1
|
Fathi P, Alfonso AL, Yek C, Putman Z, Drew M, Esposito D, Zaidi I, Chea S, Ly S, Sath R, Lon C, Chea H, Leang R, Huy R, Ly S, Seng H, Tan CW, Zhu F, Wang L, Oliveira F, Sadtler K, Manning J. Humoral Immunity Profiling to Pandemic and Bat-Derived Coronavirus Variants: A Geographical Comparison. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403503. [PMID: 39471070 PMCID: PMC11714182 DOI: 10.1002/advs.202403503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Indexed: 11/01/2024]
Abstract
Dynamic pathogen exposure may impact the immunological response to SARS-CoV-2 (SCV2). One potential explanation for the lack of severe SCV2-related morbidity and mortality in Southeast Asia is prior exposure to related betacoronaviruses. Recent discoveries of SCV2-related betacoronaviruses from horseshoe bats (Rhinolophus sinicus) in Thailand, Laos, and Cambodia suggest the potential for bat-to-human spillover exposures in the region. In this work, serum antibodies to protein constructs from SCV2 and a representative bat coronavirus isolated in Cambodia (RshSTT182) are measured in pre-pandemic Cambodian human sera using ELISA assays. Of 293 Cambodian samples tested (N = 131 with acute malaria, n = 162 with acute undifferentiated febrile illness), 32 (10.9%) are seropositive for SCV2 based on established Spike and receptor-binding domain (RBD) cutoffs. Within SCV2 seropositive samples, 16 (50%) have higher antibody levels to antigens from the representative virus RshSTT182 versus SCV2 antigens; competitive binding ELISA assays demonstrate inhibition of reactivity to SCV2 Spike after pre-incubation with RshSTT182 Spike. Surrogate virus neutralization tests demonstrate that 8/30 (26.7%) SCV2 ELISA positive pre-pandemic Cambodian samples have neutralizing activity against SCV2, while 14/30 (46.7%) have activity against other SCV2-related betacoronaviruses. These data suggest that exposure to related betacoronaviruses may elicit cross-reactive immunity to SCV2 prior to the global pandemic.
Collapse
Affiliation(s)
- Parinaz Fathi
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Andrea Lucia Alfonso
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Christina Yek
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
| | - Zoe Putman
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Matthew Drew
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Dominic Esposito
- Protein Expression LaboratoryNCI RAS InitiativeFrederick National Laboratory for Cancer ResearchFrederickMD21701USA
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and VaccinologyNational Institute of Allergy and Infectious DiseasesBethesdaMD20892USA
| | - Sophana Chea
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Sokna Ly
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Rathanak Sath
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
| | - Huch Chea
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Rekol Huy
- National Center for Parasitology, Entomology, and Malaria ControlMinistry of HealthPhnom Penh120801Cambodia
| | - Sovann Ly
- Cambodian Center for Disease ControlMinistry of HealthPhnom Penh120407Cambodia
| | - Heng Seng
- Cambodian Center for Disease ControlMinistry of HealthPhnom Penh120407Cambodia
| | - Chee Wah Tan
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
- Infectious Diseases Translational Research ProgrammeDepartment of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of Singapore117597SingaporeSingapore
| | - Feng Zhu
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
| | - Lin‐Fa Wang
- Programme for Emerging Infectious DiseasesDuke‐National University of Singapore Medical School169857SingaporeSingapore
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
| | - Kaitlyn Sadtler
- Section on ImmunoengineeringBiomedical Engineering and Technology Acceleration CenterNational Institute of Biomedical Imaging and BioengineeringBethesdaMD20892USA
| | - Jessica Manning
- Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious DiseasesRockvilleMD20892USA
- International Center of Excellence in Research CambodiaNational Institute of Allergy and Infectious DiseasesPhnom Penh120801Cambodia
- Present address:
SanofiWashingtonDC20004USA
| |
Collapse
|
2
|
Banerjee T, Gosai A, Yousefi N, Garibay OO, Seal S, Balasubramanian G. Examining sialic acid derivatives as potential inhibitors of SARS-CoV-2 spike protein receptor binding domain. J Biomol Struct Dyn 2024; 42:6342-6358. [PMID: 37424217 DOI: 10.1080/07391102.2023.2234044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has been the primary reason behind the COVID-19 global pandemic which has affected millions of lives worldwide. The fundamental cause of the infection is the molecular binding of the viral spike protein receptor binding domain (SP-RBD) with the human cell angiotensin-converting enzyme 2 (ACE2) receptor. The infection can be prevented if the binding of RBD-ACE2 is resisted by utilizing certain inhibitors or drugs that demonstrate strong binding affinity towards the SP RBD. Sialic acid based glycans found widely in human cells and tissues have notable propensity of binding to viral proteins of the coronaviridae family. Recent experimental literature have used N-acetyl neuraminic acid (Sialic acid) to create diagnostic sensors for SARS-CoV-2, but a detailed interrogation of the underlying molecular mechanisms is warranted. Here, we perform all atom molecular dynamics (MD) simulations for the complexes of certain Sialic acid-based molecules with that of SP RBD of SARS CoV-2. Our results indicate that Sialic acid not only reproduces a binding affinity comparable to the RBD-ACE2 interactions, it also assumes the longest time to dissociate completely from the protein binding pocket of SP RBD. Our predictions corroborate that a combination of electrostatic and van der Waals energies as well the polar hydrogen bond interactions between the RBD residues and the inhibitors influence free energy of binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tanumoy Banerjee
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | | | - Niloofar Yousefi
- Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Ozlem Ozmen Garibay
- Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, Bionix Cluster, University of Central Florida, Orlando, FL, USA
- Advanced Materials Processing and Analysis Center, Dept. of Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ganesh Balasubramanian
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
- Institute of Functional Materials & Devices and College of Health, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
3
|
Gupta G, Verkhivker G. Exploring Binding Pockets in the Conformational States of the SARS-CoV-2 Spike Trimers for the Screening of Allosteric Inhibitors Using Molecular Simulations and Ensemble-Based Ligand Docking. Int J Mol Sci 2024; 25:4955. [PMID: 38732174 PMCID: PMC11084335 DOI: 10.3390/ijms25094955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding mechanisms of allosteric regulation remains elusive for the SARS-CoV-2 spike protein, despite the increasing interest and effort in discovering allosteric inhibitors of the viral activity and interactions with the host receptor ACE2. The challenges of discovering allosteric modulators of the SARS-CoV-2 spike proteins are associated with the diversity of cryptic allosteric sites and complex molecular mechanisms that can be employed by allosteric ligands, including the alteration of the conformational equilibrium of spike protein and preferential stabilization of specific functional states. In the current study, we combine conformational dynamics analysis of distinct forms of the full-length spike protein trimers and machine-learning-based binding pocket detection with the ensemble-based ligand docking and binding free energy analysis to characterize the potential allosteric binding sites and determine structural and energetic determinants of allosteric inhibition for a series of experimentally validated allosteric molecules. The results demonstrate a good agreement between computational and experimental binding affinities, providing support to the predicted binding modes and suggesting key interactions formed by the allosteric ligands to elicit the experimentally observed inhibition. We establish structural and energetic determinants of allosteric binding for the experimentally known allosteric molecules, indicating a potential mechanism of allosteric modulation by targeting the hinges of the inter-protomer movements and blocking conformational changes between the closed and open spike trimer forms. The results of this study demonstrate that combining ensemble-based ligand docking with conformational states of spike protein and rigorous binding energy analysis enables robust characterization of the ligand binding modes, the identification of allosteric binding hotspots, and the prediction of binding affinities for validated allosteric modulators, which is consistent with the experimental data. This study suggested that the conformational adaptability of the protein allosteric sites and the diversity of ligand bound conformations are both in play to enable efficient targeting of allosteric binding sites and interfere with the conformational changes.
Collapse
Affiliation(s)
- Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA;
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
4
|
Nishihara R, Dokainish HM, Kihara Y, Ashiba H, Sugita Y, Kurita R. Pseudo-Luciferase Activity of the SARS-CoV-2 Spike Protein for Cypridina Luciferin. ACS CENTRAL SCIENCE 2024; 10:283-290. [PMID: 38435535 PMCID: PMC10906034 DOI: 10.1021/acscentsci.3c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024]
Abstract
Enzymatic reactions that involve a luminescent substrate (luciferin) and enzyme (luciferase) from luminous organisms enable a luminescence detection of target proteins and cells with high specificity, albeit that conventional assay design requires a prelabeling of target molecules with luciferase. Here, we report a luciferase-independent luminescence assay in which the target protein directly catalyzes the oxidative luminescence reaction of luciferin. The SARS-CoV-2 antigen (spike) protein catalyzes the light emission of Cypridina luciferin, whereas no such catalytic function was observed for salivary proteins. This selective luminescence reaction is due to the enzymatic recognition of the 3-(1-guanidino)propyl group in luciferin at the interfaces between the units of the spike protein, allowing a specific detection of the spike protein in human saliva without sample pretreatment. This method offers a novel platform to detect virus antigens simply and rapidly without genetic manipulation or antibodies.
Collapse
Affiliation(s)
- Ryo Nishihara
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Japan
Science and Technology Agency (JST), PREST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hisham M. Dokainish
- Faculty
of Pharmaceutical Sciences, Hokkaido University, Nishi 6 Kita12 Kita-ku, Sapporo 060-0812, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Kihara
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty
of
Pure and Applied Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroki Ashiba
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ryoji Kurita
- National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty
of
Pure and Applied Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
5
|
Monti M, Milanetti E, Frans MT, Miotto M, Di Rienzo L, Baranov MV, Gosti G, Somavarapu AK, Nagaraj M, Golbek TW, Rossing E, Moons SJ, Boltje TJ, van den Bogaart G, Weidner T, Otzen DE, Tartaglia GG, Ruocco G, Roeters SJ. Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain. J Phys Chem B 2024; 128:451-464. [PMID: 38190651 PMCID: PMC10801686 DOI: 10.1021/acs.jpcb.3c06258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other β-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Collapse
Affiliation(s)
- Michele Monti
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Myrthe T. Frans
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mattia Miotto
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maksim V. Baranov
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giorgio Gosti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- DHILab,
Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, Via Salaria km, 29300, 00010 Rome, Italy
| | - Arun Kumar Somavarapu
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Madhu Nagaraj
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thaddeus W. Golbek
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emiel Rossing
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sam J. Moons
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tobias Weidner
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Amsterdam
UMC, Vrije Universiteit, Department of Anatomy
and Neurosciences, De
Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Huynh CM, Mavliutova L, Sparrman T, Sellergren B, Irgum K. Elucidation of the Binding Orientation in α2,3- and α2,6-Linked Neu5Ac-Gal Epitopes toward a Hydrophilic Molecularly Imprinted Monolith. ACS OMEGA 2023; 8:44238-44249. [PMID: 38027366 PMCID: PMC10666243 DOI: 10.1021/acsomega.3c06836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
N-Acetylneuraminic acid and its α2,3/α2,6-glycosidic linkages with galactose (Neu5Ac-Gal) are major carbohydrate antigen epitopes expressed in various pathological processes, such as cancer, influenza, and SARS-CoV-2. We here report a strategy for the synthesis and binding investigation of molecularly imprinted polymers (MIPs) toward α2,3 and α2,6 conformations of Neu5Ac-Gal antigens. Hydrophilic imprinted monoliths were synthesized from melamine monomer in the presence of four different templates, namely, N-acetylneuraminic acid (Neu5Ac), N-acetylneuraminic acid methyl ester (Neu5Ac-M), 3'-sialyllactose (3SL), and 6'-sialyllactose (6SL), in a tertiary solvent mixture at temperatures varying from -20 to +80 °C. The MIPs prepared at cryotemperatures showed a preferential affinity for the α2,6 linkage sequence of 6SL, with an imprinting factor of 2.21, whereas the α2,3 linkage sequence of 3SL resulted in nonspecific binding to the polymer scaffold. The preferable affinity for the α2,6 conformation of Neu5Ac-Gal was evident also when challenged by a mixture of other mono- and disaccharides in an aqueous test mixture. The use of saturation transfer difference nuclear magnetic resonance (STD-NMR) on suspensions of crushed monoliths allowed for directional interactions between the α2,3/α2,6 linkage sequences on their corresponding MIPs to be revealed. The Neu5Ac epitope, containing acetyl and polyalcohol moieties, was the major contributor to the sequence recognition for Neu5Ac(α2,6)Gal(β1,4)Glc, whereas contributions from the Gal and Glc segments were substantially lower.
Collapse
Affiliation(s)
- Chau Minh Huynh
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Liliia Mavliutova
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Tobias Sparrman
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Knut Irgum
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
7
|
Yu W, Li Y, Liu D, Wang Y, Li J, Du Y, Gao GF, Li Z, Xu Y, Wei J. Evaluation and Mechanistic Investigation of Human Milk Oligosaccharide against SARS-CoV-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16102-16113. [PMID: 37856320 DOI: 10.1021/acs.jafc.3c04275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Four human milk oligosaccharides (HMOs), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), 2'-fucosyllactose (2'-FL), and 3-fucosyllactose (3-FL), were assessed for their possible antiviral activity against the SARS-CoV-2 spike receptor binding domain (RBD) in vitro. Among them, only 2'-FL/3-FL exhibited obvious antibinding activity against direct binding and trans-binding in competitive immunocytochemistry and enzyme-linked immunosorbent assays. The antiviral effects of 2'-FL/3-FL were further confirmed by pseudoviral assays with three SARS-Cov-2 mutants, with a stronger inhibition effect of 2'-FL than 3-FL. Then, 2'-FL/3-FL were studied with molecular docking and microscale thermophoresis analysis, showing that the binding sites of 2'-FL on RBD were involved in receptor binding, in addition to a tighter bond between them, thus enabling 2'-FL to be more effective than 3-FL. Moreover, the immunomodulation effect of 2'-FL was preliminary evaluated and confirmed in a human alveolus chip. These results would open up possible applications of 2'-FL for the prevention of SARS-CoV-2 infections by competitive binding inhibition.
Collapse
Affiliation(s)
- Weiyan Yu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang Economic and Technological Development Zone, Nanchang, Jiangxi 330045, People's Republic of China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yongliang Wang
- Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, People's Republic of China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang Economic and Technological Development Zone, Nanchang, Jiangxi 330045, People's Republic of China
| | - Yueqiang Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China
| |
Collapse
|
8
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Comparative Analysis of Conformational Dynamics and Systematic Characterization of Cryptic Pockets in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 Spike Complexes with the ACE2 Host Receptor: Confluence of Binding and Structural Plasticity in Mediating Networks of Conserved Allosteric Sites. Viruses 2023; 15:2073. [PMID: 37896850 PMCID: PMC10612107 DOI: 10.3390/v15102073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results are significant for understanding the functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
Affiliation(s)
- Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX 75275, USA; (S.X.); (P.T.)
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
9
|
Verkhivker G, Alshahrani M, Gupta G. Exploring Conformational Landscapes and Cryptic Binding Pockets in Distinct Functional States of the SARS-CoV-2 Omicron BA.1 and BA.2 Trimers: Mutation-Induced Modulation of Protein Dynamics and Network-Guided Prediction of Variant-Specific Allosteric Binding Sites. Viruses 2023; 15:2009. [PMID: 37896786 PMCID: PMC10610873 DOI: 10.3390/v15102009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron variants. By using a combination of atomistic simulations, a dynamics network analysis, and an allostery-guided network screening of binding pockets in the conformational ensembles of the BA.1 and BA.2 spike conformations, we identified all experimentally known allosteric sites and discovered significant variant-specific differences in the distribution of binding sites in the BA.1 and BA.2 trimers. This study provided a structural characterization of the predicted cryptic pockets and captured the experimentally known allosteric sites, revealing the critical role of conformational plasticity in modulating the distribution and cross-talk between functional binding sites. We found that mutational and dynamic changes in the BA.1 variant can induce the remodeling and stabilization of a known druggable pocket in the N-terminal domain, while this pocket is drastically altered and may no longer be available for ligand binding in the BA.2 variant. Our results predicted the experimentally known allosteric site in the receptor-binding domain that remains stable and ranks as the most favorable site in the conformational ensembles of the BA.2 variant but could become fragmented and less probable in BA.1 conformations. We also uncovered several cryptic pockets formed at the inter-domain and inter-protomer interface, including functional regions of the S2 subunit and stem helix region, which are consistent with the known role of pocket residues in modulating conformational transitions and antibody recognition. The results of this study are particularly significant for understanding the dynamic and network features of the universe of available binding pockets in spike proteins, as well as the effects of the Omicron-variant-specific modulation of preferential druggable pockets. The exploration of predicted druggable sites can present a new and previously underappreciated opportunity for therapeutic interventions for Omicron variants through the conformation-selective and variant-specific targeting of functional sites involved in allosteric changes.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; (M.A.); (G.G.)
| |
Collapse
|
10
|
Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Examining Functional Linkages Between Conformational Dynamics, Protein Stability and Evolution of Cryptic Binding Pockets in the SARS-CoV-2 Omicron Spike Complexes with the ACE2 Host Receptor: Recombinant Omicron Variants Mediate Variability of Conserved Allosteric Sites and Binding Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557205. [PMID: 37745525 PMCID: PMC10515794 DOI: 10.1101/2023.09.11.557205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full length trimer complexes with the ACE2 receptor complemented atomistic studies and enabled an in-depth analysis of mutational and binding effects on conformational dynamic and functional adaptability of the Omicron variants. Despite considerable structural similarities, Omicron variants BA.2, BA.2.75 and XBB.1 can induce unique conformational dynamic signatures and specific distributions of the conformational states. Using conformational ensembles of the SARS-CoV-2 Omicron spike trimer complexes with ACE2, we conducted a comprehensive cryptic pocket screening to examine the role of Omicron mutations and ACE2 binding on the distribution and functional mechanisms of the emerging allosteric binding sites. This analysis captured all experimentally known allosteric sites and discovered networks of inter-connected and functionally relevant allosteric sites that are governed by variant-sensitive conformational adaptability of the SARS-CoV-2 spike structures. The results detailed how ACE2 binding and Omicron mutations in the BA.2, BA.2.75 and XBB.1 spike complexes modulate the distribution of conserved and druggable allosteric pockets harboring functionally important regions. The results of are significant for understanding functional roles of druggable cryptic pockets that can be used for allostery-mediated therapeutic intervention targeting conformational states of the Omicron variants.
Collapse
|
11
|
Agajanian S, Alshahrani M, Bai F, Tao P, Verkhivker GM. Exploring and Learning the Universe of Protein Allostery Using Artificial Intelligence Augmented Biophysical and Computational Approaches. J Chem Inf Model 2023; 63:1413-1428. [PMID: 36827465 PMCID: PMC11162550 DOI: 10.1021/acs.jcim.2c01634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Allosteric mechanisms are commonly employed regulatory tools used by proteins to orchestrate complex biochemical processes and control communications in cells. The quantitative understanding and characterization of allosteric molecular events are among major challenges in modern biology and require integration of innovative computational experimental approaches to obtain atomistic-level knowledge of the allosteric states, interactions, and dynamic conformational landscapes. The growing body of computational and experimental studies empowered by emerging artificial intelligence (AI) technologies has opened up new paradigms for exploring and learning the universe of protein allostery from first principles. In this review we analyze recent developments in high-throughput deep mutational scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about a new revolution in molecular biology and drug discovery.
Collapse
Affiliation(s)
- Steve Agajanian
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology and Information Science and Technology, Shanghai Tech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Gennady M Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
12
|
Maass T, Ssebyatika G, Brückner M, Breckwoldt L, Krey T, Mallagaray A, Peters T, Frank M, Creutznacher R. Binding of Glycans to the SARS CoV-2 Spike Protein, an Open Question: NMR Data on Binding Site Localization, Affinity, and Selectivity. Chemistry 2022; 28:e202202614. [PMID: 36161798 PMCID: PMC9537997 DOI: 10.1002/chem.202202614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022]
Abstract
We have used NMR experiments to explore the binding of selected glycans and glycomimetics to the SARS CoV-2 spike glycoprotein (S-protein) and to its receptor binding domain (RBD). STD NMR experiments confirm the binding of sialoglycans to the S-protein of the prototypic Wuhan strain virus and yield dissociation constants in the millimolar range. The absence of STD effects for sialoglycans in the presence of the Omicron/BA.1 S-protein reflects a loss of binding as a result of S-protein evolution. Likewise, no STD effects are observed for the deletion mutant Δ143-145 of the Wuhan S-protein, thus supporting localization of the binding site in the N-terminal domain (NTD). The glycomimetics Oseltamivir and Zanamivir bind weakly to the S-protein of both virus strains. Binding of blood group antigens to the Wuhan S-protein cannot be confirmed by STD NMR. Using 1 H,15 N TROSY HSQC-based chemical shift perturbation (CSP) experiments, we excluded binding of any of the ligands studied to the RBD of the Wuhan S-protein. Our results put reported data on glycan binding into perspective and shed new light on the potential role of glycan-binding to the S-protein.
Collapse
Affiliation(s)
- Thorben Maass
- University of Lübeck: Universitat zu LubeckInstitute of Chemistry and MetabolomicsGERMANY
| | - George Ssebyatika
- University of Lübeck: Universitat zu LubeckInstitute of BiochemistryGERMANY
| | - Marlene Brückner
- University of Lübeck: Universitat zu LubeckInstitute of Chemistry and MetabolomicsGERMANY
| | - Lea Breckwoldt
- University of Lübeck: Universitat zu LubeckInstitute of Chemistry and MetabolomicsGERMANY
| | - Thomas Krey
- University of Lübeck: Universitat zu LubeckInstitute of BiochemistryGERMANY
| | - Alvaro Mallagaray
- University of Lübeck: Universitat zu LubeckInstitute of Chemistry and MetabolomicsGERMANY
| | - Thomas Peters
- Institute for Chemistry and MetabolomicsUniversität zu LübeckRatzeburger Allee 16023562LübeckGERMANY
| | | | - Robert Creutznacher
- University of Lübeck: Universitat zu LubeckInstitute of Chemistry and MetabolomicsGERMANY
| |
Collapse
|
13
|
Christie SM, Tada T, Yin Y, Bhardwaj A, Landau NR, Rothenberg E. Single-virus tracking reveals variant SARS-CoV-2 spike proteins induce ACE2-independent membrane interactions. SCIENCE ADVANCES 2022; 8:eabo3977. [PMID: 36490345 PMCID: PMC9733935 DOI: 10.1126/sciadv.abo3977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction. Here, using single-virus tracking to capture these initial steps, we observe how viruses carrying variant S interact with target cells. Specificity for ACE2 occurs for viruses with the reference sequence or D614G mutation. Analysis of the Alpha, Beta, and Delta SARS-CoV-2 variant S proteins revealed a progressive altered cell interaction with a reduced dependence on ACE2. Notably, the Delta variant S affinity was independent of ACE2. These enhanced interactions may account for the increased transmissibility of variants. Knowledge of how mutations influence cell interaction is essential for vaccine development against emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaun M. Christie
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Takuya Tada
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Amit Bhardwaj
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathaniel R. Landau
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Kuhaudomlarp S, Imberty A. Involvement of sialoglycans in SARS-COV-2 infection: Opportunities and challenges for glyco-based inhibitors. IUBMB Life 2022; 74:1253-1263. [PMID: 36349722 PMCID: PMC9877878 DOI: 10.1002/iub.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Viral infections have been the causes of global pandemics, including the ongoing coronavirus disease 2019, which prompted the investigation into the infection mechanisms to find treatment and aid the vaccine design. Betacoronaviruses use spike glycoprotein on their surface to bind to host receptors, aiding their host attachment and cell fusion. Protein-glycan interaction has been implicated in the viral entry mechanism of many viruses and has recently been shown in SARS-CoV-2. Here, we reviewed the current knowledge on protein-glycan interactions that facilitate SARS-CoV-2 host entry, with special interest in sialoglycans present on both the virions and host cell surfaces. We also analyze how such information provides opportunities and challenges in glyco-based inhibitors.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of ScienceMahidol UniversityBangkokThailand
| | | |
Collapse
|
15
|
Oh L, Varki A, Chen X, Wang LP. SARS-CoV-2 and MERS-CoV Spike Protein Binding Studies Support Stable Mimic of Bound 9- O-Acetylated Sialic Acids. Molecules 2022; 27:5322. [PMID: 36014560 PMCID: PMC9415320 DOI: 10.3390/molecules27165322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Many disease-causing viruses target sialic acids (Sias), a class of nine-carbon sugars known to coat the surface of many cells, including those in the lungs. Human beta coronaviridae, known for causing respiratory tract diseases, often bind Sias, and some preferentially bind to those with 9-O-Ac-modification. Currently, co-binding of SARS-CoV-2, a beta coronavirus responsible for the COVID-19 pandemic, to human Sias has been reported and its preference towards α2-3-linked Neu5Ac has been shown. Nevertheless, O-acetylated Sias-protein binding studies are difficult to perform, due to the ester lability. We studied the binding free energy differences between Neu5,9Ac2α2-3GalβpNP and its more stable 9-NAc mimic binding to SARS-CoV-2 spike protein using molecular dynamics and alchemical free energy simulations. We identified multiple Sia-binding pockets, including two novel sites, with similar binding affinities to those of MERS-CoV, a known co-binder of sialic acid. In our binding poses, 9-NAc and 9-OAc Sias bind similarly, suggesting an experimentally reasonable mimic to probe viral mechanisms.
Collapse
Affiliation(s)
- Lisa Oh
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Guo H, Li A, Lin HF, Liu MQ, Chen J, Jiang TT, Li B, Wang Y, Letko MC, Peng W, Shi ZL. The Glycan-Binding Trait of the Sarbecovirus Spike N-Terminal Domain Reveals an Evolutionary Footprint. J Virol 2022; 96:e0095822. [PMID: 35852351 PMCID: PMC9364788 DOI: 10.1128/jvi.00958-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.
Collapse
Affiliation(s)
- Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ting-Ting Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael C. Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Wenjie Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
18
|
Tiboldi A, Führer J, Schaubmayr W, Hunyadi-Gulyas E, Zach ML, Hochreiter B, Spittler A, Ullrich R, Markstaller K, Altmann F, Klein KU, Tretter V. Oxygen-Dependent Changes in the N-Glycome of Murine Pulmonary Endothelial Cells. Antioxidants (Basel) 2021; 10:1947. [PMID: 34943050 PMCID: PMC8750181 DOI: 10.3390/antiox10121947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Supplemental oxygen is frequently used together with mechanical ventilation to achieve sufficient blood oxygenation. Despite the undoubted benefits, it is vigorously debated whether too much oxygen can also have unpredicted side-effects. Uncertainty is also due to the fact that the molecular mechanisms are still insufficiently understood. The lung endothelium is covered with an exceptionally broad glycocalyx, carrying N- and O-glycans, proteoglycans, glycolipids and glycosaminoglycans. Glycan structures are not genetically determined but depend on the metabolic state and the expression level and activity of biosynthetic and glycan remodeling enzymes, which can be influenced by oxygen and the redox status of the cell. Altered glycan structures can affect cell interactions and signaling. In this study, we investigated the effect of different oxygen conditions on aspects of the glycobiology of the pulmonary endothelium with an emphasis on N-glycans and terminal sialylation using an in vitro cell culture system. We combined a proteomic approach with N-glycan structure analysis by LC-MS, qRT-PCR, sialic acid analysis and lectin binding to show that constant and intermittent hyperoxia induced time dependent changes in global and surface glycosylation. An siRNA approach identified St6gal1 as being primarily responsible for the early transient increase of α2-6 sialylated structures in response to hyperoxia.
Collapse
Affiliation(s)
- Akos Tiboldi
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Johannes Führer
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, 1090 Vienna, Austria; (J.F.); (F.A.)
| | - Wolfgang Schaubmayr
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Eva Hunyadi-Gulyas
- Laboratory of Proteomics Research, Biological Research Centre, 6726 Szeged, Hungary;
| | - Marie Louise Zach
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Beatrix Hochreiter
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Andreas Spittler
- Department of Surgery and Core Facility Flow Cytometry, Medical University Vienna, 1090 Vienna, Austria;
| | - Roman Ullrich
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Friedrich Altmann
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, 1090 Vienna, Austria; (J.F.); (F.A.)
| | - Klaus Ulrich Klein
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| | - Verena Tretter
- Department of Anesthesia, General Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria; (A.T.); (W.S.); (M.L.Z.); (B.H.); (R.U.); (K.M.); (K.U.K.)
| |
Collapse
|