesis of Cow Milk Fat: Reality and Prospects. Molecules 2024; 29:4093. [PMID: 39274941 PMCID: PMC11397273 DOI: 10.3390/molecules29174093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Ubiquitination modifications permit the degradation of labelled target proteins with the assistance of proteasomes and lysosomes, which is the main protein degradation pathway in eukaryotic cells. Polyubiquitination modifications of proteins can also affect their functions. De-ubiquitinating enzymes reverse the process of ubiquitination via cleavage of the ubiquitin molecule, which is known as a de-ubiquitination. It was demonstrated that ubiquitination and de-ubiquitination play key regulatory roles in fatty acid transport, de novo synthesis, and desaturation in dairy mammary epithelial cells. In addition, natural plant extracts, such as stigmasterol, promote milk fat synthesis in epithelial cells via the ubiquitination pathway. This paper reviews the current research on ubiquitination and de-ubiquitination in dairy milk fat production, with a view to providing a reference for subsequent research on milk fat and exploring new directions for the improvement of milk quality.
Collapse
Affiliation(s)
- Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Taylor CA, Maor-Nof M, Metzl-Raz E, Hidalgo A, Yee C, Gitler AD, Shen K. Histone deacetylase inhibition expands cellular proteostasis repertoires to enhance neuronal stress resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608176. [PMID: 39229034 PMCID: PMC11370365 DOI: 10.1101/2024.08.21.608176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurons are long-lived, terminally differentiated cells with limited regenerative capacity. Cellular stressors such as endoplasmic reticulum (ER) protein folding stress and membrane trafficking stress accumulate as neurons age and accompany age-dependent neurodegeneration. Current strategies to improve neuronal resilience are focused on using factors to reprogram neurons or targeting specific proteostasis pathways. We discovered a different approach. In an unbiased screen for modifiers of neuronal membrane trafficking defects, we unexpectedly identified a role for histone deacetylases (HDACs) in limiting cellular flexibility in choosing cellular pathways to respond to diverse types of stress. Genetic or pharmacological inactivation of HDACs resulted in improved neuronal health in response to ER protein folding stress and endosomal membrane trafficking stress in C. elegans and mammalian neurons. Surprisingly, HDAC inhibition enabled neurons to activate latent proteostasis pathways tailored to the nature of the individual stress, instead of generalized transcriptional upregulation. These findings shape our understanding of neuronal stress responses and suggest new therapeutic strategies to enhance neuronal resilience.
Collapse
Affiliation(s)
- Caitlin A. Taylor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Maya Maor-Nof
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Eyal Metzl-Raz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron Hidalgo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
18
|
Hossen F, Sun GY, Lee JC. Oligomeric Tau-induced oxidative damage and functional alterations in cerebral endothelial cells: Role of RhoA/ROCK signaling pathway. Free Radic Biol Med 2024; 221:261-272. [PMID: 38815773 PMCID: PMC11184584 DOI: 10.1016/j.freeradbiomed.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Despite of yet unknown mechanism, microvascular deposition of oligomeric Tau (oTau) has been implicated in alteration of the Blood-Brain Barrier (BBB) function in Alzheimer's disease (AD) brains. In this study, we employed an in vitro BBB model using primary mouse cerebral endothelial cells (CECs) to investigate the mechanism underlying the effects of oTau on BBB function. We found that exposing CECs to oTau induced oxidative stress through NADPH oxidase, increased oxidative damage to proteins, decreased proteasome activity, and expressions of tight junction (TJ) proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5. These effects were suppressed by the pretreatment with Fasudil, a RhoA/ROCK signaling inhibitor. Consistent with the biochemical alterations, we found that exposing the basolateral side of CECs to oTau in the BBB model disrupted the integrity of the BBB, as indicated by an increase in FITC-dextran transport across the model, and a decrease in trans endothelial electrical resistance (TEER). oTau also increased the transmigration of peripheral blood mononuclear cells (PBMCs) in the BBB model. These functional alterations in the BBB induced by oTau were also suppressed by Fasudil. Taken together, our findings suggest that targeting the RhoA/ROCK pathway can be a potential therapeutic strategy to maintain BBB function in AD.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
19
|
Malek N, Gladysz R, Stelmach N, Drag M. Targeting Microglial Immunoproteasome: A Novel Approach in Neuroinflammatory-Related Disorders. ACS Chem Neurosci 2024; 15:2532-2544. [PMID: 38970802 PMCID: PMC11258690 DOI: 10.1021/acschemneuro.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Collapse
Affiliation(s)
- Natalia Malek
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Radoslaw Gladysz
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Natalia Stelmach
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
20
|
Deb W, Rosenfelt C, Vignard V, Papendorf JJ, Möller S, Wendlandt M, Studencka-Turski M, Cogné B, Besnard T, Ruffier L, Toutain B, Poirier L, Cuinat S, Kritzer A, Crunk A, diMonda J, Vengoechea J, Mercier S, Kleinendorst L, van Haelst MM, Zuurbier L, Sulem T, Katrínardóttir H, Friðriksdóttir R, Sulem P, Stefansson K, Jonsdottir B, Zeidler S, Sinnema M, Stegmann APA, Naveh N, Skraban CM, Gray C, Murrell JR, Isikay S, Pehlivan D, Calame DG, Posey JE, Nizon M, McWalter K, Lupski JR, Isidor B, Bolduc FV, Bézieau S, Krüger E, Küry S, Ebstein F. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response. Am J Hum Genet 2024; 111:1352-1369. [PMID: 38866022 PMCID: PMC11267520 DOI: 10.1016/j.ajhg.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.
Collapse
Affiliation(s)
- Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Martin Wendlandt
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Ruffier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Poirier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amy Kritzer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA, USA
| | | | - Janette diMonda
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jaime Vengoechea
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lotte Kleinendorst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Telma Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | | | | | - Berglind Jonsdottir
- Childrens Hospital Hringurinn, National University Hospital of Iceland, Reykjavik, Iceland
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Natali Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sedat Isikay
- Division of Pediatric Neurology, Department of Pediatrics, Gaziantep Islam, Science and Technology University Faculty of Medicine, Gaziantep, Türkiye
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - François V Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
21
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
22
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
24
|
Varvel NH. Takin' Out the Trash for Brain Health! Epilepsy Curr 2024; 24:292-294. [PMID: 39309049 PMCID: PMC11412400 DOI: 10.1177/15357597241253503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 09/25/2024] Open
Abstract
Immunoproteasome Deficiency Results in Age-Dependent Development of Epilepsy Leister H, Krause FF, Gil B, Prus R, Prus I, Hellhund-Zingel A, Mitra M, Da Rosa Gerbatin R, Delanty N, Beausang A, Brett FM, Farrell MA, Cryan J, O’Brien DF, Henshall DC, Helmprobst F, Pagenstecher A, Steinhoff U, Visekruna A, Engel T. Brain Commun . 2024;6(1):fcae017. doi:10.1093/braincomms/fcae017 . eCollection 2024. PMID: 38317856 The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice) displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Pharmacology and Chemical Biology, Emory School of Medicine
| |
Collapse
|
25
|
D'Brant L, Rugenstein N, Na SK, Miller MJ, Czajka TF, Trudeau N, Fitz E, Tomaszek L, Fisher ES, Mash E, Joy S, Lotz S, Borden S, Stevens K, Goderie SK, Wang Y, Bertucci T, Karch CM, Temple S, Butler DC. Fully Human Bifunctional Intrabodies Achieve Graded Reduction of Intracellular Tau and Rescue Survival of MAPT Mutation iPSC-derived Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596248. [PMID: 38854137 PMCID: PMC11160687 DOI: 10.1101/2024.05.28.596248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP), spurring development of tau-lowering therapeutic strategies. Here, we report fully human bifunctional anti-tau-PEST intrabodies that bind the mid-domain of tau to block aggregation and degrade tau via the proteasome using the ornithine decarboxylase (ODC) PEST degron. They effectively reduced tau protein in human iPSC-derived cortical neurons in 2D cultures and 3D organoids, including those with the disease-associated tau mutations R5L, N279K, R406W, and V337M. Anti-tau-hPEST intrabodies facilitated efficient ubiquitin-independent proteolysis, in contrast to tau-lowering approaches that rely on the cell's ubiquitination system. Importantly, they counteracted the proteasome impairment observed in V337M patient-derived cortical neurons and significantly improved neuronal survival. By serial mutagenesis, we created variants of the PEST degron that achieved graded levels of tau reduction. Moderate reduction was as effective as high reduction against tau V337M-induced neural cell death.
Collapse
|
26
|
Marino N, Bedeschi M, Vaccari ME, Cambiaghi M, Tesei A. Glitches in the brain: the dangerous relationship between radiotherapy and brain fog. Front Cell Neurosci 2024; 18:1328361. [PMID: 38515789 PMCID: PMC10956129 DOI: 10.3389/fncel.2024.1328361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.
Collapse
Affiliation(s)
- Noemi Marino
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Bedeschi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Melania Elettra Vaccari
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Cambiaghi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Tesei
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
27
|
Ullah I, Uddin S, Zhao L, Wang X, Li H. Autophagy and UPS pathway contribute to nicotine-induced protection effect in Parkinson's disease. Exp Brain Res 2024:10.1007/s00221-023-06765-9. [PMID: 38430248 DOI: 10.1007/s00221-023-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/11/2023] [Indexed: 03/03/2024]
Abstract
The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shahab Uddin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Longhe Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| |
Collapse
|
28
|
Amrein Almira A, Chen MW, El Demerdash N, Javdan C, Park D, Lee JK, Martin LJ. Proteasome localization and activity in pig brain and in vivo small molecule screening for activators. Front Cell Neurosci 2024; 18:1353542. [PMID: 38469354 PMCID: PMC10925635 DOI: 10.3389/fncel.2024.1353542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.
Collapse
Affiliation(s)
- Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - May W. Chen
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dongseok Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Magnati S, Alladio E, Bracco E. A Survey on the Expression of the Ubiquitin Proteasome System Components HECT- and RBR-E3 Ubiquitin Ligases and E2 Ubiquitin-Conjugating and E1 Ubiquitin-Activating Enzymes during Human Brain Development. Int J Mol Sci 2024; 25:2361. [PMID: 38397039 PMCID: PMC10889685 DOI: 10.3390/ijms25042361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.
Collapse
Affiliation(s)
- Stefano Magnati
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Politecnico di Torino, 10129, Turin, Italy
| | - Eugenio Alladio
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Orbassano, Italy
- Istituto Nazionale Ricerca Metrologica, 10135 Turin, Italy
| |
Collapse
|
30
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
31
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|