1
|
Godoi AB, Antunes NDJ, Rodrigues LC, Martins AF, Costa JL. In vitro metabolism and metabolite identification of eutylone using rat liver microsomes. J Pharm Biomed Anal 2025; 260:116827. [PMID: 40121735 DOI: 10.1016/j.jpba.2025.116827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
The determination of toxicokinetic parameters allows the characterization of the toxicological profile of a wide range of substances. Several models have been employed to in vitro kinetic evaluations, in which liver microsomes stands out due to its simple handling and obtaining. Eutylone is a New Psychoactive Substance (NPS) classified as a synthetic cathinone with stimulant effects on central nervous system. This substance was initially synthesized for pharmaceutical applications but ultimately became subject to recreational use, with constant seizures worldwide. Herein, the in vitro metabolism and the production of eutylone phase I and phase II metabolites was investigated using rat liver microsomes (RLM). Eutylone presented a low metabolic stability showing an in vitro elimination half-life (t1/2) of 2.27 min. The unbound fractions of eutylone in microsomal (fu-mic) and plasma (fu-p) proteins were 0.93 and 0.15, respectively. A sigmoidal profile defined by Hill equation were observed, allowing kinetic parameters calculations. The Hill coefficient (H) was 1.21, in vitro maximum velocity (Vmax) was 19.40 μmol/mg/min, substrate concentration at half Vmax (S50) was 4.78 μM, intrinsic maximum clearance (CLmax, in vitro) was 3.36 mL/min/mg, in vivo intrinsic clear-ance (CLint, in vivo) was 8.20 mL/min/kg, hepatic clearance (CLH) was 1.29 mL/min/kg, and hepatic extraction rate (EH) was 0.02. Eight eutylone metabolites were identified, four produced by phase I reactions and four by phase I followed by phase II reactions. Demethylenation and O-glucuronidation were pivotal in eutylone's metabolism. These findings provide valuable information about the metabolism of eutylone, allowing practical implications for evaluating its safety and toxicity.
Collapse
Affiliation(s)
- Alexandre Barcia Godoi
- Centro de Informação e Assistência Toxicológica (CIATox) de Campinas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil; Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil
| | - Natalícia de Jesus Antunes
- Centro de Informação e Assistência Toxicológica (CIATox) de Campinas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil; Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil.
| | - Leonardo Costalonga Rodrigues
- Centro de Informação e Assistência Toxicológica (CIATox) de Campinas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil; Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil
| | - Aline Franco Martins
- Centro de Informação e Assistência Toxicológica (CIATox) de Campinas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil; Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil
| | - José Luiz Costa
- Centro de Informação e Assistência Toxicológica (CIATox) de Campinas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil; Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-859, Brazil
| |
Collapse
|
2
|
Rautio T, Obrist R, Krebs L, Klingstedt T, Dahlén J, Wu X, Gréen H. In vitro metabolism study of ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA using human hepatocytes, liver microsomes, and in-house synthesized references. Drug Test Anal 2025; 17:701-712. [PMID: 39039949 PMCID: PMC12012409 DOI: 10.1002/dta.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Synthetic cannabinoids (SCs) remain a major public health concern, as they continuously are linked to severe intoxications and drug-related deaths worldwide. As new SCs continue to emerge on the illicit drug market, an understanding of SC metabolism is needed to identify formed metabolites that may serve as biomarkers in forensic toxicology screening and for understanding the pharmacokinetics of the drugs. In this work, the metabolism of ADB-4en-P-5Br-INACA and ADB-P-5Br-INACA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-(pent-4-en-1-yl)-1H-indazole-3-carboxamide, (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-bromo-1-pentyl-1H-indazole-3-carboxamide respectively) were investigated using human hepatocytes in vitro and in-house synthesized references. Both SCs were incubated with pooled human hepatocytes over 3 h, with the aim to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). In total nine metabolites were identified for ADB-4en-P-5Br-INACA and 10 metabolites for ADB-P-5Br-INACA. The observed biotransformations included dihydrodiol formation, terminal amide hydrolysis, hydroxylation, dehydrogenation, carbonyl formation, glucuronidation, and combinations thereof. The major metabolites were confirmed by in-house synthesized references. Recommended biomarkers for ADB-P-5Br-INACA and ADB-4en-P-5Br-INACA are the terminal hydroxy and dihydrodiol metabolite respectively.
Collapse
Affiliation(s)
- Tobias Rautio
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Robin Obrist
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
- University of Applied Sciences NorthwesternWindischSwitzerland
| | - Lucas Krebs
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
- University of Applied Sciences NorthwesternWindischSwitzerland
| | - Therése Klingstedt
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Johan Dahlén
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
| | - Henrik Gréen
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic MedicineLinköpingSweden
- Division of Drug Research, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Norman C, Webling K, Štālberga D, Maas L, Tveit J, Liu H, Watanabe S, Vikingsson S, Green H. In vitro metabolism of Benzyl-4CN-BUTINACA and MDMB-4CN-BUTINACA using human hepatocytes and LC-QToF-MS analysis. Arch Toxicol 2025:10.1007/s00204-025-04018-y. [PMID: 40097708 DOI: 10.1007/s00204-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a large and continuously evolving group of new psychoactive substances (NPS). Recently, many different nitrile-containing SCRAs have emerged on the illicit market, two of which have been found to release cyanide during metabolism. This can produce symptoms similar to those of cyanide poisoning, contributing to the toxicity of these SCRAs. Notified by the EU Early Warning System in 2020, Benzyl-4CN-BUTINACA (Benzyl-4CN-BINACA, BZ-4CN-BUTINACA) is the most recent nitrile-containing SCRA to emerge. This study characterized the metabolism of Benzyl-4CN-BUTINACA and the prophetic compound MDMB-4CN-BUTINACA for the first time using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS) following incubation with primary human hepatocytes (HHeps; 5 µmol/L, up to 5 h). For Benzyl-4CN-BUTINACA, nine metabolites (no phase II metabolites) were identified and 12 for MDMB-4CN-BUTINACA, including only two minor phase II metabolites. By far the most abundant metabolites for Benzyl-4CN-BUTINACA were metabolites with a dihydrodiol on the indazole core (B1) and decyanation to a carboxylic acid (B2). The metabolites with ester hydrolysis (M1) and ester hydrolysis with dehydrogenation (M2) were the most abundant for MDMB-4CN-BUTINACA. Decyanation was less prevalent for these compounds than for other nitrile-containing SCRAs, such as Cumyl-4CN-BUTINACA, with only 29.0% and 1.78% of metabolites of Benzyl-4CN-BUTINACA and MDMB-4CN-BUTINACA, respectively, having a loss of cyanide. However, the second major metabolite of Benzyl-4CN-BUTINACA was a decyanation metabolite, making the potential CN formation not negligible.
Collapse
Affiliation(s)
- Caitlyn Norman
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Kristin Webling
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Dārta Štālberga
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Lisa Maas
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | | | | | - Shimpei Watanabe
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping University, Linköping, Sweden
- Forensic Science Group, Photon Science Research Division, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Svante Vikingsson
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping University, Linköping, Sweden
- Center for Forensic Science Advancement and Application, RTI International, Research Triangle Park, NC, USA
| | - Henrik Green
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden.
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Camuto C, De-Giorgio F, Corli G, Bilel S, Mazzarino M, Marti M, Botrè F. Metabolic profiling of the synthetic cannabinoid APP-CHMINACA (PX-3) as studied by in vitro and in vivo models. Forensic Toxicol 2025; 43:130-141. [PMID: 39576558 PMCID: PMC11782320 DOI: 10.1007/s11419-024-00705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/07/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE The metabolic pathways of APP-CHMINACA were characterized to select the markers of intake for implementation into analytical assays used by the clinical and forensic communities. We have combined the evidences obtained by both in vitro experiments and administration studies on mice. METHODS APP-CHMINACA was incubated with either human or mouse liver microsomes. Urine and blood samples were collected at different time points from mice after injection of a 3 mg/kg dose of the test compound. Samples were analyzed using liquid chromatography-tandem mass spectrometry. RESULTS The in vitro studies allowed to isolate eight different metabolic reactions, formed by two metabolic routes, with no differences between human and mouse liver microsomes. The main biotransformation route involved the hydrolysis of the distal amide group and the subsequent hydroxylation on the cyclohexyl-methyl ring. The second route involved multiple hydroxylation of the parent compound, followed by reduction to generate minor metabolites. In blood samples, the most abundant substances identified were APP-CHMINACA unchanged and the metabolites formed by the hydrolysis of the distal amide together with its hydroxylated products. In urine samples, four metabolites formed following the hydroxylation of the distal amide hydrolysis metabolite were detected as the most abundant and long-term metabolites. CONCLUSIONS The outcomes of our study showed that the most suitable markers to detect the intake of APP-CHMINACA in blood and urine samples in the framework of toxicological, clinical and forensic investigations were the metabolite formed by the hydrolysis of the distal amide and its hydroxylated products.
Collapse
Affiliation(s)
- Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, Italy
| | - Giorgia Corli
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy
- DoCoLab, University of Ghent, Block B, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Matteo Marti
- Department of Translational Medicine, University of Ferrara, Via Fossato Di Mortara 70, Ferrara, Italy
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197, Rome, Italy.
- REDs - Research and Expertise in antidoping Sciences, ISSUL - Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- DoCoLab, University of Ghent, Block B, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
5
|
Fan Y, Huang Y, Zhou Y, Ke X, Tian Y, Zheng S, Sun Y, Huang Z, Zhou J, Wu L. Unraveling the liver metabolomic profile of ADB-BUTINACA-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117375. [PMID: 39603218 DOI: 10.1016/j.ecoenv.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
ADB-BUTINACA, as a new psychoactive substance, can induce physical and psychological dependence. However, the systemic biological impact of ADB-BUTINACA on hepatic metabolomics remains uncertain. The metabolic spectrum in rat livers following exposure to three varying doses of ADB-BUTINACA (0.1, 1, and 5 mg/kg·bw) were analyzed using ultra-high-performance liquid chromatography coupled with high-resolution quadrupole-orbitrap mass spectrometry and molecular docking techniques. Non-target metabolomic technology demonstrated that ADB-BUTINACA induced significant changes in 42 metabolites and disturbed 11 metabolic pathways especially the taurine and hypotaurine metabolism, β-alanine metabolism, and arachidonic acid metabolism, implicates the potential for ADB-BUTINACA to induce not merely cardiac dysfunction but also neurological anomalies. Molecular docking into the hepatotoxic targets of ADB-BUTINACA unveiled its potential for competitive binding with pantetheinase. This interaction may disrupt the coenzyme A (CoA) synthesis pathway, resulting in energy and lipid metabolism imbalances, and ultimately causing hepatotoxic effects. Cellular experiments confirmed reduced HepG2 cell viability and elevated reactive oxygen species (ROS) levels in HepG2 and Huh7 cells. These findings align with our metabolomic findings, supporting the hypothesis that ADB-BUTINACA induces hepatotoxicity via oxidative stress, as well as disruptions in energy and lipid metabolism. This work not only broadens the knowledge of ADB-BUTINACA' toxicological profile but also contributes to efforts aimed at diagnosing and preventing ADB-BUTINACA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yilei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China; College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou 310053, China
| | - Yingyu Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhou
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, China
| | - Xing Ke
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China
| | - Yimei Tian
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siyue Zheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Sun
- Hangzhou Bodu Metrology Technology Co., Ltd, Hangzhou 310014, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Zhou
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou 310053, China.
| | - Li Wu
- National Narcotics Laboratory Zhejiang Regional Center, Hangzhou 310053, China.
| |
Collapse
|
6
|
Giorgetti A, Zschiesche A, Groth O, Haschimi B, Scheu M, Pelletti G, Fais P, Musshoff F, Auwärter V. ADB-HEXINACA-a novel synthetic cannabinoid with a hexyl substituent: phase I metabolism in authentic urine samples, a case report and prevalence on the German market. Drug Test Anal 2024; 16:1350-1365. [PMID: 38350637 DOI: 10.1002/dta.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest groups of new psychoactive substances (NPS). Yet, another novel analog started spreading on the NPS market around 2021. Soon after, the substance could be analytically characterized in herbal material as ADB-HEXINACA, an SCRA containing a hexyl-substituted tail on the indazole core. Here, we present suitable urinary markers to prove the consumption of this analog, a case report of acute polydrug intoxication and data on its prevalence in Germany. Anticipated phase I metabolites were detected in 12 authentic urine samples that were collected for abstinence control and analyzed by ultra-performance liquid chromatography coupled to a time-of-flight mass spectrometer (UPLC-qToF-MS). The results of in vivo samples were confirmed by analysis of in vitro incubates with pooled human liver microsomes (pHLMs). Forensic samples were used to assess the prevalence of ADB-HEXINACA. Thirty-two phase I metabolites were detected in the authentic urine samples. The main metabolites resulted from amide hydrolysis in combination with either monohydroxylation or ketone formation at the hexyl moiety (M15 and M26), the monitoring of which is recommended as a proof of consumption. ADB-HEXINACA was detected in 3.5% of SCRA positive urine samples collected for abstinence control in Freiburg up to December 2022 and in 5.5% of the SCRA positive blood/serum samples. The hexyl substituent of ADB-HEXINACA allows for the detection of specific urinary biomarkers suggested as analytical targets to confirm its prior intake. ADB-HEXINACA had a rather low prevalence in Germany, alternating months of higher prevalence with periods of total absence.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Zschiesche
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Olwen Groth
- Institute of Forensic Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Belal Haschimi
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Scheu
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guido Pelletti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Frank Musshoff
- Forensic Toxicological Center (FTC) Munich, Munich, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Hou X, Zhang Y, Xu D, Qin S, Xue C, Wang J, Zhou X, Shangguan J, Li Z, Liu J, Jia Z, Lu J. Metabolic profiling of a new synthetic cannabinoid receptor agonist, ADMB-FUBIATA, with human liver microsomes, human primary hepatocytes and human recombinant CYP450 enzymes using LC-quadrupole-orbitrap MS. J Pharm Biomed Anal 2024; 249:116342. [PMID: 38986350 DOI: 10.1016/j.jpba.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
A novel synthetic cannabinoid receptor agonist (SCRA), ADMB-FUBIATA, featuring an acetamide-linked structure, has emerged on the illicit drug market. To provide dependable verification of its consumption and identify reliable biomarkers, we investigated an in vitro metabolism study of ADMB-FUBIATA incubated with human primary hepatocytes (HPHs) for the first time and correlated our findings with those from human liver microsomes (HLMs). In this work, ADMB-FUBIATA (10 μM) was incubated with HLM and HPH for 1 and 5 h, respectively, and then subjected to LC-quadrupole-orbitrap MS. A total of 25 metabolites across 8 metabolic pathways were identified after incubation with HLM and HPH, respectively. Monohydroxylation and N-dealkylation were the major metabolic pathways, and formation to ketone was first identified. In addition, the metabolism of ADMB-FUBIATA were found to be mediated by multiple CYP450 enzymes, predominantly CYP2C19, 2D6, and 3A4. This research also initially characterized the fragmentation patterns of the metabolites of ADMB-FUBIATA, elaborating on their structural relationship with ADMB-FUBIATA analogs. To effectively monitor ADMB-FUBIATA abuse, metabolites M4 and M1 were proposed as reliable biomarkers by cross-validating the HLM and HPH incubation results.
Collapse
Affiliation(s)
- Xiaolong Hou
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Ying Zhang
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Duoqi Xu
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China.
| | - Shiyang Qin
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Chenyu Xue
- Beijing Public Security Forensic Identification Centre, Key Laboratory of the Ministry of Public Security for Toxicological Analysis in Court, Beijing 100192, China.
| | - Jifen Wang
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Xinyang Zhou
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jianyang Shangguan
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Zhuoyan Li
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jiatong Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Zhenjun Jia
- School of Investigation, People's Public Security University of China, Beijing 100038, China.
| | - Jianghai Lu
- Drug and Food Anti-doping Laboratory, China Anti-Doping Agency, Beijing 100029, China.
| |
Collapse
|
8
|
Gao Y, Shi K, Wang P, Liu X, Liu C, Luo L, Lin Y, Yang L, Yang R, Liao L. Identification of phase-I and phase-II metabolites and the metabolic pathway of the novel synthetic cannabinoid 5F-EDMB-PICA in vitro. Arch Toxicol 2024; 98:2879-2888. [PMID: 38955863 DOI: 10.1007/s00204-024-03790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/15/2024] [Indexed: 07/04/2024]
Abstract
5F-EDMB-PICA is a newly emerged synthetic cannabinoid which has been characterized in relevant literature in recent years. Although phase-I metabolites of 5F-EDMB-PICA have been partly reported, the phase-II metabolism of this synthetic cannabinoid has not been studied yet. In this study, we established a phase-I and phase-II metabolism model in vitro by using pooled human liver microsomes, NADPH regeneration system, and UGT incubation system, with 1 mg/ml 5F-EDMB-PICA added and incubated at 37 °C for 60 min. The metabolites were analyzed by Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer, via which we discovered and identified 14 phase-I metabolites and 4 phase-II metabolites of 5F-EDMB-PICA, involving pathways such as ester hydrolysis, dehydrogenation, hydrolytic defluorination, hydroxylation, dihydroxylation, glucuronidation, and combinations of the pathways mentioned above. We recommend considering the monohydroxylation metabolites (M9, M10) with higher content and intact ester and 5-fluoropentyl structures as potential biomarkers of 5F-EDMB-PICA.
Collapse
Affiliation(s)
- Yujie Gao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Kaiting Shi
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peipei Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinyu Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Chenxi Liu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Liya Luo
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Yanchen Lin
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin Yang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Rongji Yang
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China.
| | - Linchuan Liao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Brandon AM, Baginski SR, Peet C, Dugard P, Green H, Sutcliffe OB, Daéid NN, Nisbet LA, Read KD, McKenzie C. Log D 7.4 and plasma protein binding of synthetic cannabinoid receptor agonists and a comparison of experimental and predicted lipophilicity. Drug Test Anal 2024; 16:1012-1025. [PMID: 38062938 DOI: 10.1002/dta.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 10/17/2024]
Abstract
The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.
Collapse
Affiliation(s)
- Andrew M Brandon
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Caroline Peet
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
- Debiopharm, Lausanne, Switzerland
| | - Pat Dugard
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| |
Collapse
|
10
|
Di Trana A, Sprega G, Kobidze G, Taoussi O, Lo Faro AF, Bambagiotti G, Montanari E, Fede MS, Carlier J, Tini A, Busardò FP, Di Giorgi A, Pichini S. QuEChERS Extraction and Simultaneous Quantification in GC-MS/MS of Hexahydrocannabinol Epimers and Their Metabolites in Whole Blood, Urine, and Oral Fluid. Molecules 2024; 29:3440. [PMID: 39065018 PMCID: PMC11279433 DOI: 10.3390/molecules29143440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, hexahydrocannabinol (HHC) was posed under strict control in Europe due to the increasing HHC-containing material seizures. The lack of analytical methods in clinical laboratories to detect HHC and its metabolites in biological matrices may result in related intoxication underreporting. We developed and validated a comprehensive GC-MS/MS method to quantify 9(R)-HHC, 9(S)-HHC, 9αOH-HHC, 9βOH-HHC, 8(R)OH-9(R)-HHC, 8(S)OH-9(S)HHC, 11OH-9(R)HHC, 11OH-9(S)HHC, 11nor-carboxy-9(R)-HHC, and 11nor-carboxy-9(S)-HHC in whole blood, urine, and oral fluid. A novel QuEChERS extraction protocol was optimized selecting the best extraction conditions suitable for all the three matrices. Urine and blood were incubated with β-glucuronidase at 60 °C for 2 h. QuEChERS extraction was developed assessing different ratios of Na2SO4:NaCl (4:1, 2:1, 1:1, w/w) to be added to 200 µL of any matrix added with acetonitrile. The chromatographic separation was achieved on a 7890B GC with an HP-5ms column, (30 m, 0.25 mm × 0.25 µm) in 12.50 min. The analytes were detected with a triple-quadrupole mass spectrometer in the MRM mode. The method was fully validated following OSAC guidelines. The method showed good validation parameters in all the matrices. The method was applied to ten real samples of whole blood (n = 4), urine (n = 3), and oral fluid (n = 3). 9(R)-HHC was the prevalent epimer in all the samples (9(R)/9(S) = 2.26). As reported, hydroxylated metabolites are proposed as urinary biomarkers, while carboxylated metabolites are hematic biomarkers. Furthermore, 8(R)OH-9(R)HHC was confirmed as the most abundant metabolite in all urine samples.
Collapse
Affiliation(s)
- Annagiulia Di Trana
- National Centre on Addiction and Doping, Italian National Institute of Health, 00161 Rome, Italy; (A.D.T.); (S.P.)
| | - Giorgia Sprega
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Giorgi Kobidze
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Omayema Taoussi
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Alfredo Fabrizio Lo Faro
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Giulia Bambagiotti
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Eva Montanari
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Maria Sofia Fede
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Jeremy Carlier
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Anastasio Tini
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Francesco Paolo Busardò
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Alessandro Di Giorgi
- Department of Biomedical Science and Public Health, Faculty of Surgery of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy; (G.S.); (G.K.); (O.T.); (A.F.L.F.); (G.B.); (E.M.); (M.S.F.); (J.C.); (A.T.); (A.D.G.)
| | - Simona Pichini
- National Centre on Addiction and Doping, Italian National Institute of Health, 00161 Rome, Italy; (A.D.T.); (S.P.)
| |
Collapse
|
11
|
Lafzi A, Yeşilyurt F, Demirci T, Hacımüftüoğlu A, Şişman T. Acute and subacute toxic effects of CUMYL-4CN-BINACA on male albino rats. Forensic Toxicol 2024; 42:125-141. [PMID: 38102417 DOI: 10.1007/s11419-023-00676-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE There is very little information about the toxicological and pathological effects of synthetic cannabinoids, which have cannabis-like properties. This study was carried out to histopathologically, hematologically, and biochemically determine the toxic effects of acute and subacute exposure to a novel synthetic cannabinoid 1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)indazole-3-carboxamide in internal organs of adult male rats. METHODS The cannabinoid was injected intraperitoneally at three doses (0.5, 1.0, and 2.0 mg/kg, body weight). The cannabinoid was administered to acute groups for 2 days and to subacute groups for 14 days. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. Hematological and biochemical changes were evaluated and histopathological analyses in lung, liver, and kidney tissues were also performed. RESULTS No mortality was observed. It was observed that there were fluctuations in hematological and serum biochemical parameters. Among the oxidative stress parameters, significant decreases in superoxide dismutase, catalase levels and significant increases in lipid peroxidation levels were determined. Serious pathological changes such as necrosis, vacuolation, congestion, and fibrosis were observed in the internal organs in a dose-dependent and time-dependent manner. It was also found that the synthetic cannabinoid triggered apoptosis in the organs. The results demonstrated that the most affected organ by the cannabinoid was the kidney. CONCLUSION This study showed for the first time that CUMYL-4CN-BINACA adversely affects healthy male albino rats. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey
| | - Fatma Yeşilyurt
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
12
|
Zschiesche A, Scheu M, Thieme D, Keiler AM, Pulver B, Huppertz LM, Auwärter V. Insights into the metabolism of CH-PIATA-A novel synthetic cannabinoid featuring an acetamide linker. J Anal Toxicol 2024; 48:359-371. [PMID: 38441323 DOI: 10.1093/jat/bkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 06/12/2024] Open
Abstract
The recent change from the popular carboxamide to an acetamide (ATA) linker scaffold in synthetic cannabinoid receptor agonists (SCRAs) can be interpreted as an attempt to circumvent legal regulations, setting new analytical challenges. Metabolites of N-cyclohexyl-2-(1-pentyl-1 H-indol-3-yl)acetamide: CH-PIATA, the second ATA type SCRA detected in the EU, were investigated in urine and serum samples by LC-HRMS-MS and LC-MS-MS. Two different in vitro models, a pHLM assay and HepG2-cells, as well as an in silico prediction by GLORYx freeware assisted in metabolite formation/identification. CH-PIATA was extensively metabolized, leading to metabolites formed primarily by mono- and dihydroxylation. For urine and serum specimens, monohydroxylation at the indole core or the methylene spacer of the acetamide linker (M1.8), carboxylic acid formation at the N-pentyl side chain (M3.1) and degradation of the latter leading to a tentatively identified N-propionic acid metabolite (M5.1) are suggested as reliable markers for substance intake. The N-propionic acid metabolite could not be confirmed in the in vitro assays as it includes multiple consecutive metabolic reactions. Furthermore, CH-PIATA could be detected as parent substance in blood samples, but not in urine. Both in vitro assays and the in silico tool proved suitable for predicting metabolites of CH-PIATA. Considering effort and costs, pHLM incubations seem to be more effective for metabolite prediction in forensic toxicology than HepG2 cells. The highlighted Phase I metabolites serve as reliable urinary targets for confirming CH-PIATA use. The in silico approach is advantageous when reference material is unavailable.
Collapse
Affiliation(s)
- Annette Zschiesche
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, Freiburg 79104, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, Freiburg 79104, Germany
| | - Martin Scheu
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, Freiburg 79104, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, Freiburg 79104, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Dresdner Str. 12, Kreischa 01731, Germany
| | - Annekathrin M Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, Dresdner Str. 12, Kreischa 01731, Germany
- Faculty of Biology, Environmental Monitoring and Endocrinology, TU Dresden University of Technology, Zellescher Weg 2b, Dresden 01217, Germany
| | - Benedikt Pulver
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, Freiburg 79104, Germany
| | - Laura M Huppertz
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, Freiburg 79104, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, Freiburg 79104, Germany
| |
Collapse
|
13
|
Murari M, Pesavento S, Greco F, Vettori A, Tagliaro F, Gottardo R. Study of metabolism and potential toxicity of nine synthetic opioid analogs using the zebrafish larvae model. Drug Test Anal 2024; 16:629-637. [PMID: 37916273 DOI: 10.1002/dta.3590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
The use of novel psychoactive substances (NPSs) has dramatically increased worldwide, and among them, synthetic opioids are one of the fastest growing groups, where cinnamylpiperazines and 2-benzylbenzimidazoles represent two of the most relevant subclasses. However, the data on their toxicity and metabolism are still limited. The aim of the present study was to evaluate the toxicity and metabolic pathways of some compounds belonging to these families, namely, AP-237, 2-methyl AP-237, isotonitazene, flunitazene, etodesnitazene, metonitazene, metodesnitazene, N-pyrrolidino etonitazene, and butonitazene. The study was performed using a zebrafish early life stages model. In fact, zebrafish (Danio rerio) embryos and larvae have recently been recognized as a suitable animal model in alternative to mammals, because they require less time and resources and do not need complex procedures for ethics approval. The cellular toxicity after a single administration was assessed at the fourth day post-fertilization with acridine orange staining. Possible morphological defects were evaluated with a light microscope after 24 h of exposure to 1 μmol/L concentration of each drug. Subsequently, the larvae were euthanized and underwent analysis of drug metabolites using UPLC coupled to an Orbitrap high-resolution mass spectrometer. High rates of morphological defects, as well as of cellular death, were detected, but no significant difference in mortality between treatment and control groups was observed. In addition, several metabolites, mainly produced through monohydroxylation, N-dealkylation, and O-dealkylation, were identified in the larvae extracts.
Collapse
Affiliation(s)
- Matilde Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Sara Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesca Greco
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Rossella Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Xu L, Yan H, Tang Y, Liu Y, Xiang P, Hang T. In vitro and in vivo metabolic study of three new psychoactive β-keto-arylcyclohexylamines. J Anal Toxicol 2024; 48:217-225. [PMID: 38619371 DOI: 10.1093/jat/bkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances have appeared on the illicit drug market. β-Keto-arylcyclohexylamine compounds play important pharmacological roles in anesthesia; however, because these new psychoactive substances have rapidly increasing illicit recreational use, the lack of detailed toxicity data are of particular concern. Therefore, analysis of their metabolites can help forensic personnel provide references and suggestions on whether a suspect has taken an illicit new psychoactive β-keto-arylcyclohexylamine. The present study investigated the in vitro and in vivo metabolism and metabolites of three β-keto-arylcyclohexylamines: deschloro-N-ethyl-ketamine, fluoro-N-ethyl-ketamine and bromoketamine. In vitro and in vivo models were established using zebrafish and human liver microsomes for analysis of Phase I and Phase II metabolites by liquid chromatography-high-resolution mass spectrometry. Altogether, 49 metabolites were identified. The results were applied for the subject urine samples of known fluoro-N-ethyl-ketamine consumer screen analysis in forensic cases. Hydroxy-deschloro-N-ethyl-ketamine, hydroxy-fluoro-N-ethyl-ketamine and hydroxy-bromoketamine were recommended as potential biomarkers for documenting intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Yu Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, No.1347 Guangfu Xi Road, Shanghai 200063, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Jiangning District, Nanjing 211198, China
| |
Collapse
|
15
|
Liu X, Tang Y, Xu L, Liu W, Xiang P, Hang T, Yan H. Metabolism of ADB-FUBIATA in zebrafish and pooled human liver microsomes investigated by liquid chromatography-high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9730. [PMID: 38456249 DOI: 10.1002/rcm.9730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE ADB-FUBIATA is one of the most recently identified new psychoactive substance (NPS) of synthetic cannabinoids. The co-use of in vitro (human liver microsomes) and in vivo (zebrafish) models offers abundant metabolites and may give a deep insight into the metabolism of NPS. METHODS In vivo and in vitro metabolic studies of new synthetic cannabinoid ADB-FUBIATA were carried out using zebrafish and pooled human liver microsome models. Metabilites were structurally characterized by liquid chromatography-high-resolution mass spectrometry. RESULTS In total, 18 metabolites were discovered and identified in the pooled human liver microsomes and zebrafish, including seventeen phase I metabolites and one phase II metabolite. The main metabolic pathways of ADB-FUBIATA were hydroxylation, dehydrogenation, N-dealkylation, amide hydrolysis, glucuronidation, and combination thereof. CONCLUSION Hydroxylated metabolites can be recommended as metabolic markers for ADB-FUBIATA because of the structural characteristics and high intensity. These metabolism characteristics of ADB-FUBIATA were useful for its further forensic or clinical related investigations.
Collapse
Affiliation(s)
- Xinze Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Yiling Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Linhao Xu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Wei Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
16
|
Caprari C, Ferri E, Vandelli MA, Citti C, Cannazza G. An emerging trend in Novel Psychoactive Substances (NPSs): designer THC. J Cannabis Res 2024; 6:21. [PMID: 38702834 PMCID: PMC11067227 DOI: 10.1186/s42238-024-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Since its discovery as one of the main components of cannabis and its affinity towards the cannabinoid receptor CB1, serving as a means to exert its psychoactivity, Δ9-tetrahydrocannabinol (Δ9-THC) has inspired medicinal chemists throughout history to create more potent derivatives. Initially, the goal was to synthesize chemical probes for investigating the molecular mechanisms behind the pharmacology of Δ9-THC and finding potential medical applications. The unintended consequence of this noble intent has been the proliferation of these compounds for recreational use. This review comprehensively covers the most exhaustive number of THC-like cannabinoids circulating on the recreational market. It provides information on the chemistry, synthesis, pharmacology, analytical assessment, and experiences related to the psychoactive effects reported by recreational users on online forums. Some of these compounds can be found in natural cannabis, albeit in trace amounts, while others are entirely artificial. Moreover, to circumvent legal issues, many manufacturers resort to semi-synthetic processes starting from legal products extracted from hemp, such as cannabidiol (CBD). Despite the aim to encompass all known THC-like molecules, new species emerge on the drug users' pipeline each month. Beyond posing a significantly high public health risk due to unpredictable and unknown side effects, scientific research consistently lags behind the rapidly evolving recreational market.
Collapse
Affiliation(s)
- Cristian Caprari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, 41125, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Elena Ferri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| |
Collapse
|
17
|
Norman C, Deventer MH, Dremann O, Reid R, Van Uytfanghe K, Guillou C, Vinckier IMJ, Nic Daéid N, Krotulski A, Stove CP. In vitro cannabinoid receptor activity, metabolism, and detection in seized samples of CH-PIATA, a new indole-3-acetamide synthetic cannabinoid. Drug Test Anal 2024; 16:380-391. [PMID: 37491777 DOI: 10.1002/dta.3555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The rapidly evolving synthetic cannabinoid receptor agonist (SCRA) market poses significant challenges for forensic scientists. Since the enactment of a generic ban in China, a variety of new compounds have emerged capable of evading the legislation by carrying new structural features. One recent example of a SCRA with new linker and head moieties is CH-PIATA (CH-PIACA, CHX-PIATA, CHX-PIACA). CH-PIATA bears an additional methylene spacer in the linker moiety between the indole core and the traditional carbonyl component of the linker. This study describes detections in 2022 of this new SCRA in the United States, Belgium, and Scottish prisons. CH-PIATA was detected once in a seized powder by Belgian customs and 12 times in Scottish prisons in infused papers or resin. The metabolites of CH-PIATA were investigated via in vitro human liver microsome (HLM) incubations and eight metabolites were identified, dominated by oxidative biotransformations. A blood sample from the United States was confirmed to contain a mixture of SCRAs including CH-PIATA via presence of the parent and at least five of the metabolites identified from HLM incubations. Furthermore, this paper evaluates the intrinsic in vitro cannabinoid 1 and 2 (CB1 and CB2) receptor activation potential of CH-PIATA reference material and the powder seized by Belgian customs by means of β-arrestin 2 recruitment assays. Both the reference and the seized powder showed a weak activity at both CB receptors with signs of antagonism found. Based on these results, the expected harm potential of this newly emerging substance remains limited.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Olivia Dremann
- College of Arts and Sciences, Arcadia University, Glenside, Pennsylvania, USA
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Claude Guillou
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Alex Krotulski
- Center for Forensic Science Research and Education, Frederic Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Azuma Y, Doi T, Asada A, Tanaka M, Tagami T. Synthesis and structure determination of a synthetic cannabinoid CUMYL-THPINACA metabolite with differentiation between the ortho-, meta-, and para-hydroxyl positions of the cumyl moiety. Drug Test Anal 2024; 16:348-358. [PMID: 37485784 DOI: 10.1002/dta.3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Synthetic cannabinoids, a type of new psychoactive substances, are likely to be rapidly metabolized; thus, the detection of their metabolites, rather than the parent compound, is a common method used to prove drug consumption. Although the analysis of metabolites is generally performed by mass spectrometry, it is limited to structural estimation because of few commercially available standards. In particular, distinguishing between positional isomers is difficult. Synthetic cannabinoids with a cumyl moiety can be hydroxylated at the cumyl moiety during metabolism, but it remains unclear whether the hydroxylation occurs at the ortho, meta, or para position. This study determined the structures of a metabolite formed by mono-hydroxylation at the cumyl moiety of the synthetic cannabinoid CUMYL-THPINACA, used as a model compound. Chemical synthesis was performed to create possible metabolites with one hydroxyl group at the ortho, meta, or para positions of the cumyl moiety. Using the synthesized metabolites and liquid chromatography-quadrupole time-of-flight mass spectrometry, the metabolite detected in the microsomal reaction of CUMYL-THPINACA was identified as a compound mono-hydroxylated at the para position based on retention time and product ion spectra. Moreover, the rapid metabolism of CUMYL-THPINACA was demonstrated with an in vitro half-life of 4.9 min and the identified metabolite could be detected for a relatively long time in vitro. The synthesized metabolite may be utilized as a good reference standard for proof of CUMYL-THPINACA consumption. These findings have potential applications in the synthesis of metabolites of other synthetic cannabinoids bearing a cumyl moiety.
Collapse
Affiliation(s)
- Yuki Azuma
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takahiro Doi
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Akiko Asada
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Misa Tanaka
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takaomi Tagami
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| |
Collapse
|
19
|
Taoussi O, Gameli PS, Berardinelli D, Busardò FP, Tini A, Carlier J. In silico and in vitro human metabolism of IOX2, a performance-enhancing doping agent. J Pharm Biomed Anal 2024; 238:115759. [PMID: 37866082 DOI: 10.1016/j.jpba.2023.115759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
IOX2 is a potent inhibitor of prolyl hydroxylase 2, a key enzyme in the regulation of hypoxia-inducible factor (HIF) and oxygen homeostasis. As such, it can be used to enhance athletic performance and is currently banned by the World Anti-Doping Agency (WADA). Detection of metabolites is critical to demonstrate drug use in doping. However, there is currently little data on IOX2 human metabolism. Our aim was to identify relevant biomarkers of IOX2 use in humans. For this purpose, IOX2 was incubated with 10-donor-pooled human hepatocytes for 3 h, incubates were analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS), and LC-HRMS/MS data were screened with Compound Discoverer (Thermo Scientific) for a comprehensive identification of IOX2 metabolites. Additionally, IOX2 human metabolites were predicted with GLORYx open-access software (University of Hamburg, Germany) to assist in the LC-HRMS/MS analysis and data mining. Thirteen metabolites were identified, oxidation at the quinolinyl group, O-glucuronidation, and combinations being predominant biotransformations. The results were consistent with previous animal studies and a single case of oral microdose administration. We suggest hydroxyquinolinyl-IOX2 as major biomarker of IOX2 use in biological samples, glucuronide hydrolysis being critical to increase IOX2 and hydroxyquinolinyl-IOX2 detectability in urine.
Collapse
Affiliation(s)
- Omayema Taoussi
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy
| | - Prince Sellase Gameli
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy
| | - Diletta Berardinelli
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy
| | - Francesco Paolo Busardò
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy
| | - Anastasio Tini
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy.
| | - Jeremy Carlier
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Via Tronto, 10/a, Ancona, AN 60126, Italy
| |
Collapse
|
20
|
Yang Y, Xu B, Li D, Zhang Q, Zhang J, Yang L, Ye Y. A comprehensive LC-MS/MS method for simultaneous analysis of 65 synthetic cannabinoids in human hair samples and application to forensic investigations. J Forensic Leg Med 2024; 101:102636. [PMID: 38134471 DOI: 10.1016/j.jflm.2023.102636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Synthetic cannabinoids (SCs) represent a diverse class of new psychoactive substances characterized by extensive substance variety and severe abuse implications. The current situation of synthetic cannabinoid abuse in China is getting worse, with an increasing number of SC variants emerging. Therefore, it is imperative to improve synthetic cannabinoid detecting methods to align with the prevalent abuse situation in the region. In this study, a reliable and validated liquid chromatography-tandem mass spectrometry method was developed for the qualitative and quantitative analysis of 65 SC analogues in human hair samples. The validation results demonstrated satisfactory linearity (r ≥ 0.99) within the range of 25-2500 pg/mg for each SC analogue. The method exhibited limits of detection ranging from 10 to 15 pg/mg and limits of quantification ranging from 25 to 40 pg/mg. The relative standard deviations of intra-day precision and inter-day precision were below 15 %. Furthermore, negligible matrix effects were observed, with recovery rates ranging from 85.70 % to 119.43 %. Analysis of abuser demographics revealed that the primary group engaged in SC analogue abuse consisted of adolescents, predominantly males, accounting for 79.5 % of cases. Among the suspected individuals, ADB-BUTINACA and MDMB-4en-PINACA were the most frequently detected substances. The present study develops a highly sensitive analytical method and provides a comprehensive overview of the prevalence of SC abuse in the eastern region of China.
Collapse
Affiliation(s)
- Yiqi Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, 610299, Sichuan, China
| | - Daoxia Li
- Sichuan Institute for Food and Drug Control, Chengdu, 611731, Sichuan, China
| | - Qifu Zhang
- Sichuan Dingcheng Forensic Center, Chengdu, 610017, Sichuan, China
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610016, Sichuan, China
| | - Lin Yang
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Ye
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Xu L, Liu X, Song Z, Xiang P, Hang T, Yan H. In vitro and in vivo metabolism of 3-Methoxyeticyclidine in human liver microsomes, a zebrafish model, and two human urine samples based on liquid chromatography-high-resolution mass spectrometry. Drug Test Anal 2024; 16:30-37. [PMID: 37125436 DOI: 10.1002/dta.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinze Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixuan Song
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
22
|
Roberts A, Christian M, Dilone LN, Nelson N, Endrino MJ, Kneebone A, Embaby S, Fernandez J, Liu QR, Onaivi ES, Kibret BG. Alcohol induced behavioral and immune perturbations are attenuated by activation of CB2 cannabinoid receptors. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11602. [PMID: 38389814 PMCID: PMC10880753 DOI: 10.3389/adar.2023.11602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024]
Abstract
The endocannabinoidome (eCBome) is the expanded endocannabinoid system (ECS) and studies show that there is a link between this system and how it modulates alcohol induced neuroinflammation. Using conditional knockout (cKO) mice with selective deletion of cannabinoid type 2 receptors (CB2Rs) in dopamine neurons (DAT-Cnr2) and in microglia (Cx3Cr1-Cnr2), we investigated how CB2Rs modulate behavioral and neuroinflammation induced by alcohol. Behavioral tests including locomotor and wheel running activity, rotarod performance test, and alcohol preference tests were used to evaluate behavioral changes induced by alcohol. Using ELISA assay, we investigated the level of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1α (IL-1α), and interleukin-1β (IL-1β) in the hippocampus of mice. The findings demonstrated that locomotor activity, wheel running, and rotarod performance activities were significantly affected by cell-type specific deletion of CB2Rs in dopamine neurons and microglia. The non-selective CB2R agonist, WIN 55,212-2, reduced alcohol preference in the wild type and cell-type specific CB2R cKO mice. In addition, the result showed that cell-type specific deletion of CB2Rs per se and administration of alcohol to CB2R cKO mice increased the expression of proinflammatory cytokines in the hippocampus. These findings suggest the involvement of CB2Rs in modulating behavioral and immune alterations induced by alcohol.
Collapse
Affiliation(s)
- Aaliyah Roberts
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Mahli Christian
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Lizbeth Nivar Dilone
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Natania Nelson
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Mark Joseph Endrino
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Adam Kneebone
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Shymaa Embaby
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Justin Fernandez
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
23
|
Baginski SR, Rautio T, Nisbet LA, Lindbom K, Wu X, Dahlén J, McKenzie C, Gréen H. The metabolic profile of the synthetic cannabinoid receptor agonist ADB-HEXINACA using human hepatocytes, LC-QTOF-MS and synthesized reference standards. J Anal Toxicol 2023; 47:826-834. [PMID: 37747838 PMCID: PMC10714907 DOI: 10.1093/jat/bkad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) remain a major public health concern, with their use implicated in intoxications and drug-related deaths worldwide. Increasing our systematic understanding of SCRA metabolism supports clinical and forensic toxicology casework, facilitating the timely identification of analytical targets for toxicological screening procedures and confirmatory analysis. This is particularly important as new SCRAs continue to emerge on the illicit drug market. In this work, the metabolism of ADB-HEXINACA (ADB-HINACA, N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-hexyl-1H-indazole-3-carboxamide), which has increased in prevalence in the United Kingdom and other jurisdictions, was investigated using in vitro techniques. The (S)-enantiomer of ADB-HEXINACA was incubated with pooled human hepatocytes over 3 hours to identify unique and abundant metabolites using liquid chromatography-quadrupole time-of-flight mass spectrometry. In total, 16 metabolites were identified, resulting from mono-hydroxylation, di-hydroxylation, ketone formation (mono-hydroxylation then dehydrogenation), carboxylic acid formation, terminal amide hydrolysis, dihydrodiol formation, glucuronidation and combinations thereof. The majority of metabolism took place on the hexyl tail, forming ketone and mono-hydroxylated products. The major metabolite was the 5-oxo-hexyl product (M9), while the most significant mono-hydroxylation product was the 4-hydroxy-hexyl product (M8), both of which were confirmed by comparison to in-house synthesized reference standards. The 5-hydroxy-hexyl (M6) and 6-hydroxy-hexyl (M7) metabolites were not chromatographically resolved, and the 5-hydroxy-hexyl product was the second largest mono-hydroxylated metabolite. The structures of the terminal amide hydrolysis products without (M16, third largest metabolite) and with the 5-positioned ketone (M13) were also confirmed by comparison to synthesized reference standards, along with the 4-oxo-hexyl metabolite (M11). The 5-oxo-hexyl and 4-hydroxy-hexyl metabolites are suggested as biomarkers for ADB-HEXINACA consumption.
Collapse
Affiliation(s)
- Steven R Baginski
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
| | - Tobias Rautio
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Lorna A Nisbet
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
| | - Karin Lindbom
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 581 83, Sweden
| | - Xiongyu Wu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Johan Dahlén
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Fleming Laboratory, Small’s Wynd, Dundee DD1 4HN, UK
- Chiron AS, Stiklestadveien 1, Trondheim 7041, Norway
| | - Henrik Gréen
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping 581 83, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Artillerigatan 12, Linköping 587 58, Sweden
| |
Collapse
|
24
|
Matey JM, Zapata F, Menéndez-Quintanal LM, Montalvo G, García-Ruiz C. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis. Talanta 2023; 265:124816. [PMID: 37423179 DOI: 10.1016/j.talanta.2023.124816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Affiliation(s)
- José Manuel Matey
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, C/ José Echegaray Nº4, 28232, Las Rozas de Madrid, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2).
| | - Félix Zapata
- Department of Analytical Chemistry, University of Murcia, Campus Espinardo, 30100, Murcia, Spain.
| | - Luis Manuel Menéndez-Quintanal
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, Campus de Ciencias de la Salud, La Cuesta, 38320, La Laguna (Sta. Cruz de Tenerife), Spain.
| | - Gemma Montalvo
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| | - Carmen García-Ruiz
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| |
Collapse
|
25
|
Watanabe S, Yamane H, Iwai T, Matsushita R, Seto Y. In vitro metabolic profiling of new synthetic cannabinoids, ADB-FUBIATA, AFUBIATA, CH-FUBIATA, and CH-PIATA. Arch Toxicol 2023; 97:3085-3094. [PMID: 37755504 DOI: 10.1007/s00204-023-03605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
In the recreational drug market, synthetic cannabinoids with a new acetamide linker structure emerged, most likely to circumvent the law. As the knowledge of drug metabolites is vital for proving drug consumption, the phase I metabolism of the newly emerging cannabinoids, ADB-FUBIATA, AFUBIATA, CH-FUBIATA, and CH-PIATA, was investigated. Each drug (10 μmol/L) was incubated with human liver microsomes for 1 h, and the samples, after dilution, were analyzed by liquid chromatography-high-resolution mass spectrometry. All drugs were metabolized via hydroxylation and N-dealkylation, while AFUBIATA and CH-PIATA additionally underwent ketone formation. The metabolites AF7 (hydroxylated at the indole/adjacent methylene) of ADB-FUBIATA, A16 (hydroxylated at the adamantane) of AFUBIATA, CF15 (hydroxylated at the cyclohexane) of CH-FUBIATA, and CP9 (hydroxylated at the pentane) of CH-PIATA were the most abundant metabolites by considering the peak areas on the chromatograms, and are recommended for urinalysis. The structure-metabolism relationship was also discussed, which generally agreed well with previously reported metabolic pathways of other synthetic cannabinoids. However, the preferred hydroxylation site of ADB-FUBIATA, the indole/adjacent methylene, clearly differed from that of ADB-FUBICA, the 3,3-dimethylbutanamide moiety, despite their structures differing only by a methylene group, emphasizing that metabolic predictions of new drugs should not replace in vitro experimental analyses, albeit helpful.
Collapse
Affiliation(s)
- Shimpei Watanabe
- Forensic Science Group, Photon Science Research Division, RIKEN SPring-8 Center, Physical Science Research Building, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Hiroshi Yamane
- Forensic Science Laboratory, Hyogo Prefectural Police Headquarters, Kobe, Japan
| | - Takahiro Iwai
- Forensic Science Group, Photon Science Research Division, RIKEN SPring-8 Center, Physical Science Research Building, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Ritsuko Matsushita
- Forensic Science Group, Photon Science Research Division, RIKEN SPring-8 Center, Physical Science Research Building, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yasuo Seto
- Forensic Science Group, Photon Science Research Division, RIKEN SPring-8 Center, Physical Science Research Building, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| |
Collapse
|
26
|
de Campos EG, de Almeida OGG, De Martinis ECP. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: a critical interdisciplinary review. Forensic Sci Res 2023; 8:173-184. [PMID: 38221972 PMCID: PMC10785599 DOI: 10.1093/fsr/owad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 01/16/2024] Open
Abstract
Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Otávio G G de Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Xiang J, Wen D, Zhao J, Xiang P, Shi Y, Ma C. Study of the Metabolic Profiles of "Indazole-3-Carboxamide" and "Isatin Acyl Hydrazone" (OXIZID) Synthetic Cannabinoids in a Human Liver Microsome Model Using UHPLC-QE Orbitrap MS. Metabolites 2023; 13:metabo13040576. [PMID: 37110234 PMCID: PMC10141538 DOI: 10.3390/metabo13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Unregulated core structures, "isatin acyl hydrazones" (OXIZIDs), have quietly appeared on the market since China legislated to ban seven general core scaffolds of synthetic cannabinoids (SCs). The fast evolution of SCs presents clinical and forensic toxicologists with challenges. Due to extensive metabolism, the parent compounds are barely detectable in urine. Therefore, studies on the metabolism of SCs are essential to facilitate their detection in biological matrices. The aim of the present study was to elucidate the metabolism of two cores, "indazole-3-carboxamide" (e.g., ADB-BUTINACA) and "isatin acyl hydrazone" (e.g., BZO-HEXOXIZID). The in vitro phase I and phase II metabolism of these six SCs was investigated by incubating 10 mg/mL pooled human liver microsomes with co-substrates for 3 h at 37 °C, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 9 to 34 metabolites were detected for each SC, and the major biotransformations were hydroxylation, dihydrodiol formation (MDMB-4en-PINACA and BZO-4en-POXIZID), oxidative defluorination (5-fluoro BZO-POXIZID), hydrogenation, hydrolysis, dehydrogenation, oxidate transformation to ketone and carboxylate, N-dealkylation, and glucuronidation. Comparing our results with previous studies, the parent drugs and SC metabolites formed via hydrogenation, carboxylation, ketone formation, and oxidative defluorination were identified as suitable biomarkers.
Collapse
Affiliation(s)
- Jiahong Xiang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Junbo Zhao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, College of Forensic Medicine, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
28
|
Wang Z, Leow EYQ, Moy HY, Chan ECY. Advances in urinary biomarker research of synthetic cannabinoids. Adv Clin Chem 2023; 115:1-32. [PMID: 37673518 DOI: 10.1016/bs.acc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
New psychoactive substances (NPS) are chemical compounds designed to mimic the action of existing illicit recreational drugs. Synthetic cannabinoids (SCs) are a subclass of NPS which bind to the cannabinoid receptors, CB1 and CB2, and mimic the action of cannabis. SCs have dominated recent NPS seizure reports worldwide. While urine is the most common matrix for drug-of-abuse testing, SCs undergo extensive Phase I and Phase II metabolism, resulting in almost undetectable parent compounds in urine samples. Therefore, the major urinary metabolites of SCs are usually investigated as surrogate biomarkers to identify their consumption. Since seized urine samples after consuming novel SCs may be unavailable in a timely manner, human hepatocytes, human liver microsomes and human transporter overexpressed cell lines are physiologically-relevant in vitro systems for performing metabolite identification, metabolic stability, reaction phenotyping and transporter experiments to establish the disposition of SC and its metabolites. Coupling these in vitro experiments with in vivo verification using limited authentic urine samples, such a two-pronged approach has proven to be effective in establishing urinary metabolites as biomarkers for rapidly emerging SCs.
Collapse
Affiliation(s)
- Ziteng Wang
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Eric Yu Quan Leow
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, Singapore, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
29
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
30
|
Wu HY, Chen YC, Hsu JF, Lu HT, Pan YY, Ma MC, Liao PC. Untargeted metabolomics analysis assisted by signal selection for comprehensively identifying metabolites of new psychoactive substances: 4-MeO-α-PVP as an example. J Food Drug Anal 2023; 31:137-151. [PMID: 37224557 PMCID: PMC10208664 DOI: 10.38212/2224-6614.3447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/26/2022] [Indexed: 09/17/2023] Open
Abstract
New psychoactive substances (NPS) have been rapidly emerged as legal alternatives to controlled drugs, which raised severe public health issue. The detection and monitoring of its intake by complete metabolic profiling is an urgent and vital task. Untargeted metabolomics approach has been applied for several NPS metabolites studies. Although the number of such works is relatively limited but with a rapidly growing need. The present study aimed to propose a procedure that includes liquid chromatography high-resolution mass spectrometry (LC-HRMS) analysis and a signal selection software, MetaboFinder, programed as a web tool. The comprehensive metabolites profile of one kind of NPS, 4-methoxy-α-pyrrolidinovalerophenone (4-MeO-α-PVP), was studied by using this workflow. In this study, two different concentrations of 4-MeO-α-PVP along with as blank sample were incubated with human liver S9 fraction for the conversion to their metabolites and followed by LC-MS analysis. After retention time alignment and feature identification, 4640 features were obtained and submitted to statistical analysis for signal selection by using MetaboFinder. A total of 50 features were considered as 4-MeO-α-PVP metabolite candidates showing significant changes (p < 0.00001 and fold change >2) between the two investigated groups. Targeted LC-MS/MS analysis was conducted focusing on these significantly expressed features. Assisted by chemical formula determination according to high mass accuracy and in silico MS2 fragmentation prediction, 19 chemical structure identifications were achieved. Among which, 8 metabolites have been reported derived from 4-MeO-α-PVP in a previous literature while 11 novel 4-MeO-α-PVP metabolites were identified by using our strategy. Further in vivo animal experiment confirmed that 18 compounds were 4-MeO-α-PVP metabolites, which demonstrated the feasibility of our strategy for screening the 4-MeO-α-PVP metabolites. We anticipate that this procedure may support and facilitate traditional metabolism studies and potentially being applied for routine NPS metabolites screening.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 106,
Taiwan
| | - Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704,
Taiwan
| | - Jing-Fang Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350,
Taiwan
| | - Hsiang-Ting Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704,
Taiwan
| | - Yu-Yi Pan
- Department of Statistics, National Cheng Kung University, Tainan 701,
Taiwan
| | - Mi-Chia Ma
- Department of Statistics, National Cheng Kung University, Tainan 701,
Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704,
Taiwan
| |
Collapse
|
31
|
Pelletier R, Le Daré B, Ferron PJ, Le Bouëdec D, Kernalléguen A, Morel I, Gicquel T. Use of innovative, cross-disciplinary in vitro, in silico and in vivo approaches to characterize the metabolism of chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Arch Toxicol 2023; 97:671-683. [PMID: 36469093 DOI: 10.1007/s00204-022-03427-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Synthetic cathinones constitute a family of new psychoactive substances, the consumption of which is increasingly worldwide. A lack of metabolic knowledge limits the detection of these compounds in cases of intoxication. Here, we used an innovative cross-disciplinary approach to study the metabolism of the newly emerging cathinone chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Three complementary approaches (in silico, in vitro, and in vivo) were used to identify putative 4-Cl-PVP metabolites that could be used as additional consumption markers. The in silico approach used predictive software packages. Molecular networking was used as an innovative bioinformatics approach for re-processing high-resolution tandem mass spectrometry data acquired with both in vitro and in vivo samples. In vitro experiments were performed by incubating 4-Cl-PVP (20 µM) for four different durations with a metabolically competent human hepatic cell model (differentiated HepaRG cells). In vivo samples (blood and urine) were obtained from a patient known to have consumed 4-Cl-PVP. The in silico software predicted 17 putative metabolites, and molecular networking identified 10 metabolites in vitro. On admission to the intensive care unit, the patient's plasma and urine 4-Cl-PVP concentrations were, respectively, 34.4 and 1018.6 µg/L. An in vivo analysis identified the presence of five additional glucuronoconjugated 4-Cl-PVP derivatives in the urine. Our combination of a cross-disciplinary approach with molecular networking enabled the detection of 15 4-Cl-PVP metabolites, 10 of them had not previously been reported in the literature. Two metabolites appeared to be particular relevant candidate as 4-Cl-PVP consumption markers in cases of intoxication: hydroxy-4-Cl-PVP (m/z 282.1254) and dihydroxy-4-Cl-PVP (m/z 298.1204).
Collapse
Affiliation(s)
- Romain Pelletier
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France.
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France.
| | - Brendan Le Daré
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
- Pharmacy, Rennes University Hospital, 35033, Rennes, France
| | - Pierre-Jean Ferron
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
| | - Diane Le Bouëdec
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Angéline Kernalléguen
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
| | - Isabelle Morel
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Thomas Gicquel
- INSERM, INRAE, Institut NUMECAN (Nutrition, Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, Univ Rennes, 35000, Rennes, France
- Clinical and Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| |
Collapse
|
32
|
Giorgetti A, Brunetti P, Haschimi B, Busardò FP, Pelotti S, Auwärter V. Human phase-I metabolism and prevalence of two synthetic cannabinoids bearing an ethyl ester moiety: 5F-EDMB-PICA and EDMB-PINACA. Drug Test Anal 2023; 15:299-313. [PMID: 36366743 DOI: 10.1002/dta.3405] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Around 2017, with the appearance of 5F-EDMB-PINACA, synthetic cannabinoids (SCs) carrying an ethyl ester moiety at the linked group started spreading on the market of new psychoactive substances (NPS). In 2020 and 2021, the indole analog of 5F-EDMB-PINACA (5F-EDMB-PICA) and the non-fluorinated analog of this compound (EDMB-PINACA) were analytically characterized. Here, we present suitable urinary markers to prove the consumption of these two ethyl analogs. Ten authentic urine samples for each compound were analyzed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qToF-MS). Anticipated phase-I metabolites detected in urine samples were confirmed in vitro by applying a pooled human liver microsomes (pHLM) assay. Prevalence data were obtained from urines collected for abstinence control and submitted to a screening method for SC metabolites. Ten phase-I metabolites of 5F-EDMB-PICA and 18 of EDMB-PINACA were detected by LC-qToF-MS analysis of authentic urine specimens. The main in-vivo metabolites were built by ester hydrolysis, often coupled to further metabolic processes. Investigation of phase-I biotransformation led to the identification of ester hydrolysis, monohydroxylation, and defluorination products as the most suitable urinary biomarkers for 5F-EDMB-PICA. Metabolites formed by ester hydrolysis coupled to ketone formation and by monohydroxylation are suggested for the detection of EDMB-PINACA. From October 1, 2020 to February 1, 2022, among positive urine samples, 5.4% and 10.1% tested positive 5F-EDMB-PICA and EDMB-PINACA, respectively. Due to common metabolites shared among structurally related SCs, the unequivocal detection of their consumption remains challenging for forensic laboratories and requires sensitive methods to monitor multiple metabolites, ideally including highly specific species.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna.,Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pietro Brunetti
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Unit of Forensic Toxicology, Section of Legal Medicine, Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Belal Haschimi
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesco Paolo Busardò
- Unit of Forensic Toxicology, Section of Legal Medicine, Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Susi Pelotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Verougstraete N, Verhaeghe A, Germonpré J, Lebbinck H, Verstraete AG. Identification of etazene (etodesnitazene) metabolites in human urine by LC-HRMS. Drug Test Anal 2023; 15:235-239. [PMID: 36181239 DOI: 10.1002/dta.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Etazene (or etodesnitazene) is a novel and highly active synthetic opioid belonging to the rapidly evolving and emerging group of "nitazenes." Etazene metabolites were identified through analysis of a human urine sample. The sample was obtained from a 25-year-old man who attempted suicide by taking a new psychoactive substances (NPS) cocktail purchased online and was analyzed by ultrahigh performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Etazene metabolites were predicted with BioTransformer 3.0, and the exact masses were added to the inclusion list. Eight possible metabolites were identified in the urine sample. N- and O-deethylation were identified as the predominant metabolism routes, resulting in M1 (O-deethylated etazene; most abundant metabolite based on the peak area), M2 (N-deethylated etazene), and M3 (N,O-dideethylated etazene) metabolites. Less abundant hydroxylated products of these deethylated metabolites and etazene were also found. Additionally, in the analysis without β-glucuronidase treatment, M1- and M3-glucuronide phase II metabolites were found. As N- and O-deethylated products seem to be the predominant urinary metabolites, the detection of these metabolites in urine can be useful to demonstrate etazene exposure.
Collapse
Affiliation(s)
- Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | |
Collapse
|
34
|
Giorgetti A, Orazietti V, Busardò FP, Giorgetti R. Psychomotor performances relevant for driving under the combined effect of ethanol and synthetic cannabinoids: A systematic review. Front Psychiatry 2023; 14:1131335. [PMID: 36911125 PMCID: PMC9998479 DOI: 10.3389/fpsyt.2023.1131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVE To determine whether the acute co-consumption of ethanol and synthetic cannabinoids (SCs) increases the risk of a motor vehicle collision and affects the psychomotor performances relevant for driving. DESIGN Systematic review of the literature. DATA SOURCES Electronic searches were performed in two databases, unrestricted by year, with previously set method and criteria. Search, inclusion and data extraction were performed by two blind authors. RESULTS Twenty articles were included, amounting to 31 cases of SCs-ethanol co-consumption. The impairment of psychomotor functions varied widely between studies, ranging from no reported disabilities to severe unconsciousness. Overall, a dose-effect relationship could not be observed. CONCLUSION Despite the biases and limitations of the literature studies, it seems likely that the co-consumption poses an increased risk for driving. The drugs might exert a synergistic effect on the central nervous system depression, as well as on aggressiveness and mood alterations. However, more research is needed on the topic.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Vasco Orazietti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| |
Collapse
|
35
|
Wang Y, Han L, Yi L, Liu J, Qiu S, Gu J, Bai H, Li J, Wurita A, Hasegawa K. Newly emerging synthetic cannabinoid ADB-4en-PINACA: its identification and quantification in an authentic human hair sample by GC-MS/MS. Forensic Toxicol 2023; 41:173-178. [PMID: 36652067 DOI: 10.1007/s11419-022-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Yue Wang
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Lifeng Han
- Zhe Jiang Dian Institute of Forensic Science, Hangzhou, 31000, Zhejiang, China
| | - Liye Yi
- Zhe Jiang Dian Institute of Forensic Science, Hangzhou, 31000, Zhejiang, China
| | - Jinlei Liu
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Shi Qiu
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jie Gu
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Huiru Bai
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jun Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Amin Wurita
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Koutaro Hasegawa
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 413-3192, Japan.
| |
Collapse
|
36
|
Cheng JYK, Hui JWS, Chan WS, So MH, Hong YH, Leung WT, Ku KW, Yeung HS, Lo KM, Fung KM, Ip CY, Dao KL, Cheung BKK. Interpol review of toxicology 2019-2022. Forensic Sci Int Synerg 2022; 6:100303. [PMID: 36597440 PMCID: PMC9799715 DOI: 10.1016/j.fsisyn.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jack Yuk-ki Cheng
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | | - Wing-sum Chan
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Man-ho So
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Yau-hin Hong
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Wai-tung Leung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Ka-wai Ku
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Hoi-sze Yeung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kam-moon Lo
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kit-mai Fung
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Chi-yuen Ip
- Government Laboratory, Hong Kong Special Administrative Region of China
| | - Kwok-leung Dao
- Government Laboratory, Hong Kong Special Administrative Region of China
| | | |
Collapse
|
37
|
Wagmann L, Stiller RG, Fischmann S, Westphal F, Meyer MR. Going deeper into the toxicokinetics of synthetic cannabinoids: in vitro contribution of human carboxylesterases. Arch Toxicol 2022; 96:2755-2766. [PMID: 35788413 PMCID: PMC9352624 DOI: 10.1007/s00204-022-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Synthetic cannabinoids (SC) are new psychoactive substances known to cause intoxications and fatalities. One reason may be the limited data available concerning the toxicokinetics of SC, but toxicity mechanisms are insufficiently understood so far. Human carboxylesterases (hCES) are widely known to play a crucial role in the catalytic hydrolysis of drugs (of abuse). The aim of this study was to investigate the in vitro contribution of hCES to the metabolism of the 13 SC 3,5-AB-5F-FUPPYCA, AB-5F-P7AICA, A-CHMINACA, DMBA-CHMINACA, MBA-CHMINACA, MDMB-4F-BINACA, MDMB-4en-PINACA, MDMB-FUBICA, MDMB-5F-PICA, MMB-CHMICA, MMB-4en-PICA, MMB-FUBINACA, and MPhP-5F-PICA. The SC were incubated with recombinant hCES1b, hCES1c, or hCES2 and analyzed by liquid chromatography-ion trap mass spectrometry to assess amide or ester hydrolysis in an initial activity screening. Enzyme kinetic studies were performed if sufficient hydrolysis was observed. No hydrolysis of the amide linker was observed using those experimental conditions. Except for MDMB-5F-PICA, ester hydrolysis was always detected if an ester group was present in the head group. In general, SC with a terminal ester bearing a small alcohol part and a larger acyl part showed higher affinity to hCES1 isozymes. Due to the low hydrolysis rates, enzyme kinetics could not be modeled for the SC with a tert-leucine-derived moiety, but hydrolysis reactions of MPhP-5F-PICA and of those containing a valine-derived moiety followed classic Michaelis-Menten kinetics. In conclusion, drug-drug/drug-food interactions or hCES polymorphisms may prolong the half-life of SC and the current results help to estimate the risk of toxicity in the future after combining them with activity and clinical data.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany.
| | - Rebecca G Stiller
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Svenja Fischmann
- State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, Kiel, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
38
|
Wagmann L, Jacobs CM, Meyer MR. New Psychoactive Substances: Which Biological Matrix Is the Best for Clinical Toxicology Screening? Ther Drug Monit 2022; 44:599-605. [PMID: 35175247 DOI: 10.1097/ftd.0000000000000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Every year, more new psychoactive substances (NPSs) emerge in the market of the drugs of abuse. NPSs belong to various chemical classes, such as synthetic cannabinoids, phenethylamines, opioids, and benzodiazepines. The detection of NPSs intake using different types of biological matrices is challenging for clinical toxicologists because of their structural diversity and the lack of information on their toxicokinetics, including their metabolic fate. METHODS PubMed-listed articles reporting mass spectrometry-based bioanalytical approaches for NPSs detection published during the past 5 years were identified and discussed. Furthermore, the pros and cons of using common biological matrices in clinical toxicology (CT) settings to screen for NPSs are highlighted in this review article. RESULTS Twenty-six articles presenting multianalyte screening methods for use in the field of CT were considered. The advantages and disadvantages of different biological matrices are discussed with a particular view of the different analytical tasks in CT, especially emergency toxicology. Finally, an outlook introduces the emerging trends in biosamples used in CT, such as the exhaled breath. CONCLUSIONS Blood and urine represent the most common biological matrices used in a CT setting; however, reports concerning NPSs detection in alternative matrices are also available. Noteworthy, the selection of the biological matrix must depend on the clinician's enquiry because the individual advantages and disadvantages must be considered.
Collapse
Affiliation(s)
- Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | | |
Collapse
|
39
|
Xinze Liu, Liu W, Xiang P, Hang T, Shi Y, Yue L, Yan H. Metabolism of ADB-4en-PINACA in Zebrafish and Rat Liver Microsomes Determined by Liquid Chromatography–High Resolution Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Comparison between human liver microsomes and the fungus Cunninghamella elegans for biotransformation of the synthetic cannabinoid JWH-424 having a bromo-naphthyl moiety analysed by high-resolution mass spectrometry. Forensic Toxicol 2022; 40:278-288. [PMID: 36454404 DOI: 10.1007/s11419-022-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/09/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE JWH-424, (8-bromo-1-naphthyl)(1-pentyl-1H-indol-3-yl)methanone, is a synthetic cannabinoid, which is a brominated analogue of JWH-018, one of the best-known synthetic cannabinoids. Despite the structural similarity to JWH-018, little is known about JWH-424 including its metabolism. The aim of the study was to compare human liver microsomes (HLM) and the fungus Cunninghamella elegans as the metabolism catalysts for JWH-424 to better understand the characteristic actions of the fungus in the synthetic cannabinoid metabolism. METHODS JWH-424 was incubated with HLM for 1 h and Cunninghamella elegans for up to 72 h. The HLM incubation mixtures were diluted with methanol and fungal incubation mixtures were extracted with dichloromethane and reconstituted in methanol before analyses by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). RESULTS HLM incubation resulted in production of ten metabolites through dihydrodiol formation, hydroxylation, and/or ipso substitution of the bromine with a hydroxy group. Fungal incubation led to production of 23 metabolites through carboxylation, dihydrodiol formation, hydroxylation, ketone formation, glucosidation and/or sulfation. CONCLUSIONS Generally, HLM models give good predictions of human metabolites and structural analogues are metabolised in a similar fashion. However, major hydroxy metabolites produced by HLM were those hydroxylated at naphthalene instead of pentyl moiety, the major site of hydroxylation for JWH-018. Fungal metabolites, on the other hand, had undergone hydroxylation mainly at pentyl moiety. The metabolic disagreement suggests the necessity to verify the human metabolites in authentic urine samples, while H9 and H10 (hydroxynaphthalene), H8 (ipso substitution), F22 (hydroxypentyl), and F17 (dihydroxypentyl) are recommended for monitoring of JWH-424 in urinalysis.
Collapse
|
41
|
Wang Y, Pan Y, Yang H, Liu J, Wurita A, Hasegawa K. Quantification of MDMB-4en-PINACA and ADB-BUTINACA in human hair by gas chromatography-tandem mass spectrometry. Forensic Toxicol 2022; 40:340-348. [PMID: 36454410 DOI: 10.1007/s11419-022-00615-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/13/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE To test synthetic cannabinoid (SCs) in parent forms from living human, the hairs seems to be one of the best samples, because of the non-invasiveness upon their collection. The purpose of this study is to establish a method for quantification of MDMB-4en-PINACA and ADB-BUTINACA, the most recently abused SCs in hair samples, using gas chromatography-tandem mass spectrometry (GC-MS/MS). METHODS The collected hair samples were washed with a detergent solution, following by water and acetone. After drying cutting them into about 2 mm sections, they were ground by a cryogenic grinder into powder. The 50-mg powder with internal standard(s) plus 1 mL methanol were vortexed, and centrifuged to obtain the supernatant layer. After its evaporation and reconstitution with 50 µL methanol, 1-µL aliquot of it was subjected to analysis. RESULTS The standard calibration curves were created for both MDMB-4en-PINACA and ADB-BUTINACA in blank hair samples; good linear curves were obtained in the range of 20-20,000 pg/mg with correlation coefficients greater than 0.99. The limits of detection and limits of quantification were 10 and 20 pg/mg, respectively. Other validation parameters were all satisfactory. The concentrations of MDMB-4en-PINACA obtained from 3 authentic subjects and ADB-BUTINACA obtained from 3 authentic subjects were 26.2-806 pg/mg and 63.1-430 pg/mg, respectively. CONCLUSIONS In the present article, the details of simple and rapid quantification of MDMB-4en-PINACA and ADB-BUTINACA in human scalp hair have been established. To our knowledge, this is the first report for quantification of SCs in hair samples by GC-MS/MS.
Collapse
Affiliation(s)
- Yue Wang
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Yefei Pan
- Dian Forensic Science Institute, Hangzhou, 31000, Zhejiang, China
| | - Hongkun Yang
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jinlei Liu
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China
| | - Amin Wurita
- Department of Legal Medicine, College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Koutaro Hasegawa
- Department of Legal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-tsu, Hamamatsu, 413-3192, Japan.
| |
Collapse
|
42
|
Detection of the Synthetic Cannabinoids AB-CHMINACA, ADB-CHMINACA, MDMB-CHMICA, and 5F-MDMB-PINACA in Biological Matrices: A Systematic Review. BIOLOGY 2022; 11:biology11050796. [PMID: 35625524 PMCID: PMC9139075 DOI: 10.3390/biology11050796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Synthetic cannabinoids were originally developed for scientific research and potential therapeutic agents. However, clandestine laboratories synthesize them and circumvent legal barriers by falsely marketing them as incense or herbal products. They have serious adverse effects, and new derivatives are continuously found in the market, making their detection difficult due to the lack of comparative standards. Human matrices are used to identify the type of synthetic cannabinoid and the time of its consumption. This review discusses the use of hair, oral fluid, blood, and urine in the detection and quantification of some of the major synthetic cannabinoids. Based on the results, some recommendations can be followed, for example, the use of hair to detect chronic and retrospective consumption (although sensitive to external contamination) and oral fluid or blood for the simultaneous detection of the parent compounds and their metabolites. If longer detection times than blood or oral fluid are needed, urine is the matrix of choice, although its pH may intervene in the analysis. This work highlights the use of new techniques, such as high-resolution mass spectrometry, to avoid the use of previous standards and to monitor new trends in the drug market. Abstract New synthetic cannabinoids (SCs) are emerging rapidly and continuously. Biological matrices are key for their precise detection to link toxicity and symptoms to each compound and concentration and ascertain consumption trends. The objective of this study was to determine the best human biological matrices to detect the risk-assessed compounds provided by The European Monitoring Centre for Drugs and Drug Addiction: AB-CHMINACA, ADB-CHMNACA, MDMB-CHMICA, and 5F-MDMB-PINACA. We carried out a systematic review covering 2015 up to the present date, including original articles assessing detection in antemortem human biological matrices with detailed validation information of the technique. In oral fluid and blood, SC parent compounds were found in oral fluid and blood at low concentrations and usually with other substances; thus, the correlation between SCs concentrations and severity of symptoms could rarely be established. When hair is used as the biological matrix, there are difficulties in excluding passive contamination when evaluating chronic consumption. Detection of metabolites in urine is complex because it requires prior identification studies. LC-MS/MS assays were the most widely used approaches for the selective identification of SCs, although the lack of standard references and the need for revalidation with the continuous emergence of new SCs are limiting factors of this technique. A potential solution is high-resolution mass spectrometry screening, which allows for non-targeted detection and retrospective data interrogation.
Collapse
|
43
|
Evidence-based Potential Therapeutic Applications of Cannabinoids in Wound Management. Adv Skin Wound Care 2022; 35:447-453. [PMID: 35588193 DOI: 10.1097/01.asw.0000831920.15801.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.
Collapse
|
44
|
Yeh YL, Wang SM. Quantitative Determination and Metabolic Profiling of Synthetic Cathinone Eutylone In Vitro and in Urine Samples by Liquid Chromatography Tandem Quadrupole Time-of-Flight Mass Spectrometry. Drug Test Anal 2022; 14:1325-1337. [PMID: 35332690 DOI: 10.1002/dta.3258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ya-Ling Yeh
- Department of Forensic Science, Central Police University, Taoyuan, Taiwan.,Forensic Science Section, Hsinchu City Police Bureau, Hsinchu, Taiwan
| | - Sheng-Meng Wang
- Department of Forensic Science, Central Police University, Taoyuan, Taiwan
| |
Collapse
|
45
|
Carlier J, Berardinelli D, Montanari E, Sirignano A, Di Trana A, Busardò FP. 3F-α-pyrrolydinovalerophenone (3F-α-PVP) in vitro human metabolism: Multiple in silico predictions to assist in LC-HRMS/MS analysis and targeted/untargeted data mining. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123162. [PMID: 35180546 DOI: 10.1016/j.jchromb.2022.123162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Synthetic cathinones (SCs) constitute a heterogenous class of new psychoactive substances (NPS), structurally related to cathinone. SCs represent the widest NPS class, second to synthetic cannabinoids, accounting for approximately 160 different analogues with substitution at the phenyl group, the amine group, or the alkyl chain. In 2020, α-pyrrolidonophenone analogues were the most trafficked SCs, and were involved in many fatalities and intoxication cases. In particular, 3F-α-pyrrolidinovalerophenone (3F-α-PVP) was the cause of the highest number of SC-related fatal intoxications in Sweden in 2018. Minor structural modifications are used to avoid legal controls and analytical detection, but may also induce different toxicological profile. Therefore, the identification of specific markers of consumption is essential to discriminate SCs in clinical and forensic toxicology. In this study, we assessed 3F-α-PVP metabolic profile. 3F-α-PVP was incubated with 10-donor-pooled human hepatocytes, LC-HRMS/MS analysis, and software-assisted data mining. This well-established workflow was completed by in silico metabolite predictions using three different freeware. Ten metabolites were identified after 3 h incubation, including hydrogenated, hydroxylated, oxidated, and N-dealkylated metabolites. A total of 51 phase I and II metabolites were predicted, among which 7 were detected in the incubations. We suggest 3F-α-PVP N-butanoic acid, 3F-α-PVP pentanol, and 3F-α-PVP 2-ketopyrrolidinyl-pentanol as specific biomarkers of 3F-α-PVP consumption. This is the first time that an N-ethanoic acid is detected in the metabolic pathway of a pyrrolidine SC, demonstrating the importance of a dual targeted/untargeted data mining strategy.
Collapse
Affiliation(s)
- Jeremy Carlier
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy; Sapienza University of Rome, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Section of Legal Medicine, Unit of Forensic Toxicology, Viale Regina Elena 336, 00161, Rome RM, Italy
| | - Diletta Berardinelli
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy
| | - Eva Montanari
- Department of Legal medicine, Azienda Ospedaliero Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Ascanio Sirignano
- University of Camerino, Department of Legal Medicine, School of Law, Via Andrea D'Accorso, 16, 62032, Camerino (MC), Italy
| | - Annagiulia Di Trana
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy.
| | - Francesco P Busardò
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy
| |
Collapse
|
46
|
Basit A, Fan PW, Khojasteh SC, Murray BP, Smith BJ, Heyward S, Prasad B. Comparison of Tissue Abundance of Non-Cytochrome P450 Drug-Metabolizing Enzymes by Quantitative Proteomics between Humans and Laboratory Animal Species. Drug Metab Dispos 2022; 50:197-203. [PMID: 34969659 DOI: 10.1124/dmd.121.000774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
The use of animal pharmacokinetic models as surrogates for humans relies on the assumption that the drug disposition mechanisms are similar between preclinical species and humans. However, significant cross-species differences exist in the tissue distribution and protein abundance of drug-metabolizing enzymes (DMEs) and transporters. We quantified non-cytochrome P450 (non-CYP) DMEs across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dog, Sprague Dawley and Wistar Han rats, and CD1 mouse) and compared these data with previously obtained human data. Aldehyde oxidase was abundant in humans and monkeys while poorly expressed in rodents, and not expressed in dogs. Carboxylesterase (CES) 1 abundance was highest in the liver while CES2 was primarily expressed in the intestine in all species with notable species differences. For example, hepatic CES1 was 3× higher in humans than in monkeys, but hepatic CES2 was 3-5× higher in monkeys than in humans. Hepatic UDP-glucuronosyltransferase (UGT) 1A2 abundance was ∼4× higher in dogs compared with rats, whereas UGT1A3 abundance was 3-5× higher in dog livers than its ortholog in human and monkey livers. UGT1A6 abundance was 5-6× higher in human livers compared with monkey and dog livers. Hepatic sulfotransferase 1B1 abundance was 5-7× higher in rats compared with the rest of the species. These quantitative non-CYP proteomics data can be used to explain unique toxicological profiles across species and can be integrated into physiologically based pharmacokinetic models for the mechanistic explanation of pharmacokinetics and tissue distribution of xenobiotics in animal species. SIGNIFICANCE STATEMENT: We characterized the quantitative differences in non-cytochrome P450 (non-CYP) drug-metabolizing enzymes across commonly used preclinical species (cynomolgus and rhesus monkeys, beagle dogs, Sprague Dawley and Wistar Han rats, and CD1 mice) and compared these data with previously obtained human data. Unique differences in non-CYP enzymes across species were observed, which can be used to explain significant pharmacokinetic and toxicokinetic differences between experimental animals and humans.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Peter W Fan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - S Cyrus Khojasteh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bernard P Murray
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bill J Smith
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (S.C.K.); Drug Metabolism and Pharmacokinetics Department, Gilead Sciences Inc., Foster City, California (B.P.M., B.J.S.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| |
Collapse
|
47
|
Fabregat-Safont D, Mata-Pesquera M, Barneo-Muñoz M, Martinez-Garcia F, Mardal M, Davidsen AB, Sancho JV, Hernández F, Ibáñez M. In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats. Commun Biol 2022; 5:161. [PMID: 35210552 PMCID: PMC8873228 DOI: 10.1038/s42003-022-03113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Synthetic cannabinoids receptor agonists (SCRAs) are often almost completely metabolised, and hence their pharmacokinetics should be carefully evaluated for determining the most adequate biomarker in toxicological analysis. Two structurally related SCRAs, AMB-FUBINACA and AMB-CHMICA, were selected to evaluate their in vivo metabolism and pharmacokinetics using male Sprague-Dawley rats. Brain, liver, kidney, blood (serum) and urine samples were collected at different times to assess the differences in metabolism, metabolic reactions, tissue distribution and excretion. Both compounds experimented O-demethyl reaction, which occurred more rapidly for AMB-FUBINACA. The parent compounds and O-demethyl metabolites were highly bioaccumulated in liver, and were still detected in this tissue 48 h after injection. The different indazole/indole N-functionalisation produced diverse metabolic reactions in this moiety and thus, different urinary metabolites were formed. Out of the two compounds, AMB-FUBINACA seemed to easily cross the blood-brain barrier, presenting higher brain/serum concentrations ratio than AMB-CHMICA. Synthetic cannabinoids are amongst the most widely used psychoactive drugs which are tightly controlled by government agencies around the world. Here, pharmacokinetics of two synthetic cannabinoids in rats are evaluated along with their metabolites and tissue distribution, aiding in identifying distinct biomarkers that reflect the consumption of synthetic cannabinoids based on the tissue.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Mata-Pesquera
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, University Jaume I, Castellón, Spain
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Davidsen
- Section of Forensic Chemistry, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
48
|
Park YM, Dahlem C, Meyer MR, Kiemer AK, Müller R, Herrmann J. Induction of Liver Size Reduction in Zebrafish Larvae by the Emerging Synthetic Cannabinoid 4F-MDMB-BINACA and Its Impact on Drug Metabolism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041290. [PMID: 35209079 PMCID: PMC8879502 DOI: 10.3390/molecules27041290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7′N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Markus R. Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany;
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Campus C2 3, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany;
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Correspondence: (R.M.); (J.H.)
| |
Collapse
|
49
|
de Campos EG, de Almeida OGG, De Martinis BS, De Martinis ECP. Cocaine esterase occurrence in global wastewater microbiomes and potential for biotransformation of novel psychoactive substances. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:96-109. [PMID: 34761870 DOI: 10.1111/1758-2229.13020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The analysis of drugs in wastewater for forensic purposes has been constantly increasing and the investigation of the potential interaction between drugs or metabolites and sewage microbiota is important. The results demonstrated that cocaine esterase genes were widely distributed in 1142 global wastewater samples collected from 64 countries and linked to several bacterial species. In addition, in silico predictions indicated that carfentanil, 4F-MDMB-BINACA, 5F-MDMB-PICA, MDMB-4en-PINACA and mitragynine might also undergo microbial hydrolysis, in a similar fashion of cocaine degradation by cocaine esterase. In conclusion, it was demonstrated the microbial potential to hydrolyze drugs of abuse in wastewater environments, contributing to the critical evaluation of potential metabolites as biomarkers for microbial and human transformation of drugs in wastewater.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| | - Otávio G G de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| | - Bruno S De Martinis
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, SP, 14040-901, Brazil
| | - Elaine C P De Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, SP, 14040-903, Brazil
| |
Collapse
|
50
|
Identification of Common Liver Metabolites of the Natural Bioactive Compound Erinacine A, Purified from Hericium erinaceus Mycelium. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metabolite identification, in the early stage, for compound discovery is necessary to assess the knowledge for the pharmaceutical improvement of drug safety and efficacy. Even if the drug has been released into the market, identification and continuous evaluation of the metabolites are required to avoid the risk of post-marketing withdrawal. Hericium erinaceus (HE), a medicinal mushroom, has broadly documented nutraceutical benefits, including anti-oxidant, anti-tumor, anti-aging, hypolipidemic, and gastric mucosal protection effects. Recently, erinacine A has been reported as the main natural bioactive compound in the mycelium of HE for functional food development. In neurological studies, the consumption of enrinacine A enriched HE mycelium demonstrates its significant nutraceutical effects in Alzheimer’s disease, Parkinson’s disease, and ischemic stroke. For the first time, we explored the metabolic process of erinacine A molecule and identified its metabolites from the rat and human liver S9 fraction. Using a liquid chromatography/triple quadrupole mass spectrometer for quantitative analysis, we observed that 75.44% of erinacine A was metabolized within 60 min in rat, and 32.34% of erinacine A was metabolized within 120 min in human S9. Using an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to identify the metabolites of erinacine A, five common metabolites were identified, and their possible structures were evaluated. Understanding the metabolic process of erinacine A and establishing its metabolite profile database will help promote the nutraceutical application and discovery of related biomarkers in the future.
Collapse
|