1
|
Zhai XR, Li MJ, Yin X, Ablat A, Wang Y, Shu P, Liao X. Human Tyrosinase Displayed on the Surface of Chinese Hamster Ovary Cells for Ligand Fishing of Tyrosinase Inhibitors from Medicinal Plants. Molecules 2024; 30:30. [PMID: 39795088 PMCID: PMC11721096 DOI: 10.3390/molecules30010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Ligand fishing is a promising strategy for the screening of active ingredients from complex natural products. In this work, human tyrosinase (hTYR) was displayed on the surface of Chinese hamster ovary (CHO) cells for the first time; it was then used as bait to develop a new method for ligand fishing. The localization of hTYR on the CHO cell surface was verified by an enzyme activity test and fluorescence microscopy. The displayed tyrosinase (CHO@hTYR) maintained relatively stable enzymatic activity (82.59 ± 2.70%) within 7 days. Furthermore, it can be reused for fishing five times. Guided by the proposed ligand fishing method, four tyrosinase inhibitors, including 4-methoxy-5-methyl coumarin (1), cupressuflavone (2), amentoflavone (3), and 3,4-dimethoxy-5-methyl coumarin (4), were isolated from Alhagi sparsifolia, and the active fraction with low polarity was isolated from Coffea arabica; these two medicinal plants possess skin-lightening potential. All the isolated tyrosinase inhibitors significantly reduced the intracellular tyrosinase activity and melanin level in B16 cells enhanced by α-MSH. Meanwhile, the active fraction (100 μg/mL) from C. arabica exhibited stronger inhibitory effects than the positive controls (α-arbutin and kojic acid) by recovering them to the normal levels. This work demonstrated the promising application of the cell surface display in the field of ligand fishing and is helpful in unveiling the chemical basis of the skin-lightening effect of A. sparsifolia and C. arabica.
Collapse
Affiliation(s)
- Xiao-Rui Zhai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.-R.Z.); (X.Y.); (A.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Ming-Jie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xiang Yin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.-R.Z.); (X.Y.); (A.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ayzohra Ablat
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.-R.Z.); (X.Y.); (A.A.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China; (M.-J.L.); (Y.W.)
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (X.-R.Z.); (X.Y.); (A.A.)
| |
Collapse
|
2
|
Wei C, Hu Z, Wang S, Tan X, Jin Y, Yi Z, He K, Zhao L, Chu Z, Fang Y, Chen S, Liu P, Zhao H. An endogenous promoter LpSUT2 discovered in duckweed: a promising transgenic tool for plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1368284. [PMID: 38638348 PMCID: PMC11025394 DOI: 10.3389/fpls.2024.1368284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Promoters are one of the most critical elements in regulating gene expression. They are considered essential biotechnological tools for heterologous protein production. The one most widely used in plants is the 35S promoter from cauliflower mosaic virus. However, our study for the first time discovered the 35S promoter reduced the expression of exogenous proteins under increased antibiotic stress. We discovered an endogenous strong promoter from duckweed named LpSUT2 that keeps higher initiation activity under antibiotic stress. Stable transformation in duckweed showed that the gene expression of eGFP in the LpSUT2:eGFP was 1.76 times that of the 35S:eGFP at 100 mg.L-1 G418 and 6.18 times at 500 mg.L-1 G418. Notably, with the increase of G418 concentration, the gene expression and the fluorescence signal of eGFP in the 35S:eGFP were weakened, while the LpSUT2:eGFP only changed slightly. This is because, under high antibiotic stress, the 35S promoter was methylated, leading to the gene silencing of the eGFP gene. Meanwhile, the LpSUT2 promoter was not methylated and maintained high activity. This is a previously unknown mechanism that provides us with new insights into screening more stable promoters that are less affected by environmental stress. These outcomes suggest that the LpSUT2 promoter has a high capacity to initiate the expression of exogenous proteins. In conclusion, our study provides a promoter tool with potential application for plant genetic engineering and also provides new insights into screening promoters.
Collapse
Affiliation(s)
- Cuicui Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhubin Hu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiao Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Leyi Zhao
- Pitzer College, Claremont, CA, United States
| | - Ziyue Chu
- Faculty of Mathematical and Physical Sciences, University College London, London, United Kingdom
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Shuang Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Khvatkov P, Dolgov S. Using Mathematical Optimization Models to Improve the Efficiency of Duckweeds (Wolffia arrhiza and Lemna minor) Micropropagation. Methods Mol Biol 2024; 2827:85-98. [PMID: 38985264 DOI: 10.1007/978-1-0716-3954-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The method of plant micropropagation is widely used to obtain genetically homogeneous and infection-free plants for the needs of various industries and agriculture. Optimization of plant growth and development conditions plays a key role in economically successful micropropagation. Computer technologies have provided researchers with new approaches for modeling and a better understanding of the role of the factors involved in plant growth in vitro. To develop new models for optimizing growth conditions, we used plants with a high speed of vegetative in vitro reproduction, such as duckweed (Wolffia arrhiza and Lemna minor). Using the development of the optimal modeling of the biological processes, we have obtained the prescriptions for an individually balanced culture medium that enabled us to obtain 1.5-2.0 times more duckweed biomass with a 1.5 times higher protein concentration in the dry mass. Thus, we have demonstrated that the method of optimization modeling of the biological processes based on solving multinomial tasks from the series of quadratic equations can be used for the optimization of trophic needs of plants, specifically for micropropagation of duckweeds in vitro.
Collapse
Affiliation(s)
| | - Sergey Dolgov
- Nikita Botanical Gardens, Yalta, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Puschino, Russia
| |
Collapse
|
4
|
Rapid and Highly Efficient Genetic Transformation and Application of Interleukin-17B Expressed in Duckweed as Mucosal Vaccine Adjuvant. Biomolecules 2022; 12:biom12121881. [PMID: 36551310 PMCID: PMC9775668 DOI: 10.3390/biom12121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular farming utilizes plants as a platform for producing recombinant biopharmaceuticals. Duckweed, the smallest and fastest growing aquatic plant, is a promising candidate for molecular farming. However, the efficiency of current transformation methods is generally not high in duckweed. Here, we developed a fast and efficient transformation procedure in Lemna minor ZH0403, requiring 7-8 weeks from screening calluses to transgenic plants with a stable transformation efficiency of 88% at the DNA level and 86% at the protein level. We then used this transformation system to produce chicken interleukin-17B (chIL-17B). The plant-produced chIL-17B activated the NF-κB pathway, JAK-STAT pathway, and their downstream cytokines in DF-1 cells. Furthermore, we administrated chIL-17B transgenic duckweed orally as an immunoadjuvant with mucosal vaccine against infectious bronchitis virus (IBV) in chickens. Both IBV-specific antibody titer and the concentration of secretory immunoglobulin A (sIgA) were significantly higher in the group fed with chIL-17B transgenic plant. This indicates that the duckweed-produced chIL-17B enhanced the humoral and mucosal immune responses. Moreover, chickens fed with chIL-17B transgenic plant demonstrated the lowest viral loads in different tissues among all groups. Our work suggests that cytokines are a promising adjuvant for mucosal vaccination through the oral route. Our work also demonstrates the potential of duckweed in molecular farming.
Collapse
|
5
|
Coates RJ, Young MT, Scofield S. Optimising expression and extraction of recombinant proteins in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1074531. [PMID: 36570881 PMCID: PMC9773421 DOI: 10.3389/fpls.2022.1074531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Recombinant proteins are of paramount importance for research, industrial and medical use. Numerous expression chassis are available for recombinant protein production, and while bacterial and mammalian cell cultures are the most widely used, recent developments have positioned transgenic plant chassis as viable and often preferential options. Plant chassis are easily maintained at low cost, are hugely scalable, and capable of producing large quantities of protein bearing complex post-translational modification. Several protein targets, including antibodies and vaccines against human disease, have been successfully produced in plants, highlighting the significant potential of plant chassis. The aim of this review is to act as a guide to producing recombinant protein in plants, discussing recent progress in the field and summarising the factors that must be considered when utilising plants as recombinant protein expression systems, with a focus on optimising recombinant protein expression at the genetic level, and the subsequent extraction and purification of target proteins, which can lead to substantial improvements in protein stability, yield and purity.
Collapse
Affiliation(s)
| | | | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022; 59:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Cytokines consist of peptides, proteins and glycoproteins, which are biological signaling molecules, and boost cell-cell communication in immune reactions to stimulate cellular movements in the place of trauma, inflammation and infection. Recombinant cytokines are designed in such a way that they have generalized immunostimulation action or stimulate specific immune cells when the body encounters immunosuppressive signals from exogenous pathogens or other tumor microenvironments. Recombinant cytokines have improved the treatment processes for numerous diseases. They are also beneficial against novel toxicities that arise due to pharmacologic immunostimulators that lead to an imbalance in the regulation of cytokine. So, the production and use of recombinant human cytokines as therapeutic proteins are significant for medical treatment purposes. For the improved production of recombinant human cytokines, the development of host cells such as bacteria, yeast, fungi, insect, mammal and transgenic plants, and the specific expression systems for individual hosts is necessary. The recent advancements in the field of genetic engineering are beneficial for easy and efficient genetic manipulations for hosts as well as expression cassettes. The use of metabolic engineering and systems biology approaches have tremendous applications in recombinant protein production by generating mathematical models, and analyzing complex biological networks and metabolic pathways via simulations to understand the interconnections between metabolites and genetic behaviors. Further, the bioprocess developments and the optimization of cell culture conditions would enhance recombinant cytokines productivity on large scales.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Lam E, Michael TP. Wolffia, a minimalist plant and synthetic biology chassis. TRENDS IN PLANT SCIENCE 2022; 27:430-439. [PMID: 34920947 DOI: 10.1016/j.tplants.2021.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
A highly simplified species for genome engineering would facilitate rational design of a synthetic plant. A candidate species is the aquatic, non-grass monocot wolffia (Wolffia australiana) in the Lemnaceae family. Commonly known as watermeal, wolffia is a rootless ball of several thousand cells the size of a pinhead and the fastest growing plant known on Earth. Its extreme morphological reduction is coupled to transposon-mediated streamlining of its transcriptome, which represents a core set of nonredundant protein coding genes. Despite its body plan and transcriptome being highly specialized for continuous growth, wolffia retains cell types relevant to higher plants. Systems level studies with this species could enable the creation of a defined biological chassis for synthetic plant construction.
Collapse
Affiliation(s)
- Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Yang J, Zhao X, Li G, Hu S, Hou H. Frond architecture of the rootless duckweed Wolffia globosa. BMC PLANT BIOLOGY 2021; 21:387. [PMID: 34416853 PMCID: PMC8377843 DOI: 10.1186/s12870-021-03165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The plant body in duckweed species has undergone reduction and simplification from the ancient Spirodela species towards more derived Wolffia species. Among the five duckweed genera, Wolffia members are rootless and represent the smallest and most reduced species. A better understanding of Wolffia frond architecture is necessary to fully explore duckweed evolution. RESULTS We conducted a comprehensive study of the morphology and anatomy of Wolffia globosa, the only Wolffia species in China. We first used X-ray microtomography imaging to reveal the three-dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded from the hollow reproductive pocket of the mother fronds and that several generations at various developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and composed of undifferentiated cells that continued to produce new buds. A single epidermal layer surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa fronds contained all the same organelles as other angiosperms; the most prominent organelles were chloroplasts with abundant starch grains. CONCLUSIONS Our study revealed that the reproductive strategy of W. globosa plants enables the rapid accumulation of biomass and the wide distribution of this species in various habitats. The reduced body plan and size of Wolffia are consistent with our observation that relatively few cell types are present in these plants. We also propose that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also an ideal system to explore fundamental developmental processes of higher plants that cannot be addressed using other model plants.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Wang KT, Hong MC, Wu YS, Wu TM. Agrobacterium-Mediated Genetic Transformation of Taiwanese Isolates of Lemna aequinoctialis. PLANTS 2021; 10:plants10081576. [PMID: 34451621 PMCID: PMC8401387 DOI: 10.3390/plants10081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
Duckweed (Lemna aequinoctialis) is one of the smallest flowering plants in the world. Due to its high reproduction rate and biomass, duckweeds are used as biofactors and feedstuff additives for livestock. It is also an ideal system for basic biological research and various practical applications. In this study, we attempt to establish a micropropagation technique and Agrobacterium-mediated transformation in L. aequinoctialis. The plant-growth regulator type and concentration and Agrobacterium-mediated transformation were evaluated for their effects on duckweed callus induction, proliferation, regeneration, and gene transformation efficiency. Calli were successfully induced from 100% of explants on Murashige and Skoog (MS) medium containing 25.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.0 μM thidiazuron (TDZ). MS medium containing 4.5 μM 2,4-D and 2.0 μM TDZ supported the long-lasting growth of calli. Fronds regenerated from 100% of calli on Schenk and Hildebrandt (SH) medium containing 1.0 μM 6-benzyladenine (6-BA). We also determined that 200 μM acetosyringone in the cocultivation medium for 1 day in the dark was crucial for transformation efficiency (up to 3 ± 1%). Additionally, we propose that both techniques will facilitate efficient high-throughput genetic manipulation in Lemnaceae.
Collapse
Affiliation(s)
- Kuang-Teng Wang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (K.-T.W.); (Y.-S.W.)
- Correspondence:
| |
Collapse
|
10
|
Wolffia arrhiza as a promising producer of recombinant hirudin. 3 Biotech 2021; 11:209. [PMID: 33927997 DOI: 10.1007/s13205-021-02762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
The production of recombinant proteins in transgenic plants is becoming an increasingly serious alternative to classical biopharming methods as knowledge about this process grows. Wolffia arrhiza, an aquatic plant unique in its anatomy, is a promising expression system that can grow in submerged culture in bioreactors. In our study 8550 explants were subjected to Agrobacterium-mediated transformation, and 41 independent hygromycin-resistant Wolffia lines were obtained, with the transformation efficiency of 0.48%. 40 of them contained the hirudin-1 gene (codon-optimized for expression in plants) and were independent lines of nuclear-transformed Wolffia, the transgenic insertion has been confirmed by PCR and Southern blot analysis. We have analyzed the accumulation of the target protein and its expression has been proven in three transgenic lines. The maximum accumulation of recombinant hirudin was 0.02% of the total soluble protein, which corresponds to 775.5 ± 111.9 ng g-1 of fresh weight of the plant. The results will be used in research on the development of an expression system based on Wolffia plants for the production of hirudin and other recombinant pharmaceutical proteins.
Collapse
|
11
|
Yang GL, Feng D, Liu YT, Lv SM, Zheng MM, Tan AJ. Research Progress of a Potential Bioreactor: Duckweed. Biomolecules 2021; 11:biom11010093. [PMID: 33450858 PMCID: PMC7828363 DOI: 10.3390/biom11010093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023] Open
Abstract
Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
12
|
Baek G, Saeed M, Choi HK. Duckweeds: their utilization, metabolites and cultivation. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:73. [PMID: 34693083 PMCID: PMC8525856 DOI: 10.1186/s13765-021-00644-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 05/21/2023]
Abstract
Duckweeds are floating plants of the family Lemnaceae, comprising 5 genera and 36 species. They typically live in ponds or lakes and are found worldwide, except the polar regions. There are two duckweed subfamilies-namely Lemnoidea and Wolffioideae, with 15 and 21 species, respectively. Additionally, they have characteristic reproduction methods. Several metabolites have also been reported in various duckweeds. Duckweeds have a wide range of adaptive capabilities and are particularly suitable for experiments requiring high productivity because of their speedy growth and reproduction rates. Duckweeds have been studied for their use as food/feed resources and pharmaceuticals, as well as for phytoremediation and industrial applications. Because there are numerous duckweed species, culture conditions should be optimized for industrial applications. Here, we review and summarize studies on duckweed species and their utilization, metabolites, and cultivation methods to support the extended application of duckweeds in future.
Collapse
Affiliation(s)
- GahYoung Baek
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Maham Saeed
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
13
|
Heenatigala PPM, Sun Z, Yang J, Zhao X, Hou H. Expression of LamB Vaccine Antigen in Wolffia globosa (Duck Weed) Against Fish Vibriosis. Front Immunol 2020; 11:1857. [PMID: 32973766 PMCID: PMC7468452 DOI: 10.3389/fimmu.2020.01857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Vibriosis is a commonly found bacterial disease identified among fish and shellfish cultured in saline waters. A multitude of Vibrio species have been identified as the causative agents. LamB, a member of outer membrane protein (OMPs) family of these bacteria is conserved among all Vibrio species and has been identified as an efficient vaccine candidate against vibriosis. Rootless duckweed (Wolffia) is a tiny, edible aquatic plant possessing characteristics suitable for the utilization as a bioreactor. Thus, we attempted to express a protective edible vaccine antigen against fish vibriosis in nuclear-transformed Wolffia. We amplified LamB gene from virulent Vibrio alginolyticus and it was modified to maximize the protein expression level and translocate the protein to the endoplasmic reticulum (ER) in plants. It was cloned into binary vector pMYC under the control of CaMV 35S promoter and introduced into Wolffia globosa by Agrobacterium-mediated transformation. Integration and expression of the LamB gene was confirmed by genomic PCR and RT-PCR. Western blot analysis revealed accumulation of the LamB protein in 8 transgenic lines. The cross-protective property of transgenic Wolffia was evaluated by orally vaccinating zebrafish through feeding fresh transgenic Wolffia and subsequently challenging with virulent V. alginolyticus. High relative percent survival (RPS) of the vaccinated fish (63.3%) confirmed that fish immunized with transgenic Wolffia were well-protected from Vibrio infection. These findings suggest that Wolffia expressed LamB could serve as an edible plant-based candidate vaccine model for fish vibriosis and feasibility of utilizing Wolffia as bioreactor to produce edible vaccines.
Collapse
Affiliation(s)
- P P M Heenatigala
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Inland Aquatic Resources and Aquaculture Division (IARAD), National Aquatic Resources Research and Development Agency (NARA), Colombo, Sri Lanka
| | - Zuoliang Sun
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjing Yang
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xuyao Zhao
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongwei Hou
- University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Liu Y, Wang Y, Xu S, Tang X, Zhao J, Yu C, He G, Xu H, Wang S, Tang Y, Fu C, Ma Y, Zhou G. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2143-2152. [PMID: 30972865 PMCID: PMC6790374 DOI: 10.1111/pbi.13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 05/13/2023]
Abstract
The fast growth, ease of metabolic labelling and potential for feedstock and biofuels production make duckweeds not only an attractive model system for understanding plant biology, but also a potential future crop. However, current duckweed research is constrained by the lack of efficient genetic manipulation tools. Here, we report a case study on genome editing in a duckweed species, Lemna aequinoctialis, using a fast and efficient transformation and CRISPR/Cas9 tool. By optimizing currently available transformation protocols, we reduced the duration time of Agrobacterium-mediated transformation to 5-6 weeks with a success rate of over 94%. Based on the optimized transformation protocol, we generated 15 (14.3% success rate) biallelic LaPDS mutants that showed albino phenotype using a CRISPR/Cas9 system. Investigations on CRISPR/Cas9-mediated mutation spectrum among mutated L. aequinoctialis showed that most of mutations were short insertions and deletions. This study presents the first example of CRISPR/Cas9-mediated genome editing in duckweeds, which will open new research avenues in using duckweeds for both basic and applied research.
Collapse
Affiliation(s)
- Yu Liu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yu Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shuqing Xu
- Institute for Evolution and BiodiversityUniversity of MünsterMünsterGermany
| | - Xianfeng Tang
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Jinshan Zhao
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
| | - Changjiang Yu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Guo He
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Hua Xu
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Shumin Wang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yali Tang
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Chunxiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Yubin Ma
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| | - Gongke Zhou
- College of Resources and EnvironmentQingdao Agricultural UniversityQingdaoChina
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentShandong Provincial Key Laboratory of Energy GeneticsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
| |
Collapse
|