1
|
Zhou Z, Chen T, Zhu Y, Chen L, Li J. Unlocking cell surface enzymes: A review of chemical strategies for detecting enzymatic activity. Anal Chim Acta 2024; 1332:343140. [PMID: 39580158 DOI: 10.1016/j.aca.2024.343140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Cell surface enzymes are important proteins that play essential roles in controlling a wide variety of biological processes, such as cell-cell adhesion, recognition and communication. Dysregulation of enzyme-catalyzed processes is known to contribute to numerous diseases, including cancer, cardiovascular diseases and neurodegenerative disease. From the perspective of drug discovery and development, there is a growing interest in detecting the cell surface enzyme activity, propelled by the arising need for innovative diagnostic and therapeutic approaches to address various health conditions. RESULTS In this review, we focus on advances in chemical strategies for the detection of cell surface enzyme activity. Firstly, this comprehensive review delves into the diverse landscape of cell surface enzymes, detailing their structural features and diverse biological functions. Various enzyme families on the cell surface are examined in depth, elucidating their roles in cellular homeostasis and signaling cascades. Subsequently, various biosensors, including electrochemical biosensors, optical biosensors and dual-mode biosensors, used for detecting the cell surface enzyme activity are described. Exemplars are provided to illustrate the mechanisms, limit of detection and prospective applications of these different biosensors. Furthermore, this review unravels the intricate interplay between cell surface enzymes and cellular physiology, contributing to the development of novel diagnostic and therapeutic strategies for various diseases. In the end, the review provides insights into the ongoing challenges and future prospects associated with the detection of cell surface enzyme activity. SIGNIFICANCE Detecting cell surface enzyme activity holds pivotal significance in biomedical research, offering valuable insights into cellular physiology and disease pathology. Understanding enzyme activity aids in elucidating signaling pathways, drug interactions and disease mechanisms. This knowledge informs the development of diagnostic tools and therapeutic interventions targeting various ailments, from cancer to neurodegenerative disease. Additionally, it contributes to the advancement of drug screening and personalized medicine approaches.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tingting Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
2
|
Shi H, Liu Y, Qiu C, Wang C, Zhang Z, Lu M, Wang B, Tian Y, Song D, Zhang Z. A dual-mode sensing platform for electron spin resonance and UV-vis detection of alkaline phosphatase based on Cu-based metal-organic frameworks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8242-8249. [PMID: 39503061 DOI: 10.1039/d4ay01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Alkaline phosphatase (ALP) is an indispensable hydrolase in living organisms and the abnormality of ALP activity is correlated with a variety of diseases. Exploring ALP activity is important for clinical diagnosis and biomedical research to understand its physiological function. In this study, a dual-mode biosensing platform was constructed based on Cu-based metal-organic frameworks (Cu-MOFs) for electron spin resonance (ESR) and ultraviolet-visible (UV-vis) sensing of ALP. Cu-MOFs, as peroxidase mimics, catalyzed the decomposition of hydrogen peroxide (H2O2) and the generation of reactive oxygen species (ROS) which could oxidize ABTS into ABTS˙+ with good ESR and UV-vis signals. Pyrophosphate ions (PPi) with high affinity to Cu2+ in Cu-MOFs could suppress the peroxidase-like activity of Cu-MOFs, and ALP could hydrolyze PPi, resulting in the recovery of Cu-MOF catalytic activity. Thus, a quantitative dual-mode method for detection of ALP activity was established with good linearity in the range of 0-42 U L-1 and limits of detection as low as 0.386 and 0.523 U L-1 respectively for ESR and UV-vis detection. Benefiting from its high sensitivity and excellent selectivity, this method was applied for ALP detection in human serum and satisfactory recoveries were achieved. The off-on dual-mode sensing platform is more reliable than the single-mode sensor and shows merits like simple operation and cost-friendliness, making it have great potential in the diagnosis of ALP-related diseases.
Collapse
Affiliation(s)
- Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| | - Yuntong Liu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Chu Qiu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
- Department of Pharmacy, Changchun Medical College, Changchun 130031, China
| | - Meijun Lu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| | - Bo Wang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China.
| |
Collapse
|
3
|
Andrade E, Almeida Paz FA, Figueira F. Advances in metal-organic frameworks for optically selective alkaline phosphatase activity monitoring: a perspective. Dalton Trans 2024; 53:17742-17755. [PMID: 39351601 DOI: 10.1039/d4dt01727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The study of Metal-Organic Frameworks (MOFs) has gained significant momentum due to their remarkable properties, including adjustable pore sizes, extensive surface area, and customizable compositions, which have urged scientists to investigate their applicability in pertinent societal issues such as water absorption, environmental remediation, and sensor technology. MOFs have the ability to transport and detect specific biomolecules, including proteins. One such biomolecule is alkaline phosphatase (ALP) that can be influenced by various diseases and can lead to severe consequences when its regulation is disrupted. The porous nature of MOFs and their tunable nature allows them to selectively adsorb, interact directly or indirectly with ALP. This ultimately influences the electronic and optical properties of the MOF, leading to measurable changes. Early detection and continuous monitoring of ALP play a crucial role in the use of an effective treatment, and recent studies have shown that MOFs are effective in detecting alkaline phosphatases. This manuscript offers a thorough examination of the potential biomedical applications of MOFs for monitoring alkaline phosphatase and envisions possible future trends in this field.
Collapse
Affiliation(s)
- Eduarda Andrade
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| | - Flávio Figueira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal. ffigueiraatua.pt
| |
Collapse
|
4
|
Feng T, Huang Y, Yan S. Label-free fluorescence turn-on detection of alkaline phosphatase activity using the calcein-Ce 3+ complex. Anal Bioanal Chem 2024; 416:5317-5324. [PMID: 39107581 DOI: 10.1007/s00216-024-05464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024]
Abstract
This study introduces an innovative approach for the real-time and efficient detection of alkaline phosphatase (ALP) activity, using a calcein fluorescence probe and leveraging the static quenching properties of calcein fluorescence by Ce3+ metal ions. In this method, calcein serves as the signal element, with its fluorescence effectively preserved through energy transfer or charge transfer when coordinated with Ce3+. Conversely, ALP catalyzes the phosphopeptide substrate to generate a substantial amount of Pi, preventing calcein fluorescence quenching due to the higher affinity between Pi and Ce3+ compared with that between calcein and Ce3+. The fluorescence intensity ratio (F-F0/F0) exhibited excellent linearity, facilitating sensitive ALP detection. The proposed ALP detection method covers a range from 0 to 1.4 mU/mL (R2 = 0.9942), with the limit of detection at 0.069 mU/mL (S/N = 3). Additionally, this method was successfully applied for detecting ALP in serum samples and studying its inhibitors. This research introduces a novel clinical diagnosis approach for ALP sensing while broadening the potential applications of calcein.
Collapse
Affiliation(s)
- Tingting Feng
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Yu Huang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Shuzhu Yan
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
5
|
Wu Y, Liang R, Chen W, Wang C, Xing D. The development of biosensors for alkaline phosphatase activity detection based on a phosphorylated DNA probe. Talanta 2024; 270:125622. [PMID: 38215586 DOI: 10.1016/j.talanta.2024.125622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Alkaline phosphatase (ALP) is a zinc-containing metalloprotein that shows very great significance in clinical diagnosis, which can catalyze the hydrolysis of phosphorylated species. ALP has the potential to serve as a valuable biomarker for detecting liver dysfunction and bone diseases. On the other hand, ALP is an efficient biocatalyst to amplify detection signals in the enzyme-linked assay. It has always been a major research focus to develop novel biosensors that can detect ALP activity with high selectivity and sensitivity. There have been numerous reports on the development of biosensors to determine ALP activity using a phosphorylated DNA probe. Among them, various beneficial strategies, such as λ exonuclease-mediated cleavage reaction, terminal deoxynucleotidyl transferase-triggered DNA polymerization, and Klenow fragment polymerase-catalyzed elongation, are employed to generate amplified and more intuitive signal. This review discusses and summarizes the development and advances of biosensors for ALP activity detection that use a well-designed phosphorylated DNA probe, aiming to provide some guidelines for the design of more sophisticated sensing strategies that exhibit improved sensitivity, selectivity, and adaptability in detecting ALP activity.
Collapse
Affiliation(s)
- Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Zhu J, Li X. Ratio-fluorescent and naked-eye visualized dual-channel sensing strategy for Cu 2+ and alkaline phosphatase activity assay. ANAL SCI 2024; 40:471-480. [PMID: 38127250 DOI: 10.1007/s44211-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
The levels of Cu2+ and alkaline phosphatase (ALP) are the important indicators of the developed stage of the relative diseases. Herein, a binary ratio-fluorescent and smartphone-assisted visual strategy basing on 4'-aminomethyl-4, 5', 8-trimethylpsoralen (AMT) and the oxidation of o-phenylenediamine was developed. Under the action of Cu2+, the fluorescent molecule, 3-diaminophenazine (DAP) formed which can act as a fluorescent acceptor of the ratio-fluorescent sensor. The emission spectrum of AMT overlapped with the excitation spectrum of DAP and, thus, it can act as the fluorescent donor of the ratio-fluorescent sensor. With the increasing concentration of Cu2+ and ALP, the fluorescent intensity of AMT decreased and the fluorescent intensity of DAP increased. The dual-emission reverse change ratio-fluorescent sensor realized the sensitive detection Cu2+ and ALP with the detection limits of 2 nM and 0.03 U/mL, respectively. In addition, the acceptable recoveries were obtained when the Cu2+ and ALP in spiked samples were detected. Furthermore, the relative activity of ALP was assessed by increasing the concentrations of the inhibitor Na3VO4 and IC50 of 25 μM was obtained. Importantly, the target concentration-dependent color change of DAP allowed us to utilize R/B ratio values to design the smartphone-assisting visual detection model of Cu2+ and ALP activity with the detection limits of 0.1 μM and 0.18 U/mL. This simple, flexible, dual-mode sensor strategy has a potential for disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Jing Zhu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China.
| | - Xinyu Li
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong, 273165, People's Republic of China
| |
Collapse
|
7
|
Alom KM, Kumara GSR, Seo YJ. Unnatural nucleotide-based rkDNA probe combined with graphene oxide for detection of alkaline phosphatase activity. Bioorg Med Chem Lett 2022; 64:128694. [PMID: 35314327 DOI: 10.1016/j.bmcl.2022.128694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
In this study we developed a fluorescent double-stranded DNA, incorporating an unnatural dUrk nucleotide, that we used as a probe for the detection of alkaline phosphatase (ALP) based on enzymatic cleavage of the non-fluorescent complementary strand. Primer extension performed using the unnatural nucleotide triphosphate dUrkTP and the natural deoxynucleotide triphosphates dATP, dCTP, and dGTP provided a simple fluorescent DNA strand that hybridized with the 5́-monophosphate non-fluorescent complementary strand. When applying the 5́-phosphate recognition and cleavage properties of lambda exonuclease (λ-exo), this probe could bind to graphene oxide (GO) and quench the fluorescence (in the absence of ALP) or not bind to GO and retain its fluorescence (in the presence of ALP). We obtained strongly fluorescent DNA strands through simple incorporation of multiple A sites in the complementary sequence, thereby increasing the number of dUrk residues during primer extension. This unnatural nucleotide-based rkDNA probing system exhibited high fluorescence differentiation for discriminating the status of ALP. This rkDNA-GO probing system appears to be a promising tool for monitoring the activity of disease-associated enzymes.
Collapse
Affiliation(s)
- Kazi Morshed Alom
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | | | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
8
|
Wang LJ, Liu H, Zou X, Xu Q, Zhang CY. 3'-Terminal Repair-Powered Dendritic Nanoassembly of Polyadenine Molecular Beacons for One-Step Quantification of Alkaline Phosphatase in Human Serum. Anal Chem 2021; 93:10704-10711. [PMID: 34292701 DOI: 10.1021/acs.analchem.1c02285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alkaline phosphatase (ALP) is an important hydrolase with crucial roles in biological processes, and the dysregulation of ALP may cause various human diseases. The conventional ALP assays usually involve cumbersome procedures with poor sensitivity. Herein, taking advantage of intrinsic superiorities of molecular beacons (MBs) and unique features of terminal deoxynucleotidyl transferase (TdT), we demonstrate for the first time the 3'-terminal repair-powered dendritic nanoassembly of polyadenine (A) MBs for one-step quantification of ALP in human serum. When ALP is present, it catalyzes 3'-terminal dephosphorylation of poly-A MBs to induce TdT-mediated template-free polymerization, generating long chains of polythymidine (T) sequences. The long poly-T chains can function as the anchoring templates to hybridize with many poly-A MBs, leading to the unfolding of loop structures and the dissociation of FAM/BHQ1 pairs (the 1st amplification stage). Subsequently, all 3'-hydroxylated poly-A MBs can be extended with the assistance of TdT to generate the branched long poly-T chains, leading to the hybridization of more poly-A MBs and the dissociation of more FAM/BHQ1 pairs (the 2nd amplification stage). Through multiple rounds of extension, assembly, and activation of poly-A MBs, dendritic DNA nanostructures are automatically formed, resulting in the dissociation of abundant fluorophores from the FAM/BHQ1 pairs to generate an exponentially amplified fluorescence signal (the nth amplification stage). This strategy possesses high sensitivity and excellent specificity, and the detection limit can reach 1 cell. Moreover, it can evaluate kinetic parameters, screen inhibitors, estimate cellular inhibition effects, and measure ALP in human serums.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
9
|
Wang Y, Yan Y, Liu X, Ma C. An Exonuclease I-Aided Turn-Off Fluorescent Strategy for Alkaline Phosphatase Assay Based on Terminal Protection and Copper Nanoparticles. BIOSENSORS-BASEL 2021; 11:bios11050139. [PMID: 33946723 PMCID: PMC8145916 DOI: 10.3390/bios11050139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
As an important DNA 3'-phosphatase, alkaline phosphatase can repair damaged DNA caused by replication and recombination. It is essential to measure the level of alkaline phosphatase to indicate some potential diseases, such as cancer, related to alkaline phosphatase. Here, we designed a simple and fast method to detect alkaline phosphatase quantitively. When alkaline phosphatase is present, the resulting poly T-DNA with a 3'-hydroxyl end was cleaved by exonuclease I, prohibiting the formation of fluorescent copper nanoparticles. However, the fluorescent copper nanoparticles can be monitored with the absence of alkaline phosphatase. Hence, we can detect alkaline phosphatase with this turn-off strategy. The proposed method is able to quantify the concentration of alkaline phosphatase with the LOD of 0.0098 U/L. Furthermore, we utilized this method to measure the effects of inhibitor Na3VO4 on alkaline phosphatase. In addition, it was successfully applied to quantify the level of alkaline phosphatase in human serum. The proposed strategy is sensitive, selective, cost effective, and timesaving, having a great potential to detect alkaline phosphatase quantitatively in clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Xinfa Liu
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| | - Changbei Ma
- Correspondence: (X.L.); (C.M.); Tel.: +86-731-8265-0230 (X.L. & C.M.)
| |
Collapse
|
10
|
Zhang J, Zhao W, Zhang W, Liu Y, Qin Y, Zhang W, Zhou Z, Zhou Y, Wang H, Xiao X, Wu T. A path-choice-based biosensor to detect the activity of the alkaline phosphatase as the switch. Anal Chim Acta 2020; 1135:64-72. [PMID: 33070860 DOI: 10.1016/j.aca.2020.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
Alkaline phosphatase (ALP), which converts the phosphate group (-PO4) in the substrate to the hydroxyl group (-OH), is a useful tool in the biological analysis, a good indicator of dissolved inorganic phosphorus levels and an important biomarker for several diseases. In conventional designs for ALP detection, both the interferent with a -PO4 and the target with a -OH will go into the sensing path and give out the undesired background and the desired signal respectively. This limited the sensitivity of the method and required the complicated design to achieve a satisfying limit of detection (LOD) of ALP. Here, we provided a new sensing strategy for ALP detection design. We designed a path-choice-based biosensor with two DNA tracks in which ALP works as the switch to guide the reaction path of lambda exonuclease (λ exo). The path-choice character enlarged the difference between signal and background by separating the interferent removing path and the target sensing path. The substrate preference of ALP and λ exo was studied to optimize the structure of DNA tracks. The path-choice-based biosensor achieved simple, fast (30 min), sensitive (LOD 0.014 U L-1) and selective detection of the activity of ALP. The method has been applied to detect the activity of ALP in cell lysates, which shows the potential application in ALP-related biological research.
Collapse
Affiliation(s)
- Jiarui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yizhou Liu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Qin
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenkai Zhang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujie Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Xiao
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Zhang J, Yuan Y, Han Z, Li Y, van Zijl PCM, Yang X, Bulte JWM, Liu G. Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosens Bioelectron 2019; 141:111442. [PMID: 31252256 PMCID: PMC6717000 DOI: 10.1016/j.bios.2019.111442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Phenol contains an exchangeable hydroxyl proton resonant at 4.8 ppm from the resonance frequency of water in the 1H nuclear magnetic resonance (1H NMR) spectrum, enabling itself to be detected at sub-mM concentration by either chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) or exchange-based T2 relaxation enhancement (T2ex) effect under acidic and basic conditions, respectively. We recently investigated the T2ex effects of phenol and its derivatives, but the CEST characteristics of phenols are unknown in detail, and no study on using the natural CEST MRI effects of phenol for detecting enzymatic activity has been conducted. Herein, on the basis of the inherent CEST MR property of phenol, namely phenolCEST, we developed the first MRI approach to detect acid phosphatase (AcP) enzymatic activity. Upon the activity of AcP at pH = 5.0, non-CEST-detectable enzyme substrate phenyl phosphate was converted to CEST-detectable phenol, providing a simple way to quantify AcP activity directly without the need for a second signalling probe. We showed the application of this phenolCEST biosensor for measuring AcP activity in both enzyme solutions and cell lysates of prostate cells. This work opens a door for the utilization of phenolCEST MRI technique in sensor design and development.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.
| |
Collapse
|
12
|
Gwynne L, Sedgwick AC, Gardiner JE, Williams GT, Kim G, Lowe JP, Maillard JY, Jenkins ATA, Bull SD, Sessler JL, Yoon J, James TD. Long Wavelength TCF-Based Fluorescent Probe for the Detection of Alkaline Phosphatase in Live Cells. Front Chem 2019; 7:255. [PMID: 31119120 PMCID: PMC6508040 DOI: 10.3389/fchem.2019.00255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
A long wavelength TCF-based fluorescent probe (TCF-ALP) was developed for the detection of alkaline phosphatase (ALP). ALP-mediated hydrolysis of the phosphate group of TCF-ALP resulted in a significant fluorescence "turn on" (58-fold), which was accompanied by a colorimetric response from yellow to purple. TCF-ALP was cell-permeable, which allowed it to be used to image ALP in HeLa cells. Upon addition of bone morphogenic protein 2, TCF-ALP proved capable of imaging endogenously stimulated ALP in myogenic murine C2C12 cells. Overall, TCF-ALP offers promise as an effective fluorescent/colorimetric probe for evaluating phosphatase activity in clinical assays or live cell systems.
Collapse
Affiliation(s)
- Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | | | | | - Gyoungmi Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - John P. Lowe
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Steven D. Bull
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX, United States
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, South Korea
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|