1
|
Wang Y, Cheng Y, Li Y, Wang Y, Fu X. Rationally Designed Self-Derived Peptides Kill Escherichia coli by Targeting BamA and BamD Essential for Outer Membrane Protein Biogenesis. ACS Infect Dis 2025; 11:1092-1103. [PMID: 40265351 DOI: 10.1021/acsinfecdis.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
There is an urgent need to develop antibiotics with new mechanisms of action for combating antibiotic-resistant bacteria, particularly against Gram-negative pathogens that severely threaten human health. Here, we introduce the rational design and comprehensive characterization of self-derived antibacterial peptides that specifically target Escherichia coli BamA and BamD, vital components of the β-barrel assembly machine (BAM) for the folding and membrane integration of outer membrane proteins (OMPs) in Gram-negative bacteria. Among the three BamA-targeted peptides, BamA543-551, which corresponds to an extracellular loop of BamA, exhibits remarkable bactericidal activity against OM-permeabilizedE. coli cells. Similarly, among four BamD-targeted peptides, BamD163-187 corresponding to a BamA-interacting α-helix exhibits potent bactericidal activity. Notably, both BamA543-551 and BamD163-187 are able to kill other OM-permeabilized Gram-negative pathogens but not Gram-positive ones, and fusion with a cell membrane-penetrating peptide enabled them to directly kill intactE. coli cells. Further, both of them significantly change the cell membrane integrity ofE. coli, induce the accumulation of misfolded OmpF, and reduce the level of folded OmpF. In particular, in vivo photo-cross-linking analysis indicates that BamA543-551 disrupts the direct interaction between BamA and periplasmic chaperone SurA in livingE. coli cells, thus offering insights into their mode of action. Collectively, our findings confirm the potential of BamA and BamD as promising antibiotic targets and suggest that BamA- and BamD-derived peptides can be candidates for antibiotic development.
Collapse
Affiliation(s)
- Yuchan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yu Cheng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yinghong Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Yan Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| | - Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province 350117, China
| |
Collapse
|
2
|
Balde A, Kim SK, Nazeer RA. A review on microneedle patch as a delivery system for proteins/peptides and their applications in transdermal inflammation suppression. Int J Biol Macromol 2025; 307:141963. [PMID: 40086558 DOI: 10.1016/j.ijbiomac.2025.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Transdermal delivery is one of the most recent modes of administration studied due to several shortfalls observed for intra-venous, and oral drug administrations. Among, microneedle-based transdermal delivery is the popular choice due to non-invasive procedure and minimal toxicological effects. Microneedle devices consist of micron scaled needle patch entrapped with the target specific drug molecules. Due to body's immune response and occasional pathogen attack, various inflammatory diseases are developed such as psoriasis, dermatitis, rashes, rheumatoid arthritis, gouty arthritis, and fibrosis. These inflammatory conditions can be treated by microneedle assisted transdermal delivery. Moreover, for localized suppression of pain and inflammation, various therapeutic peptides and proteins have been investigated. Although, these therapeutic agents can show reduced activity and undergo enzymatic degradation when administered orally or intra-venously. Hence, a microneedle-based delivery system can be used as an effective way to localize these peptides/proteins and reduce the inflammation. Herein, this review includes various microneedle fabrication methods for enhancing drug delivery for suppression of inflammation. Moreover, recent development in microneedle devices of peptide and protein delivery applications are discoursed. At last, future scope and challenges endured for preparing an efficient microneedle patch for peptide and protein delivery are also elaborated.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
3
|
Prashar N, Mohammed SB, Raja NS, Mohideen HS. Rerouting therapeutic peptides and unlocking their potential against SARS-CoV2. 3 Biotech 2025; 15:116. [PMID: 40191455 PMCID: PMC11971104 DOI: 10.1007/s13205-025-04270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic highlighted the potential of peptide-based therapies as an alternative to traditional pharmaceutical treatments for SARS-CoV-2 and its variants. Our review explores the role of therapeutic peptides in modulating immune responses, inhibiting viral entry, and disrupting replication. Despite challenges such as stability, bioavailability, and the rapid mutation of the virus, ongoing research and clinical trials show that peptide-based treatments are increasingly becoming integral to future viral outbreak responses. Advancements in computational modelling methods in combination with artificial intelligence will enable mass screening of therapeutic peptides and thereby, comprehending a peptide repurposing strategy similar to the small molecule repurposing. These findings suggest that peptide-based therapies play a critical and promising role in future pandemic preparedness and outbreak management.
Collapse
Affiliation(s)
- Namrata Prashar
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Saharuddin Bin Mohammed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - N. S. Raja
- Deparmtent of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| | - Habeeb Shaik Mohideen
- Bioinformatics and Entomoinformatics Lab, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu 603203 India
| |
Collapse
|
4
|
Jayakody T, Budagoda DK, Mendis K, Dilshan WD, Bethmage D, Dissasekara R, Dawe GS. Biased agonism in peptide-GPCRs: A structural perspective. Pharmacol Ther 2025; 269:108806. [PMID: 39889970 DOI: 10.1016/j.pharmthera.2025.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
G protein-coupled receptors (GPCRs) are dynamic membrane receptors that transduce extracellular signals to the cell interior by forming a ligand-receptor-effector (ternary) complex that functions via allosterism. Peptides constitute an important class of ligands that interact with their cognate GPCRs (peptide-GPCRs) to form the ternary complex. "Biased agonism", a therapeutically relevant phenomenon exhibited by GPCRs owing to their allosteric nature, has also been observed in peptide-GPCRs, leading to the development of selective therapeutics with fewer side effects. In this review, we have focused on the structural basis of signalling bias at peptide-GPCRs of classes A and B, and reviewed the therapeutic relevance of bias at peptide-GPCRs, with the hope of contributing to the discovery of novel biased peptide drugs.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Krishan Mendis
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | | | - Duvindu Bethmage
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka
| | - Rashmi Dissasekara
- Department of Chemistry, University of Colombo, P.O. Box 1490, Colombo 00300, Sri Lanka; The Graduate School, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Erriah P, Puan SL, Yahaya NM, Wan Ahmad Kamil WNI, Amin Nordin S, Muhamad A, Sabri S. Harnessing bacterial antimicrobial peptides: a comprehensive review on properties, mechanisms, applications, and challenges in combating antimicrobial resistance. J Appl Microbiol 2025; 136:lxae290. [PMID: 40036746 DOI: 10.1093/jambio/lxae290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 03/06/2025]
Abstract
Antimicrobial resistance (AMR) is a significant global health concern due to the persistence of pathogens and the emergence of resistance in bacterial infections. Bacterial-derived antimicrobial peptides (BAMPs) have emerged as a promising strategy to combat these challenges. Known for their diversity and multifaceted nature, BAMPs are notable bioactive agents that exhibit potent antimicrobial activities against various pathogens. This review explores the intricate properties and underlying mechanisms of BAMPs, emphasizing their diverse applications in addressing AMR. Additionally, the review investigates the mechanisms, analyses the challenges in utilizing BAMPs effectively, and examines their potential applications and associated deployment challenges providing comprehensive insights into how BAMPs can be harnessed to combat AMR across different domains. The significance of this review lies in highlighting the potential of BAMPs as transformative agents in combating AMR, offering sustainable and eco-friendly solutions to this pressing global health challenge.
Collapse
Affiliation(s)
- Pirasannah Erriah
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Ling Puan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Normi Mohd Yahaya
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Wan Nur Ismah Wan Ahmad Kamil
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Gregory KS, Cozier GE, Fienberg S, Chibale K, Sturrock ED, Acharya KR. Molecular basis of human angiotensin-1 converting enzyme inhibition by a series of diprolyl-derived compounds. FEBS J 2025; 292:1141-1158. [PMID: 39763019 PMCID: PMC11880972 DOI: 10.1111/febs.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 11/25/2024] [Indexed: 03/06/2025]
Abstract
Angiotensin-1-converting enzyme (ACE) is a zinc-dependent carboxypeptidase of therapeutic interest for the treatment of hypertension, inflammation and fibrosis. It consists of two homologous N and C catalytic domains, nACE and cACE, respectively. Unfortunately, the current clinically available ACE inhibitors produce undesirable side effects due to the nonselective inhibition of these domains. Through structure-based drug design, we previously identified a series of diprolyl-derived inhibitors (SG3, SG15, SG16, SG17 and SG18) in an attempt to specifically target nACE. Only one compound, SG16, possessed significant nACEselectivity. The previously determined 16-nACE crystal structure (nACE:SG16) suggested interactions with Tyr369 (Phe381 in cACE) are responsible for this selectivity. To better understand the molecular basis for the lack of selectivity in the remaining compounds, we have cocrystallised nACE in complex with SG3, SG15, SG17 and SG18 and cACE in complex with SG3, SG15, SG16 and SG18 and determined their structures at high resolution. Apart from the catalytic residues, these structures further highlight the importance of residues distal to the active site that may play an important role in the design of domain-selective inhibitors of ACE.
Collapse
Affiliation(s)
| | | | - Stephen Fienberg
- Holistic Drug Discovery and Development (H3D) CentreUniversity of Cape TownRondeboschSouth Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) CentreUniversity of Cape TownRondeboschSouth Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownObservatorySouth Africa
| | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, and Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
7
|
Shave S, Isaksson R, Pham NT, Elliott RJR, Dawson JC, Soudant J, Carragher NO, Auer M. Cellular Activity of CQWW Nullomer-Derived Peptides. ACS OMEGA 2025; 10:6794-6800. [PMID: 40028100 PMCID: PMC11865978 DOI: 10.1021/acsomega.4c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Analysis of observed protein sequences across all species within the UniProtKB/Swiss-Prot data set reveals CQWW as the shortest absent stretch of amino acids. While DNA can be found encoding the CQWW sequence, it has never been observed to be translated or included in manually curated sets of proteins, existing only in predicted, tentative sequences and in a single mature antibody sequence. We have synthesized this "nullomer" peptide, along with 13 derivatives, reversed, truncated, stereoisomers, and alanine-scanning peptides, conjugated to polyarginine stretches to increase cellular uptake. We observed their impact against a healthy neuronal line and six patient-derived glioblastoma cell lines spanning three clinical subtypes. Results reveal IC50 values averaging 4.9 μM for inhibition of cell survival across tested oncogenic cell lines. High-content phenotypic analysis of cellular features and reverse-phase protein arrays failed to discern a clear mode of action for the nullomer peptide but suggests mitochondrial impairment through the inhibition of GSK3 and isoforms, supported by observations of reduced mitochondrial stain intensities. With a recent increase in interest in nullomer peptides, we see the results in this study as a starting point for further investigation into this potentially therapeutic peptide class.
Collapse
Affiliation(s)
- Steven Shave
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
| | - Rebecka Isaksson
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Nhan T. Pham
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
- College
of Medicine and Veterinary Medicine, University
of Edinburgh, Institute for Regeneration and Repair, 4-5 Little France Drive, Edinburgh EH16 4UU, U.K.
| | - Richard J. R. Elliott
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - John C. Dawson
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Julius Soudant
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
- Departamento
de Farmacologia, Facultad de Medicina, Universidad
Autónoma de Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Neil O. Carragher
- Edinburgh
Cancer Research, Cancer Research UK Scotland Centre, Institute of
Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, U.K.
| | - Manfred Auer
- School
of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
8
|
Morales-Vicente FE, Espinosa LA, Díaz-Pico E, Martell EM, Gonzalez M, Ojeda G, González LJ, Rodríguez A, Garay HE, Franco OL, Rosenau F, Otero-González AJ, Ständker L. Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5. Antibiotics (Basel) 2025; 14:194. [PMID: 40001437 PMCID: PMC11851992 DOI: 10.3390/antibiotics14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cm-p5 and its cyclic monomeric and dimeric analogues are known for their antifungal, antibacterial, antiviral, and antibiofilm activities. Previously, our cyclization method produced a mixture of peptides that were difficult to separate, which was then improved by a selective synthesis of the parallel dimer and its differentiation from the antiparallel by comparison of the retention times in RP-HPLC. Methods: Here, we developed a more reliable identification method for the Cm-p5 dimer identification, which included chymotrypsin proteolytic digestion and sequencing of the different fragments by ESI-MSMS. We also improved our cyclization methods to specifically produce higher amounts of the desired cyclic variant, either cyclic monomer or dimer. Results: We show that liquid phase oxidation with 20% DMSO or iodine oxidation yields only the cyclic analogue. However, the on-resin oxidation with iodine showed greater efficacy and efficiency. Additionally, liquid phase cyclization yields the antiparallel dimer in high EtOH or peptide concentration, indicating a kinetic control. On the other hand, the parallel dimer was preferentially produced in 5% of TFE and low peptide concentration without the formation of the cyclic analogue indicating a thermodynamic control. Conclusions: In conclusion, we report that chymotryptic digestion combined with ESI-MS and MS/MS allows an unambiguous differentiation of Cm-p5 dimers. Here, we develop more selective and efficient methods for the synthesis of cyclic and dimeric analogues of Cm-p5.
Collapse
Affiliation(s)
- Fidel E. Morales-Vicente
- Synthetic Peptide Group, Physics and Chemistry Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana 10600, Cuba; (F.E.M.-V.); (H.E.G.)
| | - Luis A. Espinosa
- Mass Spectrometry Laboratory, Systems Biology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana 10600, Cuba; (L.A.E.); (L.J.G.)
| | - Erbio Díaz-Pico
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile;
| | - Ernesto M. Martell
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba; (E.M.M.); (M.G.)
| | - Melaine Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba; (E.M.M.); (M.G.)
| | - Gerardo Ojeda
- General Chemistry Department, Faculty of Chemistry, University of Havana, Zapata and G, La Havana 10400, Cuba;
| | - Luis Javier González
- Mass Spectrometry Laboratory, Systems Biology Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana 10600, Cuba; (L.A.E.); (L.J.G.)
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Meyerhofstraße 4, 89081 Ulm, Germany;
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Hilda E. Garay
- Synthetic Peptide Group, Physics and Chemistry Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, La Habana 10600, Cuba; (F.E.M.-V.); (H.E.G.)
| | - Octavio L. Franco
- Centro de Analises Proteomicas e Bioquímicas, Programa de Pos-Graduaçao em Ciencias Genomicas e Biotecnologia, Universidade Catolica de Brasília, Brasília 70790-160, Brazil;
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein Alle 11, 89081 Ulm, Germany;
| | - Anselmo J. Otero-González
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Str. and I Str., La Habana 10400, Cuba; (E.M.M.); (M.G.)
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Meyerhofstraße 4, 89081 Ulm, Germany;
| |
Collapse
|
9
|
Iglesias V, Bárcenas O, Pintado‐Grima C, Burdukiewicz M, Ventura S. Structural information in therapeutic peptides: Emerging applications in biomedicine. FEBS Open Bio 2025; 15:254-268. [PMID: 38877295 PMCID: PMC11788753 DOI: 10.1002/2211-5463.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
Peptides are attracting a growing interest as therapeutic agents. This trend stems from their cost-effectiveness and reduced immunogenicity, compared to antibodies or recombinant proteins, but also from their ability to dock and interfere with large protein-protein interaction surfaces, and their higher specificity and better biocompatibility relative to organic molecules. Many tools have been developed to understand, predict, and engineer peptide function. However, most state-of-the-art approaches treat peptides only as linear entities and disregard their structural arrangement. Yet, structural details are critical for peptide properties such as solubility, stability, or binding affinities. Recent advances in peptide structure prediction have successfully addressed the scarcity of confidently determined peptide structures. This review will explore different therapeutic and biotechnological applications of peptides and their assemblies, emphasizing the importance of integrating structural information to advance these endeavors effectively.
Collapse
Affiliation(s)
- Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Institute of Advanced Chemistry of Catalonia (IQAC), CSICBarcelonaSpain
| | - Carlos Pintado‐Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
- Clinical Research CentreMedical University of BiałystokBiałystokPoland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia MolecularUniversitat Autònoma de BarcelonaBarcelonaSpain
| |
Collapse
|
10
|
Claringbold B, Vance S, Paul AR, Williamson J, Garrett MD, Serpell CJ. Sequence-defined phosphoestamers for selective inhibition of the KRAS G12D/RAF1 interaction. Chem Sci 2024; 16:113-123. [PMID: 39600501 PMCID: PMC11588021 DOI: 10.1039/d4sc07218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
RAS proteins are the most frequently mutated in cancer, yet they have proved extremely difficult to target in drug discovery, largely because interfering with the interaction of RAS with its downstream effectors comes up against the challenge of protein-protein interactions (PPIs). Sequence-defined synthetic oligomers could combine the precision and customisability of synthetic molecules with the size required to address entire PPI surfaces. We have adapted the phosphoramidite chemistry of oligonucleotide synthesis to produce a library of nearly one million non-nucleosidic oligophosphoester sequences (phosphoestamers) composed of units taken from synthetic supramolecular chemistry, and used a fluorescent-activated bead sorting (FABS) process to select those that inhibit the interaction between KRASG12D (the most prevalent, and undrugged, RAS mutant) and RAF, a downstream effector of RAS that drives cell proliferation. Hits were identified using tandem mass spectrometry, and orthogonal validation showed effective inhibition of KRASG12D with IC50 values as low as 25 nM, and excellent selectivity over the wild type form. These findings have the potential to lead to new drugs that target mutant RAS-driven cancers, and provide proof-of-principle for the phosphoestamer chemical platform against PPIs in general - opening up new possibilities in neurodegenerative disease, viral infection, and many more conditions.
Collapse
Affiliation(s)
- Bini Claringbold
- School of Chemistry and Forensic Science, University of Kent Canterbury Kent CT2 7NH UK
| | - Steven Vance
- Cancer Research UK Scotland Institute Glasgow G61 1BD UK
| | - Alexandra R Paul
- School of Chemistry and Forensic Science, University of Kent Canterbury Kent CT2 7NH UK
| | - James Williamson
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | | | - Christopher J Serpell
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
11
|
Nelson TS, Allen HN, Khanna R. Neuropeptide Y and Pain: Insights from Brain Research. ACS Pharmacol Transl Sci 2024; 7:3718-3728. [PMID: 39698268 PMCID: PMC11651174 DOI: 10.1021/acsptsci.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/20/2024]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with widespread distribution in the central nervous system and diverse physiological functions. While extensively studied for its inhibitory effects on pain at the spinal cord level, its role in pain modulation within the brain remains less clear. This review aims to summarize the complex landscape of supraspinal NPY signaling in pain processing. We discuss the expression and function of NPY receptors in key pain-related brain regions, including the parabrachial nucleus, periaqueductal gray, amygdala, and nucleus accumbens. Additionally, we highlight the potent efficacy of NPY in attenuating pain sensitivity and nociceptive processing throughout the central nervous system. NPY-based therapeutic interventions targeting the central nervous system represent a promising avenue for novel analgesic strategies and pain-associated comorbidities.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Heather N. Allen
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, McKnight Brain Institute, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
12
|
Cheng X, Zhang Y, Zhang Y, Chen Y, Chen J, Wang W, Zhu G. Multiple strategies of HSP antimicrobial peptide optimization to enhance antimicrobial activity. Amino Acids 2024; 56:66. [PMID: 39589573 PMCID: PMC11599297 DOI: 10.1007/s00726-024-03428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Yonghuang Zhang
- Department of Pharmacy, Hefei Binhu Hospital, Hefei, 230601, China
| | - Yan Zhang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Yajun Chen
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Jianli Chen
- Shimadzu (China) Co., Ltd, Wuhan, 430000, China
| | - Wei Wang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Guilan Zhu
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| |
Collapse
|
13
|
Tantak MP, Rayala R, Chaudhari P, Danta CC, Nefzi A. Synthesis of Diazacyclic and Triazacyclic Small-Molecule Libraries Using Vicinal Chiral Diamines Generated from Modified Short Peptides and Their Application for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1566. [PMID: 39770408 PMCID: PMC11678756 DOI: 10.3390/ph17121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures. Their synthesis often requires several steps or the use of functionalized starting materials. This review describes the use of vicinal diamines generated from modified short peptides to access substituted diaza- and triazacyclic compounds. Small-molecule diaza- and triazacyclic compounds with different substitution patterns and embedded in various molecular frameworks constitute important structure classes in the search for bioactivity. The compounds are designed to follow known drug likeness rules, including "Lipinski's Rule of Five". The screening of diazacyclic and traizacyclic libraries has shown the utility of these classes of compounds for the de novo identification of highly active compounds, including antimalarials, antimicrobial compounds, antifibrotic compounds, potent analgesics, and antitumor agents. Examples of the synthesis of diazacyclic and triazacyclic small-molecule libraries from vicinal chiral polyamines generated from modified short peptides and their application for the identification of highly active compounds are described.
Collapse
Affiliation(s)
- Mukund P. Tantak
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA; (M.P.T.); (R.R.); (P.C.); (C.C.D.)
| | - Ramanjaneyulu Rayala
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA; (M.P.T.); (R.R.); (P.C.); (C.C.D.)
| | - Prakash Chaudhari
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA; (M.P.T.); (R.R.); (P.C.); (C.C.D.)
| | - Chhanda C. Danta
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA; (M.P.T.); (R.R.); (P.C.); (C.C.D.)
| | - Adel Nefzi
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA; (M.P.T.); (R.R.); (P.C.); (C.C.D.)
- Department of Chemistry and Biochemistry, College of Arts, Sciences & Education, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
14
|
Choi W, Fattah M, Shang Y, Thompson MP, Carrow KP, Hu D, Liu Z, Avram MJ, Bailey K, Berger O, Qi X, Gianneschi NC. Proteomimetic polymer blocks mitochondrial damage, rescues Huntington's neurons, and slows onset of neuropathology in vivo. SCIENCE ADVANCES 2024; 10:eado8307. [PMID: 39485846 PMCID: PMC11529722 DOI: 10.1126/sciadv.ado8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Recently, it has been shown that blocking the binding of valosin-containing protein (VCP) to mutant huntingtin (mtHtt) can prevent neuronal mitochondrial autophagy in Huntington's disease (HD) models. Herein, we describe the development and efficacy of a protein-like polymer (PLP) for inhibiting this interaction in cellular and in vivo models of HD. PLPs exhibit bioactivity in HD mouse striatal cells by successfully inhibiting mitochondrial destruction. PLP is notably resilient to in vitro enzyme, serum, and liver microsome stability assays, which render analogous control oligopeptides ineffective. PLP demonstrates a 2000-fold increase in circulation half-life compared to peptides, exhibiting an elimination half-life of 152 hours. In vivo efficacy studies in HD transgenic mice (R6/2) confirm the superior bioactivity of PLP compared to free peptide through behavioral and neuropathological analyses. PLP functions by preventing pathologic VCP/mtHtt binding in HD animal models; exhibits enhanced efficacy over the parent, free peptide; and implicates the PLP as a platform with potential for translational central nervous system therapeutics.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Mara Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yutong Shang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Kendal P. Carrow
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Zunren Liu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Michael J. Avram
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Keith Bailey
- Charles River Laboratories, Mattawan, MI 49071, USA
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, OH 44106, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Departments of Materials Science & Engineering, Biomedical Engineering, and Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
15
|
Khezri H, Mostafavi M, Dabirmanesh B, Khajeh K. Peptibodies: Bridging the gap between peptides and antibodies. Int J Biol Macromol 2024; 278:134718. [PMID: 39142490 DOI: 10.1016/j.ijbiomac.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Hamidhossein Khezri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Mostafavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Javaid N, Ahmad B, Patra MC, Choi S. Decoy peptides that inhibit TNF signaling by disrupting the TNF homotrimeric oligomer. FEBS J 2024; 291:4372-4391. [PMID: 39003565 DOI: 10.1111/febs.17220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine and its functional homotrimeric form interacts with the TNF receptor (TNFR) to activate downstream apoptotic, necroptotic, and inflammatory signaling pathways. Excessive activation of these pathways leads to various inflammatory diseases, which makes TNF a promising therapeutic target. Here, 12-mer peptides were selected from the interface of TNF-TNFR based upon their relative binding energies and were named 'TNF-inhibiting decoys' (TIDs). These decoy peptides inhibited TNF-mediated secretion of cytokines and cell death, as well as activation of downstream signaling effectors. Effective TIDs inhibited TNF signaling by disrupting the formation of TNF's functional homotrimeric form. Among derivatives of TIDs, TID3c showed slightly better efficacy in cell-based assays by disrupting TNF trimer formation. Moreover, TID3c oligomerized TNF to a high molecular weight configuration. In silico modeling and simulations revealed that TID3c and its parent peptide, TID3, form a stable complex with TNF through hydrogen bonds and electrostatic interactions, which makes them the promising lead to develop peptide-based anti-TNF therapeutics.
Collapse
Affiliation(s)
- Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | - Bilal Ahmad
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Suwon, Korea
| |
Collapse
|
17
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
19
|
J AR, D SP, Arumainathan S. Digital nets conformational sampling (DNCS) - an enhanced sampling technique to explore the conformational space of intrinsically disordered peptides. Phys Chem Chem Phys 2024; 26:22640-22655. [PMID: 39158517 DOI: 10.1039/d4cp01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We propose digital nets conformational sampling (DNCS) - an enhanced sampling technique to explore the conformational ensembles of peptides, especially intrinsically disordered peptides (IDPs). The DNCS algorithm relies on generating history-dependent samples of dihedral variables using bitwise XOR operations and binary angle measurements (BAM). The algorithm was initially studied using met-enkephalin, a highly elusive neuropeptide. The DNCS method predicted near-native structures and the energy landscape of met-enkephalin was observed to be in direct correlation with earlier studies on the neuropeptide. Clustering analysis revealed that there are only 24 low-lying conformations of the molecule. The DNCS method has then been tested for predicting optimal conformations of 42 oligopeptides of length varying from 3 to 8 residues. The closest-to-native structures of 86% of cases are near-native and 24% of them have a root mean square deviation of less than 1.00 Å with respect to their crystal structures. The results obtained reveal that the DNCS method performs well, that too in less computational time.
Collapse
Affiliation(s)
- Abraham Rebairo J
- Department of Nuclear Physics, University of Madras, Chennai, Tamil Nadu, India.
| | - Sam Paul D
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Stephen Arumainathan
- Department of Nuclear Physics, University of Madras, Chennai, Tamil Nadu, India.
- Department of Materials Science, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
20
|
Otvos L. The latest trends in peptide drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:869-872. [PMID: 38860697 DOI: 10.1080/17460441.2024.2365969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Affiliation(s)
- Laszlo Otvos
- OLPE Pharmaceutical Consultants, Audubon, USA
- The Institute for Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Arif R, Kanwal S, Ahmed S, Kabir M. A Computational Predictor for Accurate Identification of Tumor Homing Peptides by Integrating Sequential and Deep BiLSTM Features. Interdiscip Sci 2024; 16:503-518. [PMID: 38733473 DOI: 10.1007/s12539-024-00628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/13/2024]
Abstract
Cancer remains a severe illness, and current research indicates that tumor homing peptides (THPs) play an important part in cancer therapy. The identification of THPs can provide crucial insights for drug-discovery and pharmaceutical industries as they allow for tailored medication delivery towards cancer cells. These peptides have a high affinity enabling particular receptors present upon tumor surfaces, allowing for the creation of precision medications that reduce off-target consequences and enhance cancer patient treatment results. Wet-lab techniques are considered essential tools for studying THPs; however, they're labor-extensive and time-consuming, therefore making prediction of THPs a challenging task for the researchers. Computational-techniques, on the other hand, are considered significant tools in identifying THPs according to the sequence data. Despite many strategies have been presented to predict new THP, there is still a need to develop a robust method with higher rates of success. In this paper, we developed a novel framework, THP-DF, for accurately identifying THPs on a large-scale. Firstly, the peptide sequences are encoded through various sequential features. Secondly, each feature is passed to BiLSTM and attention layers to extract simplified deep features. Finally, an ensemble-framework is formed via integrating sequential- and deep features which are fed to a support vector machine which with 10-fold cross-validation to carry to validate the efficiency. The experimental results showed that THP-DF worked better on both [Formula: see text] and [Formula: see text] datasets by achieving accuracy of > 95% which are higher than existing predictors both datasets. This indicates that the proposed predictor could be a beneficial tool to precisely and rapidly identify THPs and will contribute to the cutting-edge cancer treatment strategies and pharmaceuticals.
Collapse
Affiliation(s)
- Roha Arif
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Sameera Kanwal
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore, 54782, Pakistan.
| |
Collapse
|
22
|
Almeida JR. The Century-Long Journey of Peptide-Based Drugs. Antibiotics (Basel) 2024; 13:196. [PMID: 38534631 DOI: 10.3390/antibiotics13030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
The pioneering medical application of peptides as therapeutics began approximately a century ago; however, they remain clinically relevant candidates garnering more attention on the drug development agenda [...].
Collapse
Affiliation(s)
- José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
23
|
Ahmed N, Asif S, Arfan M, Mahmood Q, Islam A, Gatasheh MK, Zia M. Synthesis and Characterization of Short α and β-Mixed Peptides with Excellent Anti-Lipase Activities. Molecules 2024; 29:765. [PMID: 38398517 PMCID: PMC10892623 DOI: 10.3390/molecules29040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Obesity is a source of significant pathologies and deadly diseases, including heart disease, diabetes, and cancer. One of the most intriguing strategies in the hunt for new anti-obesity medications is the inhibition of pancreatic lipase (PL). This study presents a novel application of short α and β-mixed peptides as pancreatic lipase inhibitors. These peptides were synthesized in the solution phase and characterized using FTIR and 1H-NMR. L-proline is present in a high percentage of natural anti-lipase peptides and was used as a β-amino acid in this study to enhance anti-lipase activity and proteolytic stability. Moreover, L-α-proline was converted to β-amino acid derivatives using the Arndt-Eistert method with the advantage of stereo control at the α-carbon. The synthesized peptides with anti-lipase activity are N-Boc-β-Pro-Gly-OBz (93%), N-Boc-O-Bz-Tyr-β-Pro-β-Pro-Gly-OBz (92%), N-Boc-O-Bz-Tyr-β-Pro-COOH (91%), N-Boc-Phe-β-Pro-OCH3 (90%), and N-Boc-O-Bz-Tyr-β-Pro-OCH3 (89%). These peptides may function as lead molecules for further modification to more significant molecules, which can help control obesity.
Collapse
Grants
- RSP2024R393 King Saud University
- 9ebfe58b5d63cfdf,0fc4036025155e1a,3a852f3e85a2433b,ffc04817768e29d8,1eae9545a3244bed,db5d8742b53a782c,fc9of098bf237c77,8ce5883758852285 Qaiser Mahmood
- 0bb1baa309ebdbb0,6a5aa5d7ed313e53,61843063f3444df7,58875d947b81e726,615b239e803be0b0,45e50be7ef0245f1,c5d9a4fe383b609e,0ceab0ce3ca2061e Amjad Islam
Collapse
Affiliation(s)
- Naeem Ahmed
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sabahat Asif
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Muhammad Arfan
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Qaiser Mahmood
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China;
| | - Amjad Islam
- Key Laboratory for Preparation and Application of Ordered Structured Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China;
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|
24
|
Vincenzi M, Mercurio FA, Leone M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int J Mol Sci 2024; 25:1798. [PMID: 38339078 PMCID: PMC10855943 DOI: 10.3390/ijms25031798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Over the last few decades, we have witnessed growing interest from both academic and industrial laboratories in peptides as possible therapeutics. Bioactive peptides have a high potential to treat various diseases with specificity and biological safety. Compared to small molecules, peptides represent better candidates as inhibitors (or general modulators) of key protein-protein interactions. In fact, undruggable proteins containing large and smooth surfaces can be more easily targeted with the conformational plasticity of peptides. The discovery of bioactive peptides, working against disease-relevant protein targets, generally requires the high-throughput screening of large libraries, and in silico approaches are highly exploited for their low-cost incidence and efficiency. The present review reports on the potential challenges linked to the employment of peptides as therapeutics and describes computational approaches, mainly structure-based virtual screening (SBVS), to support the identification of novel peptides for therapeutic implementations. Cutting-edge SBVS strategies are reviewed along with examples of applications focused on diverse classes of bioactive peptides (i.e., anticancer, antimicrobial/antiviral peptides, peptides blocking amyloid fiber formation).
Collapse
Affiliation(s)
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy; (M.V.); (F.A.M.)
| |
Collapse
|
25
|
Ughade S, Rana S, Nadeem M, Kumthekar R, Mahajani S, Bhambure R. Mechanistic Modeling of Size Exclusion Chromatography-Assisted In Vitro Refolding of the Recombinant Biosimilar Teriparatide (PTH-34). ACS OMEGA 2024; 9:3204-3216. [PMID: 38284095 PMCID: PMC10809233 DOI: 10.1021/acsomega.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In vitro protein refolding is one of the critical unit operations in manufacturing recombinant peptides expressed using Escherichia coli as host cells. This study is focused on designing size exclusion chromatography-assisted in vitro refolding process for biosimilar recombinant parathyroid hormone. Inclusion bodies (IBs) of recombinant parathyroid hormone were solubilized at higher pH, and in vitro refolding was performed using size exclusion chromatography. In the first part of the investigation, DoE-based empirical optimization was performed to achieve a higher refolding yield for a biosimilar recombinant parathyroid hormone. The effect of solubilized inclusion body (IB) feed volume, concentration of IBs, and residence time on in vitro refolding of recombinant teriparatide was studied using the Box-Behnken design. Size exclusion chromatography (SEC)-assisted in vitro refolding was performed at 8 °C at pH 10.5 by using 20 mM Tris buffer. The maximum refolding yield of 98.12% was achieved at feed volume (12.5% of CV) and 20 mg/mL inclusion body (IB) concentration with a residence time of 50 min and a purity of 66.1% based on densitometric analysis using SDS-PAGE. In the latter part of the investigation, the general rate mechanistic model framework for size exclusion chromatography was developed and validated with the experimental results. The developed model helped in the accurate prediction of the elution volumes and product yield. The developed model also helps to predict the elution performance of a scalable column a priori. Post in vitro refolding, the formation of the native peptide structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structures. The developed hybrid process development approach is a valuable tool toachieve high-yield, scalable refolding conditions for recombinant proteins without disulfide bonds.
Collapse
Affiliation(s)
- Santosh Ughade
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Rana
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Nadeem
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rupali Kumthekar
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Mahajani
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Fan T, Liu B, Yao H, Chen X, Yang H, Guo S, Wu B, Li X, Li X, Xun M, Wang H. Cathelicidin peptide analogues inhibit EV71 infection through blocking viral entry and uncoating. PLoS Pathog 2024; 20:e1011967. [PMID: 38271479 PMCID: PMC10846744 DOI: 10.1371/journal.ppat.1011967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Given the serious neurological complications and deaths associated with enterovirus 71 (EV71) infection, there is an urgent need to develop effective antivirals against this viral infection. In this study, we demonstrated that two Cathelicidin-derived peptides, LL-18 and FF-18 were more potent against EV71 infection than the parent peptide LL-37, which is the mature and processed form of Cathelicidin. These peptides could directly bind to the EV71 virus particles, but not to coxsackievirus, indicative of their high specificity. The binding of peptides with the virus surface occupied the viral canyon region in a way that could block virus-receptor interactions and inhibit viral uncoating. In addition, these peptide analogues could also relieve the deleterious effect of EV71 infection in vivo. Therefore, Cathelicidin-derived peptides might be excellent candidates for further development of antivirals to treat EV71 infection.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Bing Liu
- Biobank, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
| | - Haoyan Yao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
| | - Xinrui Chen
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Meng Xun
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| | - Hongliang Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi, China
- Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Shaanxi, China
| |
Collapse
|
27
|
Otvos L, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11:1302169. [PMID: 38144886 PMCID: PMC10740154 DOI: 10.3389/fchem.2023.1302169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.
Collapse
Affiliation(s)
- Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- OLPE Pharmaceutical Consultants, Audubon, PA, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
28
|
Ledwoń P, Goldeman W, Hałdys K, Jewgiński M, Calamai G, Rossowska J, Papini AM, Rovero P, Latajka R. Tripeptides conjugated with thiosemicarbazones: new inhibitors of tyrosinase for cosmeceutical use. J Enzyme Inhib Med Chem 2023; 38:2193676. [PMID: 37146256 PMCID: PMC10165932 DOI: 10.1080/14756366.2023.2193676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Katarzyna Hałdys
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Greta Calamai
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
29
|
Liu H, Lv H, Duan X, Du Y, Tang Y, Xu W. Advancements in Macrophage-Targeted Drug Delivery for Effective Disease Management. Int J Nanomedicine 2023; 18:6915-6940. [PMID: 38026516 PMCID: PMC10680479 DOI: 10.2147/ijn.s430877] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages play a crucial role in tissue homeostasis and the innate immune system. They perform essential functions such as presenting antigens, regulating cytokines, and responding to inflammation. However, in diseases like cancer, cardiovascular disorders, and autoimmune conditions, macrophages undergo aberrant polarization, which disrupts tissue regulation and impairs their normal behavior. To address these challenges, there has been growing interest in developing customized targeted drug delivery systems specifically designed for macrophage-related functions in different anatomical locations. Nanomedicine, utilizing nanoscale drug systems, offers numerous advantages including improved stability, enhanced pharmacokinetics, controlled release kinetics, and precise temporal drug delivery. These advantages hold significant promise in achieving heightened therapeutic efficacy, specificity, and reduced side effects in drug delivery and treatment approaches. This review aims to explore the roles of macrophages in major diseases and present an overview of current strategies employed in targeted drug delivery to macrophages. Additionally, this article critically evaluates the design of macrophage-targeted delivery systems, highlighting limitations and discussing prospects in this rapidly evolving field. By assessing the strengths and weaknesses of existing approaches, we can identify areas for improvement and refinement in macrophage-targeted drug delivery.
Collapse
Affiliation(s)
- Hanxiao Liu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Hui Lv
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xuehui Duan
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yan Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Yixuan Tang
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Wei Xu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Pharmacy, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People’s Republic of China
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| |
Collapse
|
30
|
Hasan MN, Ray M, Saha A. Landscape of In Silico Tools for Modeling Covalent Modification of Proteins: A Review on Computational Covalent Drug Discovery. J Phys Chem B 2023; 127:9663-9684. [PMID: 37921534 DOI: 10.1021/acs.jpcb.3c04710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Covalent drug discovery has been a challenging research area given the struggle of finding a sweet balance between selectivity and reactivity for these drugs, the lack of which often leads to off-target activities and hence undesirable side effects. However, there has been a resurgence in covalent drug design following the success of several covalent drugs such as boceprevir (2011), ibrutinib (2013), neratinib (2017), dacomitinib (2018), zanubrutinib (2019), and many others. Design of covalent drugs includes many crucial factors, where "evaluation of the binding affinity" and "a detailed mechanistic understanding on covalent inhibition" are at the top of the list. Well-defined experimental techniques are available to elucidate these factors; however, often they are expensive and/or time-consuming and hence not suitable for high throughput screens. Recent developments in in silico methods provide promise in this direction. In this report, we review a set of recent publications that focused on developing and/or implementing novel in silico techniques in "Computational Covalent Drug Discovery (CCDD)". We also discuss the advantages and disadvantages of these approaches along with what improvements are required to make it a great tool in medicinal chemistry in the near future.
Collapse
Affiliation(s)
- Md Nazmul Hasan
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Manisha Ray
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Arjun Saha
- Department of Chemistry and Biochemistry, University of Wisconsin─Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
31
|
Zhang Y, Zhao G, Yu L, Wang X, Meng Y, Mao J, Fu Z, Yin Y, Li J, Wang X, Guo C. Heat-shock protein 90α protects NME1 against degradation and suppresses metastasis of breast cancer. Br J Cancer 2023; 129:1679-1691. [PMID: 37731021 PMCID: PMC10645775 DOI: 10.1038/s41416-023-02435-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND NME1 has been exploited as a potential translational target for decades. Substantial efforts have been made to upregulate the expression of NME1 and restore its anti-metastasis function in metastatic cancer. METHODS Cycloheximide (CHX) chase assay was used to measure the steady-state protein stability of NME1 and HSP90α. The NME1-associating proteins were identified by immunoprecipitation combined with mass spectrometric analysis. Gene knockdown and overexpression were employed to examine the impact of HSP90AA1 on intracellular NME1 degradation. The motility and invasiveness of breast cancer cells were examined in vitro using wound healing and transwell invasion assays. The orthotopic spontaneous metastasis and intra-venous experimental metastasis assays were used to test the formation of metastasis in vivo, respectively. RESULTS HSP90α interacts with NME1 and increases NME1 lifetime by impeding its ubiquitin-proteasome-mediated degradation. HSP90α overexpression significantly inhibits the metastatic potential of breast cancer cells in vitro and in vivo. A novel cell-permeable peptide, OPT22 successfully mimics the HSP90α function and prolongs the life span of endogenous NME1, resulting in reduced metastasis of breast cancer. CONCLUSION These results not only reveal a new mechanism of NME1 degradation but also pave the way for the development of new and effective approaches to metastatic cancer therapy.
Collapse
Affiliation(s)
- Yanchao Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People's Republic of China
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Guomeng Zhao
- Institute of Modern Biology, Nanjing University, Nanjing, People's Republic of China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, People's Republic of China
| | - Xindong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinlei Mao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing People's Hospital, Nanjing, People's Republic of China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing People's Hospital, Nanjing, People's Republic of China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People's Republic of China.
| | - Xun Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, People's Republic of China.
| |
Collapse
|
32
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
33
|
Liu W, Hopkins AM, Yan P, Du S, Luyt LG, Li Y, Hou J. Can machine learning 'transform' peptides/peptidomimetics into small molecules? A case study with ghrelin receptor ligands. Mol Divers 2023; 27:2239-2255. [PMID: 36331785 DOI: 10.1007/s11030-022-10555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
There has been considerable interest in transforming peptides into small molecules as peptide-based molecules often present poorer bioavailability and lower metabolic stability. Our studies looked into building machine learning (ML) models to investigate if ML is able to identify the 'bioactive' features of peptides and use the features to accurately discriminate between binding and non-binding small molecules. The ghrelin receptor (GR), a receptor that is implicated in various diseases, was used as an example to demonstrate whether ML models derived from a peptide library can be used to predict small molecule binders. ML models based on three different algorithms, namely random forest, support vector machine, and extreme gradient boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small molecule GR ligands. The results indicated that ML models trained with a dataset exclusively composed of peptides/peptidomimetics provide limited predictive power for small molecules, but that ML models trained with a diverse dataset composed of an array of both peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy and false rates. The diversified models can accurately differentiate the binding small molecules from non-binding small molecules using an external validation set with new small molecules that we synthesized previously. Structural features that are the most critical contributors to binding activity were extracted and are remarkably consistent with the crystallography and mutagenesis studies.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada
| | - Austin M Hopkins
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada
| | - Peizhi Yan
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Shan Du
- Department of Computer Science, Mathematics, Physics and Statistics, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, ON, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Yifeng Li
- Department of Computer Science, Brock University, Saint Catharines, ON, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada.
| |
Collapse
|
34
|
Schneck NA, Mortezavi L, Olzinski AR, Posavec D, Jolivette LJ, Sikorski TW, Zhang SS, Schnackenberg CG, Licea-Perez H. Development of an LC-MS/MS assay for quantification of intact INSL3 in rat plasma. Bioanalysis 2023; 15:1169-1178. [PMID: 37676652 DOI: 10.4155/bio-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Background: Relatively large disulfide-linked polypeptides can serve as signaling molecules for a diverse array of biological processes and may be studied in animal models to investigate their function in vivo. The aim of this work was to develop an LC-MS/MS assay to measure a model peptide, INSL3, in rat plasma. Results: A dual enrichment strategy incorporating both protein precipitation and solid phase extraction was utilized to isolate INSL3 from rat plasma, followed by targeted LC-MS/MS detection. The method was able to measure full-length INSL3 (6.1 kDa) down to 0.2 ng/ml with acceptable accuracy and precision. Conclusion: The final assay was applied to support an exploratory pharmacokinetic study to evaluate steady-state concentrations of dosed INSL3 in rat plasma.
Collapse
Affiliation(s)
- Nicole A Schneck
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Lela Mortezavi
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Alan R Olzinski
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Diane Posavec
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Larry J Jolivette
- Drug Metabolism & Pharmacokinetics, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Timothy W Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Shan-Shan Zhang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | | | - Hermes Licea-Perez
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| |
Collapse
|
35
|
Wang X, Xu S, Tang Y, Lear MJ, He W, Li J. Nitroalkanes as thioacyl equivalents to access thioamides and thiopeptides. Nat Commun 2023; 14:4626. [PMID: 37532721 PMCID: PMC10397191 DOI: 10.1038/s41467-023-40334-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Thioamides are an important, but a largely underexplored class of amide bioisostere in peptides. Replacement of oxoamide units with thioamides in peptide therapeutics is a valuable tactic to improve biological activity and resistance to enzymatic hydrolysis. This tactic, however, has been hampered by insufficient methods to introduce thioamide bonds into peptide or protein backbones in a site-specific and stereo-retentive fashion. In this work, we developed an efficient and mild thioacylation method to react nitroalkanes with amines directly in the presence of elemental sulfur and sodium sulfide to form a diverse range of thioamides in high yields. Notably, this convenient method can be employed for the controlled thioamide coupling of multifunctionalized peptides without epimerization of stereocenters, including the late stage thioacylation of advanced compounds of biological and medicinal interest. Experimental interrogation of postulated mechanisms currently supports the intermediacy of thioacyl species.
Collapse
Affiliation(s)
- Xiaonan Wang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Silong Xu
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yuhai Tang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Martin J Lear
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Wangxiao He
- The First Affiliated Hospital of Xi'an Jiao Tong University, 710061, Xi'an, China
| | - Jing Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
36
|
Mukherjee S, Saha G, Roy NS, Naiya G, Ghosh MK, Roy S. A small HDM2 antagonist peptide and a USP7 inhibitor synergistically inhibit the p53-HDM2-USP7 circuit. Chem Biol Drug Des 2023; 102:126-136. [PMID: 37105726 DOI: 10.1111/cbdd.14255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
HDM2, an E3 ubiquitin ligase, is a crucial regulator of many proliferation-related pathways. It is also one of the primary regulators of p53. USP7, a deubiquitinase, also plays a key role in the regulation of both p53 and HDM2, thus forming a small regulatory network with them. This network has emerged as an important drug target. Development of a synergistic combination targeting both proteins is desirable and important for regulating this module. We have developed a small helically constrained peptide that potently inhibited p53-HDM2 interaction and exerted anti-proliferative effects on p53+/+ cells. A combination of this peptide-when attached to cell entry and nuclear localization tags-and a USP7 inhibitor showed synergistic anti-proliferative effects against cells harboring wild-type alleles of p53. Synergistic inhibition of two important drug targets may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | | | - Gitashri Naiya
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Siddhartha Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
37
|
Bugatti K, Sartori A, Battistini L, Coppa C, Vanhulle E, Noppen S, Provinciael B, Naesens L, Stevaert A, Contini A, Vermeire K, Zanardi F. Novel Polymyxin-Inspired Peptidomimetics Targeting the SARS-CoV-2 Spike:hACE2 Interface. Int J Mol Sci 2023; 24:8765. [PMID: 37240111 PMCID: PMC10218303 DOI: 10.3390/ijms24108765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 μM to 2.78 μM for dimers and 8.56 μM to 10.12 μM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Lucia Battistini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy;
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000 Leuven, Belgium; (E.V.); (S.N.); (B.P.); (L.N.); (A.S.); (K.V.)
| | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (K.B.); (A.S.); (L.B.)
| |
Collapse
|
38
|
A Novel Fibromodulin Antagonist Peptide RP4 Exerts Antitumor Effects on Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15030944. [PMID: 36986805 PMCID: PMC10053243 DOI: 10.3390/pharmaceutics15030944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related deaths worldwide. Fibromodulin (FMOD) is the main proteoglycan that contributes to extracellular matrix (ECM) remodeling by binding to matrix molecules, thereby playing an essential role in tumor growth and metastasis. There are still no useful drugs that target FMOD for CRC treatment in clinics. Here, we first used public whole-genome expression datasets to analyze the expression level of FMOD in CRC and found that FMOD was upregulated in CRC and associated with poor patient prognosis. We then used the Ph.D.-12 phage display peptide library to obtain a novel FMOD antagonist peptide, named RP4, and tested its anti-cancer effects of RP4 in vitro and in vivo. These results showed that RP4 inhibited CRC cell growth and metastasis, and promoted apoptosis both in vitro and in vivo by binding to FMOD. In addition, RP4 treatment affected the CRC-associated immune microenvironment in a tumor model by promoting cytotoxic CD8+ T and NKT (natural killer T) cells and inhibiting CD25+ Foxp3+ Treg cells. Mechanistically, RP4 exerted anti-tumor effects by blocking the Akt and Wnt/β-catenin signaling pathways. This study implies that FMOD is a potential target for CRC treatment, and the novel FMOD antagonist peptide RP4 can be developed as a clinical drug for CRC treatment.
Collapse
|
39
|
XENOFOOD—An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides—Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens 2023; 12:pathogens12030458. [PMID: 36986380 PMCID: PMC10059668 DOI: 10.3390/pathogens12030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Entomopathogenic bacteria are obligate symbionts of entomopathogenic nematode (EPN) species. These bacteria biosynthesize and release non-ribosomal-templated hybrid peptides (NR-AMPs), with strong, and large-spectral antimicrobial potential, capable of inactivating pathogens belonging to different prokaryote, and eukaryote taxa. The cell-free conditioned culture media (CFCM) of Xenorhabdus budapestensis and X. szentirmaii efficiently inactivate poultry pathogens like Clostridium, Histomonas, and Eimeria. To learn whether a bio-preparation containing antimicrobial peptides of Xenorhabdus origin with accompanying (in vitro detectable) cytotoxic effects could be considered a safely applicable preventive feed supplement, we conducted a 42-day feeding experiment on freshly hatched broiler cockerels. XENOFOOD (containing autoclaved X. budapestensis, and X. szentirmaii cultures developed on chicken food) were consumed by the birds. The XENOFOOD exerted detectable gastrointestinal (GI) activity (reducing the numbers of the colony-forming Clostridium perfringens units in the lower jejunum. No animal was lost in the experiment. Neither the body weight, growth rate, feed-conversion ratio, nor organ-weight data differed between the control (C) and treated (T) groups, indicating that the XENOFOOD diet did not result in any detectable adverse effects. We suppose that the parameters indicating a moderate enlargement of bursas of Fabricius (average weight, size, and individual bursa/spleen weight-ratios) in the XENOFOOD-fed group must be an indirect indication that the bursa-controlled humoral immune system neutralized the cytotoxic ingredients of the XENOFOOD in the blood, not allowing to reach their critical cytotoxic concentration in the sensitive tissues.
Collapse
|
40
|
Sun Y, Chan J, Bose K, Tam C. Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Sci Transl Med 2023; 15:eade2909. [PMID: 36888696 PMCID: PMC10173409 DOI: 10.1126/scitranslmed.ade2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/10/2023] [Indexed: 03/10/2023]
Abstract
Controlling infection-driven inflammation is a major clinical dilemma because of limited therapeutic options and possible adverse effects on microbial clearance. Compounding this difficulty is the continued emergence of drug-resistant bacteria, where experimental strategies aiming to augment inflammatory responses for enhanced microbial killing are not applicable treatment options for infections of vulnerable organs. As with corneal infections, severe or prolonged inflammation jeopardizes corneal transparency, leading to devastating vision loss. We hypothesized that keratin 6a-derived antimicrobial peptides (KAMPs) may be a two-pronged remedy capable of tackling bacterial infection and inflammation at once. We used murine peritoneal neutrophils and macrophages, together with an in vivo model of sterile corneal inflammation, to find that nontoxic and prohealing KAMPs with natural 10- and 18-amino acid sequences suppressed lipoteichoic acid (LTA)- and lipopolysaccharide (LPS)-induced NFκB and IRF3 activation, proinflammatory cytokine production, and phagocyte recruitment independently of their bactericidal function. Mechanistically, KAMPs not only competed with bacterial ligands for cell surface Toll-like receptor (TLR) and co-receptors (MD2, CD14, and TLR2) but also reduced cell surface availability of TLR2 and TLR4 through promotion of receptor endocytosis. Topical KAMP treatment effectively alleviated experimental bacterial keratitis, as evidenced by substantial reductions of corneal opacification, inflammatory cell infiltration, and bacterial burden. These findings reveal the TLR-targeting activities of KAMPs and demonstrate their therapeutic potential as a multifunctional drug for managing infectious inflammatory disease.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Karthikeyan Bose
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
41
|
Nayebhashemi M, Enayati S, Zahmatkesh M, Madanchi H, Saberi S, Mostafavi E, Mirbzadeh Ardakani E, Azizi M, Khalaj V. Surface display of pancreatic lipase inhibitor peptides by engineered Saccharomyces boulardii: Potential as an anti-obesity probiotic. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
42
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
43
|
Alavandimat NH, Bharamawadeyar S, Marulappa VT, Sureshbabu VV. Convenient Synthesis of Selenomethylene[
ψ
(CH
2
Se)] Unnatural Amino Acids and Dipeptidomimetics. ChemistrySelect 2023. [DOI: 10.1002/slct.202203139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Swetha Bharamawadeyar
- Peptide Research Laboratory Department of Studies in Chemistry Jnana Bharathi Bangalore University Bengaluru 560056 India
| | | | - Vommina Venkata Sureshbabu
- Peptide Research Laboratory Department of Studies in Chemistry Jnana Bharathi Bangalore University Bengaluru 560056 India
| |
Collapse
|
44
|
McDonald EF, Jones T, Plate L, Meiler J, Gulsevin A. Benchmarking AlphaFold2 on peptide structure prediction. Structure 2023; 31:111-119.e2. [PMID: 36525975 PMCID: PMC9883802 DOI: 10.1016/j.str.2022.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Recent advancements in computational tools have allowed protein structure prediction with high accuracy. Computational prediction methods have been used for modeling many soluble and membrane proteins, but the performance of these methods in modeling peptide structures has not yet been systematically investigated. We benchmarked the accuracy of AlphaFold2 in predicting 588 peptide structures between 10 and 40 amino acids using experimentally determined NMR structures as reference. Our results showed AlphaFold2 predicts α-helical, β-hairpin, and disulfide-rich peptides with high accuracy. AlphaFold2 performed at least as well if not better than alternative methods developed specifically for peptide structure prediction. AlphaFold2 showed several shortcomings in predicting Φ/Ψ angles, disulfide bond patterns, and the lowest RMSD structures failed to correlate with lowest pLDDT ranked structures. In summary, computation can be a powerful tool to predict peptide structures, but additional steps may be necessary to analyze and validate the results.
Collapse
Affiliation(s)
- Eli Fritz McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Taylor Jones
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany.
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
45
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
46
|
Kim M, Kim Y. Structural Studies of Expressed tIK, Anti-Inflammatory Peptide. Int J Mol Sci 2022; 24:636. [PMID: 36614076 PMCID: PMC9820745 DOI: 10.3390/ijms24010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Cytokine imbalance is one of the causes of inflammation. Inflammation has yet to be adequately treated without side effects. Therefore, we tried to develop a peptide drug with minimal side effects. Peptide drugs have the advantage of being bio-friendly and bio-specific. In a previous study, three peptides with anti-inflammatory activity were derived based on a truncated IK (tIK) protein, which was a fragment of the IK protein with anti-inflammatory effects. The objective of this study was to optimize the process of expressing, isolating, and purifying the three peptides using bacterial strains and describe the process. Circular dichroism and solution state nuclear magnetic resonance spectroscopy were performed on the final purified high-purity peptide and its secondary structure was also identified.
Collapse
Affiliation(s)
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| |
Collapse
|
47
|
Okella H, Okello E, Mtewa AG, Ikiriza H, Kaggwa B, Aber J, Ndekezi C, Nkamwesiga J, Ajayi CO, Mugeni IM, Ssentamu G, Ochwo S, Odongo S, Tolo CU, Kato CD, Engeu PO. ADMET profiling and molecular docking of potential antimicrobial peptides previously isolated from African catfish, Clarias gariepinus. Front Mol Biosci 2022; 9:1039286. [PMID: 36567944 PMCID: PMC9772024 DOI: 10.3389/fmolb.2022.1039286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Amidst rising cases of antimicrobial resistance, antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics. Even so, poor pharmacokinetic profiles of certain AMPs impede their utility necessitating, a careful assessment of potential AMPs' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties during novel lead exploration. Accordingly, the present study utilized ADMET scores to profile seven previously isolated African catfish antimicrobial peptides (ACAPs). After profiling, the peptides were docked against approved bacterial protein targets to gain insight into their possible mode of action. Promising ACAPs were then chemically synthesized, and their antibacterial activity was validated in vitro utilizing the broth dilution method. All seven examined antimicrobial peptides passed the ADMET screening, with two (ACAP-IV and ACAP-V) exhibiting the best ADMET profile scores. The ACAP-V had a higher average binding energy (-8.47 kcal/mol) and average global energy (-70.78 kcal/mol) compared to ACAP-IV (-7.60 kcal/mol and -57.53 kcal/mol), with the potential to penetrate and disrupt bacterial cell membrane (PDB Id: 2w6d). Conversely, ACAP-IV peptide had higher antibacterial activity against E. coli and S. aureus (Minimum Inhibitory Concentration, 520.7 ± 104.3 μg/ml and 1666.7 ± 416.7 μg/ml, respectively) compared to ACAP-V. Collectively, the two antimicrobial peptides (ACAP-IV and ACAP-V) are potential novel leads for the food, cosmetic and pharmaceutical industries. Future research is recommended to optimize the expression of such peptides in biological systems for extended evaluation.
Collapse
Affiliation(s)
- Hedmon Okella
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Emmanuel Okello
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | | | - Joseph Nkamwesiga
- International Livestock Research Institute, Nairobi, Kenya
- Institut für Virologie, Freie Universität, Berlin, Germany
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Mulongo Mugeni
- Medical Entomology Laboratory, Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Geofrey Ssentamu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sylvester Ochwo
- Center for Animal Health and Food Safety, University of Minnesota, St. Paul, MN, United States
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Casim Umba Tolo
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Ogwang Engeu
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
48
|
Stinglhamer M, Yzeiri X, Rohlfs T, Brandhofer T, Daniliuc CG, García Mancheño O. Direct Access to Unnatural Cyclobutane α-Amino Acids through Visible Light Catalyzed [2+2]-Cycloaddition. ACS ORGANIC & INORGANIC AU 2022; 2:496-501. [PMID: 36510614 PMCID: PMC9732878 DOI: 10.1021/acsorginorgau.2c00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022]
Abstract
In this work, we report the first selective, photocatalyzed [2+2]-cycloaddition of dehydroamino acids with styrene-type olefins. This simple, mild, and scalable approach relies on the use of the triplet energy transfer catalyst [Ir(dFCF3ppy2)dtbpy]PF6 under visible light irradiation and provides fast access to value-added substituted strained cyclobutane α-amino acid derivatives.
Collapse
Affiliation(s)
- Martin Stinglhamer
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Xheila Yzeiri
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,Institute
of Chemistry of Organometallic Compounds, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Tabea Rohlfs
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Tobias Brandhofer
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Constantin G. Daniliuc
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany
| | - Olga García Mancheño
- Organic
Chemistry Institute, Westfälische-Wilhelms
University Münster, Correnstraße 36, Münster 48149, Germany,
| |
Collapse
|
49
|
Anand U, Bandyopadhyay A, Jha NK, Pérez de la Lastra JM, Dey A. Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors 2022; 49:251-269. [PMID: 36326181 DOI: 10.1002/biof.1913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
In the last two decades, protein-protein interactions (PPIs) have been used as the main target for drug development. However, with larger or superficial binding sites, it has been extremely difficult to disrupt PPIs with small molecules. On the other hand, intracellular PPIs cannot be targeted by antibodies that cannot penetrate the cell membrane. Peptides that have a combination of conformational rigidity and flexibility can be used to target difficult binding interfaces with appropriate binding affinity and specificity. Since the introduction of insulin nearly a century ago, more than 80 peptide drugs have been approved to treat a variety of diseases. These include deadly diseases such as cancer and human immunodeficiency virus infection. It is also useful against diabetes, chronic pain, and osteoporosis. Today, more research is being done on these drugs as lessons learned from earlier approaches, which are still valid today, complement newer approaches such as peptide display libraries. At the same time, integrated genomics and peptide display libraries are new strategies that open new avenues for peptide drug discovery. The purpose of this review is to examine the problems in elucidating the peptide-protein recognition mechanism. This is important to develop peptide-based interventions that interfere with endogenous protein interactions. New approaches are being developed to improve the binding affinity and specificity of existing approaches and to develop peptide agents as potentially useful drugs. We also highlight the key challenges that must be overcome in peptide drug development to realize their potential and provide an overview of recent trends in peptide drug development. In addition, we take an in-depth look at early efforts in human hormone discovery, smart medicinal chemistry and design, natural peptide drugs, and breakthrough advances in molecular biology and peptide chemistry.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, Punjab, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
50
|
Jana ID, Bhattacharya P, Mayilsamy K, Banerjee S, Bhattacharje G, Das S, Aditya S, Ghosh A, McGill AR, Srikrishnan S, Das AK, Basak A, Mohapatra SS, Chandran B, Bhimsaria D, Mohapatra S, Roy A, Mondal A. Targeting an evolutionarily conserved "E-L-L" motif in spike protein to identify a small molecule fusion inhibitor against SARS-CoV-2. PNAS NEXUS 2022; 1:pgac198. [PMID: 36712339 PMCID: PMC9802491 DOI: 10.1093/pnasnexus/pgac198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "Ex3Lx6L" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this "E-L-L" motif and impedes the formation of 6-HB, thus effectively inhibiting SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy in blocking S protein-mediated viral entry, mutations within the "E-L-L" motif rendered the protein completely resistant to the drug, establishing its specificity toward this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective toward all major variants of concerns of SARS-CoV-2, including Beta, Kappa, Delta, and Omicron. Together, we show that this conserved essential "E-L-L" motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Indrani Das Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Karthick Mayilsamy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Saptarshi Banerjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Das
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Seemanti Aditya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anandita Ghosh
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Andrew R McGill
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Syamanthak Srikrishnan
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- Division of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shyam S Mohapatra
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Bala Chandran
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Devesh Bhimsaria
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
- Department of Veterans Affairs, James A Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|