1
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
2
|
La Barbera G, Shuler MS, Beck SH, Ibsen PH, Lindberg LJ, Karstensen JG, Dragsted LO. Development of an untargeted DNA adductomics method by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2025; 282:126985. [PMID: 39418978 DOI: 10.1016/j.talanta.2024.126985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Genotoxicants originating from inflammation, diet, and environment can covalently modify DNA, possibly initiating the process of carcinogenesis. DNA adducts have been known for long, but the old methods allowed to target only a few known DNA adducts at a time, not providing a global picture of the "DNA adductome". DNA adductomics is a new research field, aiming to screen for unknown DNA adducts by high resolution mass spectrometry (HRMS). However, DNA adductomics presents several analytical challenges such as the need for high sensitivity and for the development of effective screening approaches to identify novel DNA adducts. In this work, a sensitive untargeted DNA adductomics method was developed by using ultra-high performance liquid chromatography (UHPLC) coupled via an ESI source to a quadrupole-time of flight mass spectrometric instrumentation. Mobile phases with ammonium bicarbonate gave the best signal enhancement. The MS capillary voltage, cone voltage, and detector voltage had most effect on the response of the DNA adducts. A low adsorption vial was selected for reducing analyte loss. Hybrid surface-coated analytical columns were tested for reducing adsorption of the DNA adducts. The optimized method was applied to analyse DNA adducts in calf thymus, cat colon, and human colon DNA by performing a MSE acquisition (all-ion fragmentation acquisition) and screening for the loss of deoxyribose and the nucleobase fragment ions. Fifty-four DNA adducts were tentatively identified, hereof 38 never reported before. This is the first untargeted DNA adductomics study on human colon tissue, and one of the few untargeted DNA adductomics studies in the literature reporting the identification of such a high number of unknowns. This demonstrates promising results for the application of this sensitive method in future human studies for investigating novel potential cancer-causing factors.
Collapse
Affiliation(s)
- Giorgia La Barbera
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark.
| | - Marshal Spenser Shuler
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| | - Søren Hammershøj Beck
- Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Per Holger Ibsen
- Department of Pathology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - Lars Joachim Lindberg
- Danish HNPCC Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark
| | - John Gásdal Karstensen
- Danish Polyposis Register, Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, 2650, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, 2000, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition Exercise and Sports, University of Copenhagen, Frederiksberg, DK-1985, Denmark
| |
Collapse
|
3
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
4
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Vacchini A, Chancellor A, Yang Q, Colombo R, Spagnuolo J, Berloffa G, Joss D, Øyås O, Lecchi C, De Simone G, Beshirova A, Nosi V, Loureiro JP, Morabito A, De Gregorio C, Pfeffer M, Schaefer V, Prota G, Zippelius A, Stelling J, Häussinger D, Brunelli L, Villalta P, Lepore M, Davoli E, Balbo S, Mori L, De Libero G. Nucleobase adducts bind MR1 and stimulate MR1-restricted T cells. Sci Immunol 2024; 9:eadn0126. [PMID: 38728413 DOI: 10.1126/sciimmunol.adn0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.
Collapse
Affiliation(s)
- Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Chiara Lecchi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro Prota
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Lepore
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano 20156, Italy
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel 4031, Switzerland
| |
Collapse
|
7
|
Hu CW, Chang YJ, Chang WH, Cooke MS, Chen YR, Chao MR. A Novel Adductomics Workflow Incorporating FeatureHunter Software: Rapid Detection of Nucleic Acid Modifications for Studying the Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:75-89. [PMID: 38153287 PMCID: PMC11915021 DOI: 10.1021/acs.est.3c04674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.
Collapse
Affiliation(s)
- Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
8
|
Murray KJ, Villalta PW, Griffin TJ, Balbo S. Discovery of Modified Metabolites, Secondary Metabolites, and Xenobiotics by Structure-Oriented LC-MS/MS. Chem Res Toxicol 2023; 36:1666-1682. [PMID: 37862059 DOI: 10.1021/acs.chemrestox.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Exogenous compounds and metabolites derived from therapeutics, microbiota, or environmental exposures directly interact with endogenous metabolic pathways, influencing disease pathogenesis and modulating outcomes of clinical interventions. With few spectral library references, the identification of covalently modified biomolecules, secondary metabolites, and xenobiotics is a challenging task using global metabolomics profiling approaches. Numerous liquid chromatography-coupled mass spectrometry (LC-MS) small molecule analytical workflows have been developed to curate global profiling experiments for specific compound groups of interest. These workflows exploit shared structural moiety, functional groups, or elemental composition to discover novel and undescribed compounds through nontargeted small molecule discovery pipelines. This Review introduces the concept of structure-oriented LC-MS discovery methodology and aims to highlight common approaches employed for the detection and characterization of covalently modified biomolecules, secondary metabolites, and xenobiotics. These approaches represent a combination of instrument-dependent and computational techniques to rapidly curate global profiling experiments to detect putative ions of interest based on fragmentation patterns, predictable phase I or phase II metabolic transformations, or rare elemental composition. Application of these methods is explored for the detection and identification of novel and undescribed biomolecules relevant to the fields of toxicology, pharmacology, and drug discovery. Continued advances in these methods expand the capacity for selective compound discovery and characterization that promise remarkable insights into the molecular interactions of exogenous chemicals with host biochemical pathways.
Collapse
Affiliation(s)
- Kevin J Murray
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Guilbaud A, Ghanegolmohammadi F, Wang Y, Leng J, Kreymerman A, Gamboa Varela J, Garbern J, Elwell H, Cao F, Ricci-Blair E, Liang C, Balamkundu S, Vidoudez C, DeMott M, Bedi K, Margulies K, Bennett D, Palmer A, Barkley-Levenson A, Lee R, Dedon P. Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023; 51:10829-10845. [PMID: 37843128 PMCID: PMC10639045 DOI: 10.1093/nar/gkad822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.
Collapse
Affiliation(s)
- Axel Guilbaud
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yijun Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacqueline Gamboa Varela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jessica Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hannah Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Cao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cui Liang
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Seetharamsing Balamkundu
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kenneth Bedi
- University of Pennsylvania Cardiovascular Institute, Philadelphia, PA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
10
|
De Graeve M, Van de Walle E, Van Hecke T, De Smet S, Vanhaecke L, Hemeryck LY. Exploration and optimization of extraction, analysis and data normalization strategies for mass spectrometry-based DNA adductome mapping and modeling. Anal Chim Acta 2023; 1274:341578. [PMID: 37455087 DOI: 10.1016/j.aca.2023.341578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Although interest in characterizing DNA damage by means of DNA adductomics has substantially grown, the field of DNA adductomics is still in its infancy, with room for optimization of methods for sample analysis, data processing and DNA adduct identification. In this context, the first objective of this study was to evaluate the use of hydrophilic interaction (HILIC) vs. reversed phase liquid chromatography (RPLC) coupled to high resolution mass spectrometry (HRMS) and thermal acidic vs. enzymatic hydrolysis of DNA followed by DNA adduct purification and enrichment using solid-phase extraction (SPE) or fraction collection for DNA adductome mapping. The second objective was to assess the use of total ion count (TIC) and median intensity (MedI) normalization compared to QC (quality control), iQC (internal QC) and quality control-based robust locally estimated scatterplot smoothing (LOESS) signal correction (QC-RLSC) normalization for processing of the acquired data. The results demonstrate that HILIC compared to RPLC allowed better modeling of the tentative DNA adductome, particularly in combination with thermal acidic hydrolysis and SPE (more valid models, with an average Q2(Y) and R2(Y) of 0.930 and 0.998, respectively). Regarding the need for data normalization and the management of (limited) system instability and signal drift, QC normalization outperformed TIC, MedI, iQC and LOESS normalization. As such, QC normalization can be put forward as the default data normalization strategy. In case of momentous signal drift and/or batch effects however, comparison to other normalization strategies (like e.g. LOESS) is recommended. In future work, further optimization of DNA adductomics may be achieved by merging of HILIC and RPLC datasets and/or application of 2D-LC, as well as the inclusion of Schiff base stabilization and/or fraction collection in the thermal acidic hydrolysis-SPE sample preparation workflow.
Collapse
Affiliation(s)
- Marilyn De Graeve
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Emma Van de Walle
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 653, B-9000, Ghent, Belgium.
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, United Kingdom.
| | - Lieselot Y Hemeryck
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
Guidolin V, Jacobs FC, MacMillan ML, Villalta PW, Balbo S. Liquid Chromatography-Mass Spectrometry Screening of Cyclophosphamide DNA Damage In Vitro and in Patients Undergoing Chemotherapy Treatment. Chem Res Toxicol 2023; 36:1278-1289. [PMID: 37490747 PMCID: PMC11231964 DOI: 10.1021/acs.chemrestox.3c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
DNA alkylating drugs have been used as frontline medications to treat cancer for decades. Their chemical reaction with DNA leads to the blockage of DNA replication, which impacts cell replication. While this impacts rapidly dividing cancerous cells, this process is not selective and results in highly variable and often severe side effects in patients undergoing alkylating-drug based therapies. The development of biomarkers to identify patients who effectively respond with tolerable toxicities vs patients who develop serious side effects is needed. Cyclophosphamide (CPA) is a commonly used chemotherapeutic drug and lacks biomarkers to evaluate its therapeutic effect and toxicity. Upon administration, CPA is metabolically activated and converted to phosphoramide mustard and acrolein, which are responsible for its efficacy and toxicity, respectively. Previous studies have explored the detection of the major DNA adduct of CPA, the interstrand DNA-DNA cross-link G-NOR-G, finding differences in the cross-link amount between Fanconi Anemia and non-Fanconi Anemia patients undergoing chemotherapy treatment. In this study, we take advantage of our DNA adductomic approach to comprehensively profile CPA's and its metabolites' reactions with DNA in vitro and in patients undergoing CPA-based chemotherapy. This investigation led to the detection of 40 DNA adducts in vitro and 20 DNA adducts in patients treated with CPA. Moreover, acrolein-derived DNA adducts were quantified in patient samples. The results suggest that CPA-DNA damage is very complex, and an evaluation of DNA adduct profiles is necessary when evaluating the relationship between CPA-DNA damage and patient outcome.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Foster C. Jacobs
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Margaret L. MacMillan
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Public Health, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Liu MH, Costa B, Choi U, Bandler RC, Lassen E, Grońska-Pęski M, Schwing A, Murphy ZR, Rosenkjær D, Picciotto S, Bianchi V, Stengs L, Edwards M, Loh CA, Truong TK, Brand RE, Pastinen T, Wagner JR, Skytte AB, Tabori U, Shoag JE, Evrony GD. Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.526140. [PMID: 36824744 PMCID: PMC9949150 DOI: 10.1101/2023.02.19.526140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other genetic diseases1-4. Almost all of these mosaic mutations begin as nucleotide mismatches or damage in only one of the two strands of the DNA prior to becoming double-strand mutations if unrepaired or misrepaired5. However, current DNA sequencing technologies cannot resolve these initial single-strand events. Here, we developed a single-molecule, long-read sequencing method that achieves single-molecule fidelity for single-base substitutions when present in either one or both strands of the DNA. It also detects single-strand cytosine deamination events, a common type of DNA damage. We profiled 110 samples from diverse tissues, including from individuals with cancer-predisposition syndromes, and define the first single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumors deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples deficient in only polymerase proofreading. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. Since the double-strand DNA mutations interrogated by prior studies are only the endpoint of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable new studies of how mutations arise in a variety of contexts, especially in cancer and aging.
Collapse
Affiliation(s)
- Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Benjamin Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Rachel C. Bandler
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
| | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Adam Schwing
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Zachary R. Murphy
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | | | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Lucie Stengs
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
| | - Caitlin A. Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Tina K. Truong
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh School of Medicine, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Kansas City, USA
| | - J. Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Canada
| | | | - Uri Tabori
- Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Canada
- Division of Haematology/Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Canada
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, USA
| | - Gilad D. Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, USA
- Department of Pediatrics, Department of Neuroscience & Physiology, Institute for Systems Genetics, Perlmutter Cancer Center, and Neuroscience Institute, New York University Grossman School of Medicine, USA
| |
Collapse
|
13
|
Guidolin V, Li Y, Jacobs FC, MacMillan ML, Villalta PW, Hecht SS, Balbo S. Characterization and quantitation of busulfan DNA adducts in the blood of patients receiving busulfan therapy. Mol Ther Oncolytics 2023; 28:197-210. [PMID: 36820303 PMCID: PMC9938526 DOI: 10.1016/j.omto.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
DNA alkylating drugs have been used as cancer chemotherapy with variable outcomes. The establishment of predictive biomarkers to identify patients who will effectively respond to treatment would allow for the development of personalized therapies. As the degree of interaction of alkylating drug with DNA plays a key role in their mechanism of action, our hypothesis is that the measurement of the DNA adducts formed by alkylating drugs could be used to inform patient stratification. Beginning with busulfan, we took advantage of our DNA adductomic approach to characterize DNA adducts formed by reacting busulfan with calf-thymus DNA. Samples collected from six patients undergoing busulfan-based chemotherapy prior to allogeneic hematopoietic cell transplantation were analyzed for the presence of busulfan-derived DNA adducts. Among the 15 adducts detected in vitro, 12 were observed in the patient blood confirming the presence of a large profile of DNA adducts in vivo. Two of the detected adducts were structurally confirmed by comparison with synthetic standards and quantified in patients. These data confirm our ability to comprehensively characterize busulfan-derived DNA damage and set the stage for the development of methods to support personalized chemotherapy.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret L. MacMillan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author: Silvia Balbo, Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-145 CCRB, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Cooke MS, Chang YJ, Chen YR, Hu CW, Chao MR. Nucleic acid adductomics - The next generation of adductomics towards assessing environmental health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159192. [PMID: 36195140 PMCID: PMC11932045 DOI: 10.1016/j.scitotenv.2022.159192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This Discussion article aims to explore the potential for a new generation of assay to emerge from cellular and urinary DNA adductomics which brings together DNA-RNA- and, to some extent, protein adductomics, to better understand the role of the exposome in environmental health. Components of the exposome have been linked to an increased risk of various, major diseases, and to identify the precise nature, and size, of risk, in this complex mixture of exposures, powerful tools are needed. Modification of nucleic acids (NA) is a key consequence of environmental exposures, and a goal of cellular DNA adductomics is to evaluate the totality of DNA modifications in the genome, on the basis that this will be most informative. Consequently, an approach which encompasses modifications of all nucleic acids (NA) would be potentially yet more informative. This article focuses on NA adductomics, which brings together the assessment of both DNA and RNA modifications, including modified (2'-deoxy)ribonucleosides (2'-dN/rN), modified nucleobases (nB), plus: DNA-DNA, RNA-RNA, DNA-RNA, DNA-protein, and RNA-protein crosslinks (DDCL, RRCL, DRCL, DPCL, and RPCL, respectively). We discuss the need for NA adductomics, plus the pros and cons of cellular vs. urinary NA adductomics, and present some evidence for the feasibility of this approach. We propose that NA adductomics provides a more comprehensive approach to the study of nucleic acid modifications, which will facilitate a range of advances, including the identification of novel, unexpected modifications e.g., RNA-RNA, and DNA-RNA crosslinks; key modifications associated with mutagenesis; agent-specific mechanisms; and adductome signatures of key environmental agents, leading to the dissection of the exposome, and its role in human health/disease, across the life course.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
15
|
Cui Y, Wang Y. Mass spectrometry-based DNA adductomics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Dator RP, Murray KJ, Luedtke MW, Jacobs FC, Kassie F, Nguyen HD, Villalta PW, Balbo S. Identification of Formaldehyde-Induced DNA-RNA Cross-Links in the A/J Mouse Lung Tumorigenesis Model. Chem Res Toxicol 2022; 35:2025-2036. [PMID: 36356054 PMCID: PMC10336729 DOI: 10.1021/acs.chemrestox.2c00206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent lung carcinogen present in tobacco products, and exposure to it is likely one of the factors contributing to the development of lung cancer in cigarette smokers. To exert its carcinogenic effects, NNK must be metabolically activated into highly reactive species generating a wide spectrum of DNA damage. We have identified a new class of DNA adducts, DNA-RNA cross-links found for the first time in NNK-treated mice lung DNA using our improved high-resolution accurate mass segmented full scan data-dependent neutral loss MS3 screening strategy. The levels of these DNA-RNA cross-links were found to be significantly higher in NNK-treated mice compared to the corresponding controls, which is consistent with higher levels of formaldehyde due to NNK metabolism as compared to endogenous levels. We hypothesize that this DNA-RNA cross-linking occurs through reaction with NNK-generated formaldehyde and speculate that this phenomenon has broad implications for NNK-induced carcinogenesis. The structures of these cross-links were characterized using high-resolution LC-MS2 and LC-MS3 accurate mass spectral analysis and comparison to a newly synthesized standard. Taken together, our data demonstrate a previously unknown link between DNA-RNA cross-link adducts and NNK and provide a unique opportunity to further investigate how these novel NNK-derived DNA-RNA cross-links contribute to carcinogenesis in the future.
Collapse
Affiliation(s)
- Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Kevin J. Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108
- Center for Mass Spectrometry and Proteomics, University of Minnesota, St. Paul, MN 55108
| | | | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Hai Dang Nguyen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Pharmacology, College of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
17
|
La Barbera G, Nommesen KD, Cuparencu C, Stanstrup J, Dragsted LO. A Comprehensive Database for DNA Adductomics. Front Chem 2022; 10:908572. [PMID: 35692690 PMCID: PMC9184683 DOI: 10.3389/fchem.2022.908572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
The exposure of human DNA to genotoxic compounds induces the formation of covalent DNA adducts, which may contribute to the initiation of carcinogenesis. Liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) is a powerful tool for DNA adductomics, a new research field aiming at screening known and unknown DNA adducts in biological samples. The lack of databases and bioinformatics tool in this field limits the applicability of DNA adductomics. Establishing a comprehensive database will make the identification process faster and more efficient and will provide new insight into the occurrence of DNA modification from a wide range of genotoxicants. In this paper, we present a four-step approach used to compile and curate a database for the annotation of DNA adducts in biological samples. The first step included a literature search, selecting only DNA adducts that were unequivocally identified by either comparison with reference standards or with nuclear magnetic resonance (NMR), and tentatively identified by tandem HRMS/MS. The second step consisted in harmonizing structures, molecular formulas, and names, for building a systematic database of 279 DNA adducts. The source, the study design and the technique used for DNA adduct identification were reported. The third step consisted in implementing the database with 303 new potential DNA adducts coming from different combinations of genotoxicants with nucleobases, and reporting monoisotopic masses, chemical formulas, .cdxml files, .mol files, SMILES, InChI, InChIKey and IUPAC nomenclature. In the fourth step, a preliminary spectral library was built by acquiring experimental MS/MS spectra of 15 reference standards, generating in silico MS/MS fragments for all the adducts, and reporting both experimental and predicted fragments into interactive web datatables. The database, including 582 entries, is publicly available (https://gitlab.com/nexs-metabolomics/projects/dna_adductomics_database). This database is a powerful tool for the annotation of DNA adducts measured in (HR)MS. The inclusion of metadata indicating the source of DNA adducts, the study design and technique used, allows for prioritization of the DNA adducts of interests and/or to enhance the annotation confidence. DNA adducts identification can be further improved by integrating the present database with the generation of authentic MS/MS spectra, and with user-friendly bioinformatics tools.
Collapse
|
18
|
Guo J, Koopmeiners JS, Walmsley SJ, Villalta PW, Yao L, Murugan P, Tejpaul R, Weight CJ, Turesky RJ. The Cooked Meat Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5- b]pyridine Hair Dosimeter, DNA Adductomics Discovery, and Associations with Prostate Cancer Pathology Biomarkers. Chem Res Toxicol 2022; 35:703-730. [PMID: 35446561 PMCID: PMC9148444 DOI: 10.1021/acs.chemrestox.2c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Well-done cooked red meat consumption is linked to aggressive prostate cancer (PC) risk. Identifying mutation-inducing DNA adducts in the prostate genome can advance our understanding of chemicals in meat that may contribute to PC. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic aromatic amine (HAA) formed in cooked meat, is a potential human prostate carcinogen. PhIP was measured in the hair of PC patients undergoing prostatectomy, bladder cancer patients under treatment for cystoprostatectomy, and patients treated for benign prostatic hyperplasia (BPH). PhIP hair levels were above the quantification limit in 123 of 205 subjects. When dichotomizing prostate pathology biomarkers, the geometric mean PhIP hair levels were higher in patients with intermediate and elevated-risk prostate-specific antigen values than lower-risk values <4 ng/mL (p = 0.03). PhIP hair levels were also higher in patients with intermediate and high-risk Gleason scores ≥7 compared to lower-risk Gleason score 6 and BPH patients (p = 0.02). PC patients undergoing prostatectomy had higher PhIP hair levels than cystoprostatectomy or BPH patients (p = 0.02). PhIP-DNA adducts were detected in 9.4% of the patients assayed; however, DNA adducts of other carcinogenic HAAs, and benzo[a]pyrene formed in cooked meat, were not detected. Prostate specimens were also screened for 10 oxidative stress-associated lipid peroxidation (LPO) DNA adducts. Acrolein 1,N2-propano-2'-deoxyguanosine adducts were detected in 54.5% of the patients; other LPO adducts were infrequently detected. Acrolein adducts were not associated with prostate pathology biomarkers, although DNA adductomic profiles differed between PC patients with low and high-grade Gleason scores. Many DNA adducts are of unknown origin; however, dG adducts of formaldehyde and a series of purported 4-hydroxy-2-alkenals were detected at higher abundance in a subset of patients with elevated Gleason scores. The PhIP hair biomarker and DNA adductomics data support the paradigm of well-done cooked meat and oxidative stress in aggressive PC risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher J Weight
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | |
Collapse
|
19
|
LC–MS3 Strategy for Quantification of Carbamazepine in Human Plasma and Its Application in Therapeutic Drug Monitoring. Molecules 2022; 27:molecules27041224. [PMID: 35209012 PMCID: PMC8876099 DOI: 10.3390/molecules27041224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
This study developed a detection method based on the strategy of HPLC/MS3 and verified its suitability by quantifying carbamazepine in human plasma. The high-performance liquid chromatography–tandem mass spectrometry (HPLC/MS3) system was performed using a Shimadzu UFLC XR liquid chromatography and a SCIEX QTRAP® 5500 linear ion trap triple quadrupole mass spectrometer. The specific operation was as follows: the sample protein was firstly precipitated using methanol, then carbamazepine and carbamazepine-D2N15 were separated on an ACQUITY UPLC HSS T3 column using the gradient elution with solvent A (0.1% formic acid) and solvent B (0.1% formic acid in acetonitrile) at a flow rate of 0.25 mL/min. Each sample was run for 7 min. This method was validated for various parameters including accuracy, precision, selectivity, linearity, LLOQ, etc. Only 5 μL of sample plasma could obtain the result of LLOD 0.5 µg/mL. The intra-day and inter-day precision was <8.23%, and accuracy was between −1.74% and 2.92%. This method was successfully used for monitoring the blood concentration of epilepsy patients after carbamazepine treatment.
Collapse
|
20
|
Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP, Mau T, Maes M, Moritz R, Niedernhofer LJ, Van Schaftingen E, Tranah GJ, Walsh K, Yura Y, Zhang B, Cummings SR. Molecular Damage in Aging. NATURE AGING 2021; 1:1096-1106. [PMID: 36846190 PMCID: PMC9957516 DOI: 10.1038/s43587-021-00150-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Cellular metabolism generates molecular damage affecting all levels of biological organization. Accumulation of this damage over time is thought to play a central role in the aging process, but damage manifests in diverse molecular forms complicating its assessment. Insufficient attention has been paid to date to the role of molecular damage in aging-related phenotypes, particularly in humans, in part because of the difficulty in measuring its various forms. Recently, omics approaches have been developed that begin to address this challenge, because they are able to assess a sizeable proportion of age-related damage at the level of small molecules, proteins, RNA, DNA, organelles and cells. This review describes the concept of molecular damage in aging and discusses its diverse aspects from theoretical models to experimental approaches. Measurement of multiple types of damage enables studies of the role of damage in human aging outcomes and lays a foundation for testing interventions to reduce the burden of molecular damage, opening new approaches to slowing aging and reducing its consequences.
Collapse
Affiliation(s)
- Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Moritz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Emile Van Schaftingen
- De Duve Institute, Université catholique de Louvain, Bruxelles, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Bruxelles, Belgium
| | - Gregory J. Tranah
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center, Research Institute, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Geospatial Assessments of DNA Adducts in the Human Stomach: A Model of Field Cancerization. Cancers (Basel) 2021; 13:cancers13153728. [PMID: 34359626 PMCID: PMC8345122 DOI: 10.3390/cancers13153728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Field cancerization is a popular concept regarding where cancer cells arise in a plane, such as the opened-up gastrointestinal mucosa. The geospatial distribution of DNA adducts, some of which are believed to initiate mutation, may be a clue to understanding the landscape of the preferred occurrence of gastric cancer in the human stomach, such that the occurrence is much more frequent in the lesser curvature than in the greater curvature. METHODS Seven DNA adducts, C5-methyl-2'-deoxycytidine, 2'-deoxyinosine, C5-hydroxymethyl-2'-deoxycytidine, N6-methyl-2'-deoxyadenosine, 1,N6-etheno-2'-deoxyadenosine, N6-hydroxymethyl-2'-deoxyadenosine, and C8-oxo-2'-deoxyguanosine, from different points and zones of the human stomach were semi quantitatively measured by liquid chromatography/tandem mass spectrometry. The differences in the quantity of these DNA adducts from the lesser and greater curvature, the upper, middle and lower third zones, the anterior and posterior wall of the stomach, and the mucosae distant from and near the tumor were compared to determine whether the location preference of cancer in the stomach could be explained by the distribution of these DNA adducts. Comparisons were conducted considering the tumor locations and operation methods. CONCLUSIONS Regarding the DNA adducts investigated, significant differences in quantities and locations in the whole stomach were not noted; thus, these DNA adducts do not explain the preferential occurrence of cancer in particular locations of the human stomach.
Collapse
|
22
|
Chang YJ, Cooke MS, Chen YR, Yang SF, Li PS, Hu CW, Chao MR. Is high resolution a strict requirement for mass spectrometry-based cellular DNA adductomics? CHEMOSPHERE 2021; 274:129991. [PMID: 33979922 PMCID: PMC8119933 DOI: 10.1016/j.chemosphere.2021.129991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Exposure to endogenous and exogenous factors can result in the formation of a wide variety of DNA adducts, and these may lead to gene mutations, thereby contributing to the development of cancer. DNA adductomics, a novel tool for exposomics, aims to detect the totality of DNA adducts. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is the state-of-the-art method for DNA adductomic analysis, although its high cost has limited widespread use. In this study, we compared the analytical performance between HRMS and the more popular/accessible triple-quadrupole MS (QqQ-MS). We initially developed and optimized a hybrid quadrupole-linear ion trap-orbitrap MS (Q-LIT-OT-MS) method, considering the detection of both purine and pyrimidine adducts. LC-Q-LIT-OT-MS and LC-QqQ-MS methods were compared by non-targeted screening of formaldehyde-induced DNA adducts. Using the results from Q-LIT-OT-MS as the gold standard, QqQ-MS successfully detected 12 out of 18 formaldehyde-induced DNA adducts/inter-strand crosslinks (ICLs). QqQ-MS however also produced nine false-positive results owing to the inherent instrumental mass resolution limits. To discriminate the false-positive results from the accurate ones, we firstly introduced a statistical analysis, partial least squares-discriminant analysis, which efficiently excluded the false signals. Six DNA adducts/ICLs were not detected by QqQ-MS, due to insufficient sensitivity. This could be overcome by employing a selected reaction monitoring scan mode with multiple injections. Overall, this study demonstrated that high resolution may not be a strict requirement for MS-based DNA adductomics. LC-QqQ-MS with statistical analysis, could also provide a comparable performance as HRMS for pre-screening purposes.
Collapse
Affiliation(s)
- Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Pei-Shan Li
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
23
|
Walmsley SJ, Guo J, Murugan P, Weight CJ, Wang J, Villalta PW, Turesky RJ. Comprehensive Analysis of DNA Adducts Using Data-Independent wSIM/MS 2 Acquisition and wSIM-City. Anal Chem 2021; 93:6491-6500. [PMID: 33844920 PMCID: PMC8675643 DOI: 10.1021/acs.analchem.1c00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel software has been created to comprehensively characterize covalent modifications of DNA through mass spectral analysis of enzymatically hydrolyzed DNA using the neutral loss of 2'-deoxyribose, a nearly universal MS2 fragmentation process of protonated 2'-deoxyribonucleosides. These covalent modifications termed DNA adducts form through xenobiotic exposures or by reaction with endogenous electrophiles and can induce mutations during cell division and initiate carcinogenesis. DNA adducts are typically present at trace levels in the human genome, requiring a very sensitive and comprehensive data acquisition and analysis method. Our software, wSIM-City, was created to process mass spectral data acquired by a wide selected ion monitoring (wSIM) with gas-phase fractionation and coupled to wide MS2 fragmentation. This untargeted approach can detect DNA adducts at trace levels as low as 1.5 adducts per 109 nucleotides. This level of sensitivity is sufficient for comprehensive analysis and characterization of DNA modifications in human specimens.
Collapse
Affiliation(s)
- Scott J Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Christopher J Weight
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland 44125, Ohio, United States
- Case Comprehensive Cancer Center, Cleveland 44106, Ohio, United States
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, Minnesota, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
24
|
Li Y, Carlson ES, Zarth AT, Upadhyaya P, Hecht SS. Investigation of 2'-Deoxyadenosine-Derived Adducts Specifically Formed in Rat Liver and Lung DNA by N'-Nitrosonornicotine Metabolism. Chem Res Toxicol 2021; 34:1004-1015. [PMID: 33720703 PMCID: PMC11558792 DOI: 10.1021/acs.chemrestox.1c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Identification of New Markers of Alcohol-Derived DNA Damage in Humans. Biomolecules 2021; 11:biom11030366. [PMID: 33673538 PMCID: PMC7997542 DOI: 10.3390/biom11030366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations. Previous studies have shown a dose dependence between levels of a major acetaldehyde-derived DNA adduct and alcohol exposure in oral-cell DNA. The goal of this study was to optimize a mass spectrometry (MS)-based DNA adductomic approach to screen for all acetaldehyde-derived DNA adducts to more comprehensively characterize the genotoxic effects of acetaldehyde in humans. A high-resolution/-accurate-mass data-dependent constant-neutral-loss-MS3 methodology was developed to profile acetaldehyde-DNA adducts in purified DNA. This resulted in the identification of 22 DNA adducts. In addition to the expected N2-ethyldeoxyguanosine (after NaBH3CN reduction), two previously unreported adducts showed prominent signals in the mass spectra. MSn fragmentation spectra and accurate mass were used to hypothesize the structure of the two new adducts, which were then identified as N6-ethyldeoxyadenosine and N4-ethyldeoxycytidine by comparison with synthesized standards. These adducts were quantified in DNA isolated from oral cells collected from volunteers exposed to alcohol, revealing a significant increase after the exposure. In addition, 17 of the adducts identified in vitro were detected in these samples confirming our ability to more comprehensively characterize the DNA damage deriving from alcohol exposures.
Collapse
|
26
|
Peterson LA, Balbo S, Fujioka N, Hatsukami DK, Hecht SS, Murphy SE, Stepanov I, Tretyakova NY, Turesky RJ, Villalta PW. Applying Tobacco, Environmental, and Dietary-Related Biomarkers to Understand Cancer Etiology and Evaluate Prevention Strategies. Cancer Epidemiol Biomarkers Prev 2020; 29:1904-1919. [PMID: 32051197 PMCID: PMC7423750 DOI: 10.1158/1055-9965.epi-19-1356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/18/2019] [Accepted: 01/27/2020] [Indexed: 01/20/2023] Open
Abstract
Many human cancers are caused by environmental and lifestyle factors. Biomarkers of exposure and risk developed by our team have provided critical data on internal exposure to toxic and genotoxic chemicals and their connection to cancer in humans. This review highlights our research using biomarkers to identify key factors influencing cancer risk as well as their application to assess the effectiveness of exposure intervention and chemoprevention protocols. The use of these biomarkers to understand individual susceptibility to the harmful effects of tobacco products is a powerful example of the value of this type of research and has provided key data confirming the link between tobacco smoke exposure and cancer risk. Furthermore, this information has led to policy changes that have reduced tobacco use and consequently, the tobacco-related cancer burden. Recent technological advances in mass spectrometry led to the ability to detect DNA damage in human tissues as well as the development of adductomic approaches. These new methods allowed for the detection of DNA adducts in tissues from patients with cancer, providing key evidence that exposure to carcinogens leads to DNA damage in the target tissue. These advances will provide valuable insights into the etiologic causes of cancer that are not tobacco-related.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Irina Stepanov
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalia Y Tretyakova
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Walmsley SJ, Guo J, Wang J, Villalta PW, Turesky RJ. Methods and Challenges for Computational Data Analysis for DNA Adductomics. Chem Res Toxicol 2019; 32:2156-2168. [PMID: 31549505 PMCID: PMC7127864 DOI: 10.1021/acs.chemrestox.9b00196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Frequent exposure to chemicals in the environment, diet, and endogenous electrophiles leads to chemical modification of DNA and the formation of DNA adducts. Some DNA adducts can induce mutations during cell division and, when occurring in critical regions of the genome, can lead to the onset of disease, including cancer. The targeted analysis of DNA adducts over the past 30 years has revealed that the human genome contains many types of DNA damages. However, a long-standing limitation in conducting DNA adduct measurements has been the inability to screen for the total complement of DNA adducts derived from a wide range of chemicals in a single assay. With the advancement of high-resolution mass spectrometry (MS) instrumentation and new scanning technologies, nontargeted "omics" approaches employing data-dependent acquisition and data-independent acquisition methods have been established to simultaneously screen for multiple DNA adducts, a technique known as DNA adductomics. However, notable challenges in data processing must be overcome for DNA adductomics to become a mature technology. DNA adducts occur at low abundance in humans, and current softwares do not reliably detect them when using common MS data acquisition methods. In this perspective, we discuss contemporary computational tools developed for feature finding of MS data widely utilized in the disciplines of proteomics and metabolomics and highlight their limitations for conducting nontargeted DNA-adduct biomarker discovery. Improvements to existing MS data processing software and new algorithms for adduct detection are needed to develop DNA adductomics into a powerful tool for the nontargeted identification of potential cancer-causing agents.
Collapse
Affiliation(s)
- Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Institute of Health Informatics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|