1
|
Zahran M, Tian S, Li J, Marei AH, Xie Y, Liu Q, Huang J, Wang D, Ning X, Wang J, Chi H, Li X. Noble metal/metal-organic framework nanoparticle-based electrochemical sensors for evaluating fish quality: a comprehensive review. RSC Adv 2025; 15:10801-10815. [PMID: 40196815 PMCID: PMC11974247 DOI: 10.1039/d5ra00984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Fish quality is a big-picture issue because of the possible presence of many chemical and biological pollutants, that may affect fish leading to environmental and health hazards. In this regard, researchers focus on developing efficient strategies for evaluating fish quality in terms of safety and freshness. Fish safety is determined based on assessing various pollutants, such as heavy metals, pesticides, dyes, and drugs, in fish tissue. Additionally, fish freshness evaluation is based on assessing some indicators including xanthine, hypoxanthine, uric acid, and histamine. Many chromatographic methods can assess all of these chemical indicators to evaluate the fish quality. However, these methods are expensive and often require sophisticated steps. Thus, electrochemical methods based on noble metal nanoparticles (NMNPs), metal-organic frameworks (MOFs) NPs, and their composites as electrode modifiers were investigated as potential replacements for the chromatographic ones. These materials showed high catalytic activity and electrical conductivity compared to the other electrode modifiers. In this review, we spotlight the role of NMNPs and MOF NPs in evaluating the quality of fish samples as a food source. Overall, NMNPs and MOF NPs are considered promising electrode materials for the electrochemical monitoring of fish quality.
Collapse
Affiliation(s)
- Moustafa Zahran
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Shuang Tian
- Nutrition Department, Guangdong Women and Children Hospital Guangzhou 511442 P. R. China
| | - Ji Li
- Office of Academic Research, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Amal H Marei
- Department of Chemistry, Faculty of Science, El-Menoufia University Shibin El-Kom 32512 Egypt
| | - Ying Xie
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Qiyu Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Jialin Huang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Dezhi Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Xingyao Ning
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Jiahao Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Huizhong Chi
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University Shenzhen 518055 P. R. China
| |
Collapse
|
2
|
Putnin T, Chanarsa S, Yaiwong P, Ngamaroonchote A, Aroonyadet N, Jakmunee J, Bamrungsap S, Laocharoensuk R, Ounnunkad K. Unraveling the Impact of Polyethylenimine-Coated Gold Nanoparticle Size on the Efficiency of Sandwich-Style Electrochemical Immunosensors. ACS MEASUREMENT SCIENCE AU 2025; 5:96-108. [PMID: 39991027 PMCID: PMC11843508 DOI: 10.1021/acsmeasuresciau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Sometimes, smaller size is not always better, and looking for nanomaterials that offer better device performance requires consideration of their properties at the first stage. In this study, the effects of the size of polyethylenimine-capped AuNPs (PEI-AuNPs) and proteins on the immunosensor performances, namely, sensitivity and limit of detection, are examined. The size-effect investigation of PEI-AuNPs involves their modification on the surface of disposable screen-printed carbon electrodes to support primary antibodies and their ability to load secondary antibodies and redox probes to perform amplification in the immunosensor. The correlation of the average size, electrochemical activities, protein size, and device property of PEI-AuNPs is investigated. The synthesized PEI-AuNPs with different average diameters ranging from 4.7 to 44.9 nm are employed for the investigation. When the sensor surface forms a sandwich architecture, the detection employs the current response of Ag+ ions on the PEI-AuNPs bioconjugate, which greatly increases by increasing the protein concentration. In addition, the best electrochemical signal of PEI-AuNPs or their antibody complexes with a unique AuNPs' average size allows superior signal amplification. The effect of using different sizes of target proteins on their devices is not significantly observed. Although in general small-sized nanomaterials offer high active surface areas, which can improve the electrode surface, reactivity, and device performance, we observe that the medium size of PEI-AuNPs (16.3 nm) gives the best sensitivity and detection limit of this sensor type. Therefore, the finding is useful for considering and optimizing their sizes for tunable voltammetric properties and acquiring a superior sensor.
Collapse
Affiliation(s)
- Thitirat Putnin
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Supakeit Chanarsa
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Patrawadee Yaiwong
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Aroonsri Ngamaroonchote
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Noppadol Aroonyadet
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Jaroon Jakmunee
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Suwussa Bamrungsap
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Rawiwan Laocharoensuk
- National
Nanotechnology Center (NANOTEC), National Science and Technology Development
Agency (NSTDA), Pathum
Thani 12120, Thailand
| | - Kontad Ounnunkad
- Department
of Chemistry, Faculty of Science, Chiang
Mai University, Chiang
Mai 50200, Thailand
- Center
of Excellence for Innovation in Chemistry, Chiang Mai University, Chiang
Mai 50200, Thailand
| |
Collapse
|
3
|
Teimouri H, Taheri S, Saidabad FE, Nakazato G, Maghsoud Y, Babaei A. New insights into gold nanoparticles in virology: A review of their applications in the prevention, detection, and treatment of viral infections. Biomed Pharmacother 2025; 183:117844. [PMID: 39826358 DOI: 10.1016/j.biopha.2025.117844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Viral infections have led to the deaths of millions worldwide and come with significant economic and social burdens. Emerging viral infections, as witnessed with coronavirus disease 2019 (COVID-19), can profoundly affect all aspects of human life, highlighting the imperative need to develop diagnostic, therapeutic, and effective control strategies in response. Numerous studies highlight the diverse applications of nanoparticles in diagnosing, controlling, preventing, and treating viral infections. Due to favorable and flexible physicochemical properties, small size, immunogenicity, biocompatibility, high surface-to-volume ratio, and the ability to combine with antiviral agents, gold nanoparticles (AuNPs) have shown great potential in the fight against viruses. The physical and chemical properties, the adjustability of characteristics based on the type of application, the ability to cross the blood-brain barrier, the ability to infiltrate cells such as phagocytic and dendritic cells, and compatibility for complexing with various compounds, among other features, transform AuNPs into a suitable tool for combating and addressing pathogenic viral agents through multiple applications. In recent years, AuNPs have been employed in various applications to fight viral infections. However, a comprehensive review article on the applications of AuNPs against viral infections has yet to be available. Given their versatility, AuNPs present an appealing option to address various gaps in combating viral infections. Hence, this review explores the attributes, antiviral properties, contributions to drug delivery, vaccine development, and diagnostic uses of AuNPs.
Collapse
Affiliation(s)
- Hossein Teimouri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shiva Taheri
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Parana State CP6001, Brazil
| | - Yazdan Maghsoud
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Nguyen NN, Nguyen NT, Nguyen PT, Phan QN, Le TL, Do HDK. Current and emerging nanotechnology for sustainable development of agriculture: Implementation design strategy and application. Heliyon 2024; 10:e31503. [PMID: 38818209 PMCID: PMC11137568 DOI: 10.1016/j.heliyon.2024.e31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Recently, agriculture systems have faced numerous challenges involving sustainable nutrient use efficiency and feeding, environmental pollution especially heavy metals (HMs), infection of harmful microorganisms, and maintenance of crop production quality during postharvesting and packaging. Nanotechnology and nanomaterials have emerged as powerful tools in agriculture applications that provide alternatives or support traditional methods. This review aims to address and highlight the current overarching issue and various implementation strategies of nanotechnology for sustainable agriculture development. In particular, the current progress of different nano-fertilizers (NFs) systems was analyzed to show their advances in enhancing the uptake and translocations in plants and improving nutrient bioavailability in soil. Also, the design strategy and application of nanotechnology for rapid detection of HMs and pathogenic diseases in plant crops were emphasized. The engineered nanomaterials have great potential for biosensors with high sensitivity and selectivity, high signal throughput, and reproducibility through various detection approaches such as Raman, colorimetric, biological, chemical, and electrical sensors. We obtain that the development of microfluidic and lab-on-a-chip (LoC) technologies offers the opportunity to create on-site portable and smart biodevices and chips for real-time monitoring of plant diseases. The last part of this work is a brief introduction to trends in nanotechnology for harvesting and packaging to provide insights into the overall applications of nanotechnology for crop production quality. This review provides the current advent of nanotechnology in agriculture, which is essential for further studies examining novel applications for sustainable agriculture.
Collapse
Affiliation(s)
- Nhat Nam Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Ngoc Trai Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Phuong Thuy Nguyen
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Quoc Nam Phan
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Truc Linh Le
- School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, 87000, Viet Nam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City, Viet Nam
| |
Collapse
|
5
|
Valerio TL, Anastácio R, da Silva SS, de Oliveira CC, Vidotti M. An overview of electrochemical biosensors used for COVID-19 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2164-2176. [PMID: 38536084 DOI: 10.1039/d3ay02042h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease. Traditional approaches such as the enzyme-linked immunosorbent assay (ELISA), were extensively used during the SARS-CoV-2 pandemic, but their drawbacks, including slow response time, became evident. In this context, the potential of electrochemical biosensors as an alternative for COVID-19 detection was emphasized. These biosensors merge electrochemical technology with bioreceptors, offering benefits such as rapidity, accuracy, portability, and real-time result provision. Additionally, we present instances of electrochemical biosensors modified with conductive polymers, eliminating the necessity for an electrochemical probe. The adaptability of the developed materials and devices facilitated the prompt production of electrochemical biosensors during the pandemic, creating opportunities for broader applications in infectious disease diagnosis.
Collapse
Affiliation(s)
- Tatiana Lima Valerio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Raquel Anastácio
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| | - Stella Schuster da Silva
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas (LCIN) e Laboratório de Investigação de Polissacarídeos Sulfatados (LIPS), Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Marcio Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Dubey S, Virmani T, Yadav SK, Sharma A, Kumar G, Alhalmi A. Breaking Barriers in Eco-Friendly Synthesis of Plant-Mediated Metal/Metal Oxide/Bimetallic Nanoparticles: Antibacterial, Anticancer, Mechanism Elucidation, and Versatile Utilizations. JOURNAL OF NANOMATERIALS 2024; 2024:1-48. [DOI: 10.1155/2024/9914079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nanotechnology has emerged as a promising field in pharmaceutical research, involving producing unique nanoscale materials with sizes up to 100 nm via physiochemical and biological approaches. Nowadays more emphasis has been given to eco-friendly techniques for developing nanomaterials to enhance their biological applications and minimize health and environmental risks. With the help of green nanotechnology, a wide range of green metal, metal oxide, and bimetallic nanoparticles with distinct chemical compositions, sizes, and morphologies have been manufactured which are safe, economical, and environment friendly. Due to their biocompatibility and vast potential in biomedical (antibacterial, anticancer, antiviral, analgesic, anticoagulant, biofilm inhibitory activity) and in other fields such as (nanofertilizers, fermentative, food, and bioethanol production, construction field), green metal nanoparticles have garnered significant interest worldwide. The metal precursors combined with natural extracts such as plants, algae, fungi, and bacteria to get potent novel metal, metal oxide, and bimetallic nanoparticles such as Ag, Au, Co, Cu, Fe, Zr, Zn, Ni, Pt, Mg, Ti, Pd, Cd, Bi2O3, CeO2, Co3O4, CoFe2O4, CuO, Fe2O3, MgO, NiO, TiO2, ZnO, ZrO2, Ag-Au, Ag-Cr, Ag-Cu, Ag-Zn, Ag-CeO2, Ag-CuO, Ag-SeO2, Ag-TiO2, Ag-ZnO, Cu-Ag, Cu-Mg, Cu-Ni, Pd-Pt, Pt-Ag, ZnO-CuO, ZnO-SeO, ZnO-Se, Se-Zr, and Co-Bi2O3. These plant-mediated green nanoparticles possess excellent antibacterial and anticancer activity when tested against several microorganisms and cancer cell lines. Plants contain essential phytoconstituents (polyphenols, flavonoids, terpenoids, glycosides, alkaloids, etc.) compared to other natural sources (bacteria, fungi, and algae) in higher concentration that play a vital role in the development of green metal, metal oxide, and bimetallic nanoparticles because these plant-phytoconstituents act as a reducing, stabilizing, and capping agent and helps in the development of green nanoparticles. After concluding all these findings, this review has been designed for the first time in such a way that it imparts satisfactory knowledge about the antibacterial and anticancer activity of plant-mediated green metal, metal oxide, and bimetallic nanoparticles together, along with antibacterial and anticancer mechanisms. Additionally, it provides information about characterization techniques (UV–vis, FT-IR, DLS, XRD, SEM, TEM, BET, AFM) employed for plant-mediated nanoparticles, biomedical applications, and their role in other industries. Hence, this review provides information about the antibacterial and anticancer activity of various types of plant-mediated green metal, metal oxide, and bimetallic nanoparticles and their versatile application in diverse fields which is not covered in other pieces of literature.
Collapse
Affiliation(s)
- Swati Dubey
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | | | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
| |
Collapse
|
7
|
Priyanka, Mohan B, Poonia E, Kumar S, Virender, Singh C, Xiong J, Liu X, Pombeiro AJL, Singh G. COVID-19 Virus Structural Details: Optical and Electrochemical Detection. J Fluoresc 2024; 34:479-500. [PMID: 37382834 DOI: 10.1007/s10895-023-03307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The increasing viral species have ruined people's health and the world's economy. Therefore, it is urgent to design bio-responsive materials to provide a vast platform for detecting a different family's passive or active virus. One can design a reactive functional unit for that moiety based on the particular bio-active moieties in viruses. Nanomaterials as optical and electrochemical biosensors have enabled better tools and devices to develop rapid virus detection. Various material science platforms are available for real-time monitoring and detecting COVID-19 and other viral loads. In this review, we discuss the recent advances of nanomaterials in developing the tools for optical and electrochemical sensing COVID-19. In addition, nanomaterials used to detect other human viruses have been studied, providing insights for developing COVID-19 sensing materials. The basic strategies for nanomaterials develop as virus sensors, fabrications, and detection performances are studied. Moreover, the new methods to enhance the virus sensing properties are discussed to provide a gateway for virus detection in variant forms. The study will provide systematic information and working of virus sensors. In addition, the deep discussion of structural properties and signal changes will offer a new gate for researchers to develop new virus sensors for clinical applications.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal.
| | - Ekta Poonia
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Virender
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand, 246174, India
| | - Jichuan Xiong
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xuefeng Liu
- Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001, Lisbon, Portugal
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Avila-Quezada GD, Rai M. Novel nanotechnological approaches for managing Phytophthora diseases of plants. TRENDS IN PLANT SCIENCE 2023; 28:1070-1080. [PMID: 37085411 DOI: 10.1016/j.tplants.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Members of the Phytophthora genus are soil-dwelling pathogens responsible for diseases of several important plants. Among these, Phytophthora infestans causes late blight of potatoes, which was responsible for the Irish potato famine during the mid-19th century. Various strategies have been applied to control Phytophthora, including integrated management programs (IMPs) and quarantine, but without successful full management of the disease. Thus, there is a need to search for alternative tools. Here, we discuss the emerging role of nanomaterials in the detection and treatment of Phytophthora species, including slow delivery of agrochemicals (microbicides and pesticides). We propose integrating these tools into an IMP, which could lead to a reduction in pesticide use and provide more effective and sustainable control of Phytophthora pathogens.
Collapse
Affiliation(s)
- Graciela Dolores Avila-Quezada
- Universidad Autonoma de Chihuahua, Facultad de Ciencias Agrotecnologicas, Escorza 900, Chihuahua, Chihuahua 31000, Mexico.
| | - Mahendra Rai
- Sant Gadge Baba Amravati University, Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra 444602, India; Nicolaus Copernicus University, Department of Microbiology, 87-100 Toruń, Poland.
| |
Collapse
|
10
|
Rodriguez Barroso LG, Lanzagorta Garcia E, Mojicevic M, Alkan Tas B, Huerta M, Pogue R, Devine DM, Brennan-Fournet M. Triangular Silver Nanoplates as a Bioanalytical Tool: Potential COVID-19 Detection. Int J Mol Sci 2023; 24:11974. [PMID: 37569350 PMCID: PMC10418913 DOI: 10.3390/ijms241511974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Nanotechnology offers new possibilities in molecular diagnostics, with nanoparticles gaining attention as biosensor upgrades. This study evaluates gold-coated silver nanoplates coated with PEG for enhanced protection, aiming to detect Spike protein with higher sensitivity, and emphasizes the importance of considering complex environments and appropriate controls for specific binding and accurate analysis. The sensitivity of antibody-coated PEGAuTSNPs as tools for immunoassays is demonstrated through fibronectin (Fn)- anti-fibronectin binding within an isolated extracellular matrix as a complex and native environment of Fn. Moreover, the optimal functionalization volume of Spike protein was determined (4 µg/mL of PEGAuTSNP). Anti-Spike was added to confirm binding, while the TJP1 protein was used as a negative control. The same experiment was used in the presence of horse serum to simulate a complex environment. According to Localized Surface Plasmon Resonance analysis and Dynamic Light Scattering size measurements, anti-Spike exhibited a stronger affinity for the nanoplates, causing TJP1 to be replaced by the antibody on the nanoplates' surface. Future research will involve exploring alternative complex environments, filtering larger molecules, and the optimization of immunoassay performance.
Collapse
Affiliation(s)
- Laura G. Rodriguez Barroso
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| | - Eduardo Lanzagorta Garcia
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| | - Marija Mojicevic
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| | - Buket Alkan Tas
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| | - Miriam Huerta
- Physics Institute, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78295, Mexico;
| | - Robert Pogue
- Campus Asa Norte, Universidade Católica de Brasília, SGAN Módulo B 916 Avenida W5, Brasilia 70790-160, Brazil;
| | - Declan M. Devine
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| | - Margaret Brennan-Fournet
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Rd, N37 HD68 Athlone, Ireland; (L.G.R.B.); (E.L.G.); (B.A.T.); (D.M.D.); (M.B.-F.)
| |
Collapse
|
11
|
Pallavi P, Harini K, Elboughdiri N, Gowtham P, Girigoswami K, Girigoswami A. Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy. ADMET AND DMPK 2023; 11:513-531. [PMID: 37937246 PMCID: PMC10626507 DOI: 10.5599/admet.1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Indexed: 11/09/2023] Open
Abstract
Background and purpose The pandemic of COVID-19 has highlighted the need for managing infectious diseases, which spreads by airborne transmission leading to serious health, social, and economic issues. SARS-CoV-2 is an enveloped virus with a 60-140 nm diameter and particle-like features, which majorly accounts for this disease. Expanding diagnostic capabilities, developing safe vaccinations with long-lasting immunity, and formulating effective medications are the strategies to be investigated. Experimental approach For the literature search, electronic databases such as Scopus, Google Scholar, MEDLINE, Embase, PubMed, and Web of Science were used as the source. Search terms like 'Nano-mediated PDT,' 'PDT for SARS-CoV-2', and 'Nanotechnology in treatment for SARS-CoV-2' were used. Out of 275 initially selected articles, 198 were chosen after the abstract screening. During the full-text screening, 80 papers were excluded, and 18 were eliminated during data extraction. Preference was given to articles published from 2018 onwards, but a few older references were cited for their valuable information. Key results Synthetic nanoparticles (NPs) have a close structural resemblance to viruses and interact greatly with their proteins due to their similarities in the configurations. NPs had previously been reported to be effective against a variety of viruses. In this way, with nanoparticles, photodynamic therapy (PDT) can be a viable alternative to antibiotics in fighting against microbial infections. The protocol of PDT includes the activation of photosensitizers using specific light to destroy microorganisms in the presence of oxygen, treating several respiratory diseases. Conclusion The use of PDT in treating COVID-19 requires intensive investigations, which has been reviewed in this manuscript, including a computational approach to formulating effective photosensitizers.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603103, India
| |
Collapse
|
12
|
Shukla S, Mehata MS. Selective picomolar detection of carcinogenic chromium ions using silver nanoparticles capped via biomolecules from flowers of Plumeria obtusa. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Ang PC, Perumal V, Ibrahim MNM, Adnan R, Mohd Azman DK, Gopinath SCB, Raja PB. Electrochemical biosensor detection on respiratory and flaviviruses. Appl Microbiol Biotechnol 2023; 107:1503-1513. [PMID: 36719432 PMCID: PMC9887245 DOI: 10.1007/s00253-023-12400-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Viruses have spread throughout the world and cause acute illness or death among millions of people. There is a growing concern about methods to control and combat early-stage viral infections to prevent the significant public health problem. However, conventional detection methods like polymerase chain reaction (PCR) requires sample purification and are time-consuming for further clinical diagnosis. Hence, establishing a portable device for rapid detection with enhanced sensitivity and selectivity for the specific virus to prevent further spread becomes an urgent need. Many research groups are focusing on the potential of the electrochemical sensor to become a key for developing point-of-care (POC) technologies for clinical analysis because it can solve most of the limitations of conventional diagnostic methods. Herein, this review discusses the current development of electrochemical sensors for the detection of respiratory virus infections and flaviviruses over the past 10 years. Trends in future perspectives in rapid clinical detection sensors on viruses are also discussed. KEY POINTS: • Respiratory related viruses and Flavivirus are being concerned for past decades. • Important to differentiate the cross-reactivity between the virus in same family. • Electrochemical biosensor as a suitable device to detect viruses with high performance.
Collapse
Affiliation(s)
- Phaik Ching Ang
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
- Mechanical Engineering Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
| | | | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Daruliza Kernain Mohd Azman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
| | - Pandian Bothi Raja
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
15
|
Choi HK, Yoon J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. BIOSENSORS 2023; 13:208. [PMID: 36831973 PMCID: PMC9953881 DOI: 10.3390/bios13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv Healthc Mater 2023; 12:e2201501. [PMID: 36300601 DOI: 10.1002/adhm.202201501] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.
Collapse
Affiliation(s)
- Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | | | | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
17
|
Osaki S, Espulgar WV, Wakida SI, Saito M, Tamiya E. Optimization of electrochemical analysis for signal amplification in gold nanoparticle-probed immunoassays. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. ENVIRONMENTAL RESEARCH 2022; 214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industrial society, phenolic pollutants already identified in water are severe threats to human health. Traditional detection techniques like chromatography are poor in the ability of cost-effectiveness and on-site detection. In recent years, electrochemical enzymatic biosensors have attracted increasing attention for use in the recognition of phenolic compounds, which is considered an effective strategy for the product transfer of portable analytical devices. Although electrochemical enzymatic biosensors provide a fast, accurate on-site detection technique, the difficulties of enzyme deactivation, poor stability and low sensitivity remain to be solved. Thus, effective immobilization methods of enzymes and nanomaterials with excellent properties have been extensively researched to obtain a high-sensitivity and high-stability biosensing platform. Simultaneous detection of multiple phenols may become the focus of further research. In this review, we provide an overview of recent progress toward electrochemical enzymatic biosensors for the detection of phenolic compounds, including enzyme immobilization approaches and advanced nanomaterials, especially nanocomposites with attractive properties such as good conductivity, high specific surface area, and porous structure. We will comprehensively discuss the features and mechanisms of the main enzymes adopted in the construction of different phenolic biosensors, as well as traditional methods (e.g., adsorption, covalent bonding, entrapment, encapsulation, cross-linking) of enzyme immobilization. The most effective method is based on the properties of enzymes, supports and application objective because there is no one-size-fits-all method of enzymatic immobilization. The emphasis will be given to various advanced nanomaterials, including their special nanostructures, preparation methods and performance. Finally, the main challenges in future research on electrochemical phenolic biosensors will be discussed to provide further perspectives for practical applications in dynamic and on-site monitoring. We believe this review will deliver an important inspiration for the construction of novel and high-performance electrochemical biosensors from enzyme selection to nanomaterial design for the detection of various hazardous materials. We believe this review will deliver an important inspiration on the construction of novel and high-performance electrochemical biosensors from the enzyme selection to the nanomaterial design for detections of various hazardous materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jing Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengkun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
19
|
Salmasi Z, Rouhi N, Safarpour H, Zebardast N, Zare H. The Recent Progress in DNAzymes-Based Aptasensors for Thrombin Detection. Crit Rev Anal Chem 2022; 54:818-839. [PMID: 35867568 DOI: 10.1080/10408347.2022.2098671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thrombin (TB) is classified among human blood coagulation proteins with key functions in hemostasis of blood vessels, wound healing, atherosclerosis, tissue adhesion, etc. Moreover, TB is involved as the main enzyme in the conversion of the fibrinogen to fibrin. Given the importance of TB detection in the clinical area, the development of innovative methods can considerably improve TB detection. Newly, aptasensors or aptamer-based biosensors have received special attention for sensitive and facile TB detection. In addition, the aptamer/nanomaterial conjugates have presented new prospects in accurate TB detection as nanoaptasensors. DNA-based enzymes or DNAzymes, as new biocatalysts, have many advantages over protein enzymes and can be used in analytical tools. This article reviews a brief overview of significant progresses regarding the various types of DNAzymes-based aptasensors and nano aptasensors developed for thrombin detection. In the following, challenges and prospects of TB detection by DNAzymes-based aptasensors are discussed.
Collapse
Affiliation(s)
- Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadiyeh Rouhi
- Seafood Processing Department, Marine Science Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nozhat Zebardast
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Perumal S, Atchudan R, Rühl E, Graf C. Controlled Synthesis of Platinum and Silver Nanoparticles Using Multivalent Ligands. NANOMATERIALS 2022; 12:nano12132294. [PMID: 35808130 PMCID: PMC9268602 DOI: 10.3390/nano12132294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Here, the controlled formation of platinum nanoparticles (PtNPs) and silver nanoparticles (AgNPs) using amine-functionalized multivalent ligands are reported. The effects of reaction temperature and ligand multivalency on the growth kinetics, size, and shape of PtNPs and AgNPs were systematically studied by performing a stepwise and a one-step process. PtNPs and AgNPs were prepared in the presence of amine ligands using platinum (II) acetylacetonate and silver (I) acetylacetonate, respectively. The effects of ligands and temperature on the formation of PtNPs were studied using a transmission electron microscope (TEM). For the characterization of AgNPs, additionally, ultraviolet-visible (UV-Vis) absorption was employed. The TEM measurements revealed that PtNPs prepared at different temperatures (160–200 °C, in a stepwise process) are monodispersed and of spherical shape regardless of the ligand multivalency or reaction temperature. In the preparation of PtNPs by the one-step process, ligands affect the shape of the PtNPs, which can be explained by the affinity of the ligands. The TEM and UV-Vis absorption studies on the formation of AgNPs with mono-, di-, and trivalent ligands showed narrower size distributions, while increasing the temperature from 80 °C to 120 °C and with a trivalent ligand in a one-step process.
Collapse
Affiliation(s)
- Suguna Perumal
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Sejong University, Seoul 143747, Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Eckart Rühl
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Correspondence: (E.R.); (C.G.)
| | - Christina Graf
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry and Biotechnology, Darmstadt University of Applied Sciences, 64295 Darmstadt, Germany
- Correspondence: (E.R.); (C.G.)
| |
Collapse
|
21
|
Minh Ngo H, Drobnyh E, Sukharev M, Khuong Vo Q, Zyss J, Ledoux‐Rak I. High Yield Synthesis and Quadratic Nonlinearities of Gold Nanoprisms in Solution: the Role of Corner Sharpness. Isr J Chem 2022. [DOI: 10.1002/ijch.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hoang Minh Ngo
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Elena Drobnyh
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
| | - Maxim Sukharev
- College of Integrative Science and Arts Arizona State University Mesa Arizona 85212 USA
- Department of Physics Arizona State University Tempe Arizona 85287 USA
| | - Quoc Khuong Vo
- Faculty of Chemistry Ho Chi Minh City University of Science Vietnam National University 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
| | - Joseph Zyss
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Isabelle Ledoux‐Rak
- Laboratoire Lumière, Matière et Interfaces UMR 8537 Ecole Normale Supérieure Paris-Saclay CentraleSupélec CNRS Université Paris-Saclay 91190 Gif-sur-Yvette France
| |
Collapse
|
22
|
Kannan P, Maduraiveeran G. Bimetallic Nanomaterials-Based Electrochemical Biosensor Platforms for Clinical Applications. MICROMACHINES 2021; 13:mi13010076. [PMID: 35056240 PMCID: PMC8779820 DOI: 10.3390/mi13010076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Diabetes is a foremost health issue that results in ~4 million deaths every year and ~170 million people suffering globally. Though there is no treatment for diabetes yet, the blood glucose level of diabetic patients should be checked closely to avoid further problems. Screening glucose in blood has become a vital requirement, and thus the fabrication of advanced and sensitive blood sugar detection methodologies for clinical analysis and individual care. Bimetallic nanoparticles (BMNPs) are nanosized structures that are of rising interest in many clinical applications. Although their fabrication shares characteristics with physicochemical methodologies for the synthesis of corresponding mono-metallic counterparts, they can display several interesting new properties and applications as a significance of the synergetic effect between their two components. These applications can be as diverse as clinical diagnostics, anti-bacterial/anti-cancer treatments or biological imaging analyses, and drug delivery. However, the exploitation of BMNPs in such fields has received a small amount of attention predominantly due to the vital lack of understanding and concerns mainly on the usage of other nanostructured materials, such as stability and bio-degradability over extended-time, ability to form clusters, chemical reactivity, and biocompatibility. In this review article, a close look at bimetallic nanomaterial based glucose biosensing approaches is discussed, concentrating on their clinical applications as detection of glucose in various real sample sources, showing substantial development of their features related to corresponding monometallic counterparts and other existing used nanomaterials for clinical applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Correspondence: (P.K.); (G.M.); Tel.: +86-19857386580 (P.K.); +91-9843911472 (G.M.)
| |
Collapse
|
23
|
Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, Arsad N. Human Body Performance with COVID-19 Affectation According to Virus Specification Based on Biosensor Techniques. SENSORS (BASEL, SWITZERLAND) 2021; 21:8362. [PMID: 34960456 PMCID: PMC8704003 DOI: 10.3390/s21248362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
Collapse
Affiliation(s)
- Mohammed Jawad Ahmed Alathari
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhafizah Burham
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Mohd Saiful Dzulkefly Bin Zan
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Ahmad Ashrif A Bakar
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| | - Norhana Arsad
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia; (M.J.A.A.); (M.H.H.M.); (N.B.); (M.S.D.B.Z.); (A.A.A.B.)
| |
Collapse
|
24
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|