1
|
Shen B, Pade LR, Nemes P. Data-Independent Acquisition Shortens the Analytical Window of Single-Cell Proteomics to Fifteen Minutes in Capillary Electrophoresis Mass Spectrometry. J Proteome Res 2025; 24:1549-1559. [PMID: 39325989 PMCID: PMC11936843 DOI: 10.1021/acs.jproteome.4c00491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Separation in single-cell mass spectrometry (MS) improves molecular coverage and quantification; however, it also elongates measurements, thus limiting analytical throughput to study large populations of cells. Here, we advance the speed of bottom-up proteomics by capillary electrophoresis (CE) high-resolution mass spectrometry (MS) for single-cell proteomics. We adjust the applied electrophoresis potential to readily control the duration of electrophoresis. On the HeLa proteome standard, shorter separation times curbed proteome detection using data-dependent acquisition (DDA) but not data-independent acquisition (DIA) on an Orbitrap analyzer. This DIA method identified 1161 proteins vs 401 proteins by the reference DDA within a 15 min effective separation from single HeLa-cell-equivalent (∼200 pg) proteome digests. Label-free quantification found these exclusively DIA-identified proteins in the lower domain of the concentration range, revealing sensitivity improvement. The approach also significantly advanced the reproducibility of quantification, where ∼76% of the DIA-quantified proteins had <20% coefficient of variation vs ∼43% by DDA. As a proof of principle, the method allowed us to quantify 1242 proteins in subcellular niches in a single, neural-tissue fated cell in the live Xenopus laevis (frog) embryo, including many canonical components of organelles. DIA integration enhanced throughput by ∼2-4 fold and sensitivity by a factor of ∼3 in single-cell (subcellular) CE-MS proteomics.
Collapse
Affiliation(s)
- Bowen Shen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leena R Pade
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Sanchez-Avila X, de Oliveira RM, Huang S, Wang C, Kelly RT. Trends in Mass Spectrometry-Based Single-Cell Proteomics. Anal Chem 2025; 97:5893-5907. [PMID: 40091206 PMCID: PMC12003028 DOI: 10.1021/acs.analchem.5c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Raphaela M de Oliveira
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Chao Wang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
3
|
Shen B, Zhou F, Nemes P. Electrophoresis-Correlative Ion Mobility Deepens Single-Cell Proteomics in Capillary Electrophoresis Mass Spectrometry. Mol Cell Proteomics 2025; 24:100892. [PMID: 39674510 PMCID: PMC11875174 DOI: 10.1016/j.mcpro.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition. Here, we demonstrate that these correlations based on electrophoretic mobility (μef) in the liquid phase are transferred into the gas phase, essentially temporally sorting the peptide ions into charge-dependent ion mobility (IM, 1/K0) trends (ρ > 0.97). Rather than sampling the entire IM region broadly, we pursued these predictable correlations to schedule narrower frames. Compared to classical data-dependent (dda) PASEF, Eco-framing significantly enhanced the resolution of IM MS (IMS) on a trapped IM mass spectrometer (timsTOF PRO). This approach returned ∼50% more proteins from HeLa proteome digests approximating to one-to-two cells, identifying ∼962 proteins from ∼200 pg in <20 min of effective electrophoresis, without match-between-runs. As a proof of principle, we deployed Eco-IMS to detect 1157 proteins by analyzing <4% of the total proteome content in single, yolk-laden embryonic stem cells (∼80-μm) that were isolated from the animal cap of the South African clawed frog (Xenopus laevis). Quantitative profiling of nine different blastomeres revealed detectable differences among these cells, which are normally fated to form the ectoderm but retain pluripotentiality. Eco-framing in the IM dimension effectively deepens the proteome sensitivity in IMS using ddaPASEF, facilitating the proteome-driven classification of differentiating cells, as demonstrated in the chordate frog embryo in this report.
Collapse
Affiliation(s)
- Bowen Shen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Fei Zhou
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
4
|
Jia D, Nemes P. Development and Validation of RoboCap, a Robotic Capillary Platform to Automate Capillary Electrophoresis Mass Spectrometry En Route to High-Throughput Single-Cell Proteomics. Anal Chem 2024; 96:16985-16993. [PMID: 39383500 PMCID: PMC11660999 DOI: 10.1021/acs.analchem.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Current developments in single-cell mass spectrometry (MS) aim to deepen proteome coverage while enhancing analytical speed to study entire cell populations, one cell at a time. Custom-built microanalytical capillary electrophoresis (μCE) played a critical role in the foundation of discovery single-cell MS proteomics. However, requirements for manual operation, substantial expertise, and low measurement throughput have so far hindered μCE-based single-cell studies on large numbers of cells. Here, we design and construct a robotic capillary (RoboCap) platform that grants single-cell CE-MS with automation for proteomes limited to less than ∼100 nL. RoboCap remotely controls precision actuators to translate the sample to the fused silica separation capillary, using vials in this work. The platform is hermetically enclosed and actively pressurized to inject ∼1-250 nL of the sample into a CE separation capillary, with errors below ∼5% relative standard deviation (RSD). The platform and supporting equipment were operated and monitored remotely on a custom-written Virtual Instrument (LabView). Detection performance was validated empirically on ∼5-250 nL portions of the HeLa proteome digest using a trapped ion mobility mass spectrometer (timsTOF PRO). RoboCap improved CE-ESI sample utilization to ∼20% from ∼3% on the manual μCE, the closest reference technology. Proof-of-principle experiments found proteome identification and quantification to robustly return ∼1,800 proteins (∼13% RSD) from ∼20 ng of the HeLa proteome digest on this earlier-generation detector. RoboCap automates CE-MS for limited sample amounts, paving the way to electrophoresis-based high-throughput single-cell proteomics.
Collapse
Affiliation(s)
- Dashuang Jia
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Shen B, Chen J, Nemes P. Electrophoresis-Correlative Data-Independent Acquisition (Eco-DIA) Improves the Sensitivity of Mass Spectrometry for Limited Proteome Amounts. Anal Chem 2024; 96:15581-15587. [PMID: 39292951 DOI: 10.1021/acs.analchem.4c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Capillary zone electrophoresis (CE) combines high separation power, scalability, and speed to limited proteome analyses by mass spectrometry (MS). However, compressed separation in CE challenges the duty cycle of tandem MS, even during data-independent acquisition (DIA). To help remedy this limitation, we introduce the concept of electrophoresis-correlative (Eco) data acquisition for CE-MS. We recognize CE electrospray ionization (ESI) to sort peptide ions into reproducible mass-to-charge (m/z) vs migration time (MT) trends in the solution phase, before subsequent ionization and m/z analysis. We proposed that such a correlation can be leveraged to improve the economy of data acquisition. We test this hypothesis using DIA frames that are tailored to the observed m/z-MT trends. The resulting Eco-DIA method substantially improves the bandwidth utilization of tandem MS during CE-MS. In proof-of-principle studies, Eco-DIA identified and quantified ∼38% more proteins from 1 ng of the HeLa proteome digest compared to the classical DIA, without the assistance of a project-specific tandem MS spectral library. Eco-DIA was able to quantify ∼51% more proteins with <10% coefficient of variation vs the control DIA approach. Based on label-free quantification, the proteins that were exclusively measured by Eco-MS occupied the lower dynamic range of the detected proteome concentration, revealing sensitivity enhancement. In addition to marking the inception of Eco-MS, this work lays the foundation for the development of next-generation data acquisition strategies that leverage electrophoretic ion sorting for high-sensitivity proteomics.
Collapse
Affiliation(s)
- Bowen Shen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jerry Chen
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Shen B, Zhou F, Nemes P. Electrophoresis-Correlative Ion Mobility Deepens Single-cell Proteomics in Capillary Electrophoresis Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612533. [PMID: 39314322 PMCID: PMC11419038 DOI: 10.1101/2024.09.11.612533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Detection of trace-sensitive signals is a current challenge is single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition. Here, we demonstrate that these correlations based on electrophoretic mobility (µ ef ) in the liquid phase are transferred into the gas phase, essentially temporally ordering the peptide ions into charge-dependent ion mobility (IM, 1/K 0 ) trends (ρ > 0.97). Rather than sampling the entire IM region broadly, we pursued these predictable correlations to schedule narrower frames. Compared to classical ddaPASEF, Eco-framing significantly enhanced the resolution of IM on a trapped ion mobility mass spectrometer (timsTOF PRO). This approach returned ∼50% more proteins from HeLa proteome digests approximating to one-to-two cells, identifying ∼962 proteins from ∼200 pg in <20 min of effective electrophoresis, without match-between-runs. As a proof of principle, we deployed Eco-ddaPASEF on 1,157 proteins by analyzing <4% of the total proteome in single, yolk-laden embryonic stem cells (∼80-µm) that were isolated from the animal cap of the South African clawed frog ( Xenopus laevis ). Quantitative profiling of 9 different blastomeres revealed detectable differences among these cells, which are normally fated to form the ectoderm but retain pluripotentiality. Eco-framing effectively deepens the proteome sensitivity in IMS using ddaPASEF, raising the possibility of a proteome-driven classification of embryonic cell differentiation.
Collapse
|
7
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
8
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
9
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
11
|
Nalehua MR, Zaia J. A critical evaluation of ultrasensitive single-cell proteomics strategies. Anal Bioanal Chem 2024; 416:2359-2369. [PMID: 38358530 DOI: 10.1007/s00216-024-05171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Success of mass spectrometry characterization of the proteome of single cells allows us to gain a greater understanding than afforded by transcriptomics alone but requires clear understanding of the tradeoffs between analytical throughput and precision. Recent advances in mass spectrometry acquisition techniques, including updated instrumentation and sample preparation, have improved the quality of peptide signals obtained from single cell data. However, much of the proteome remains uncharacterized, and higher throughput techniques often come at the expense of reduced sensitivity and coverage, which diminish the ability to measure proteoform heterogeneity, including splice variants and post-translational modifications, in single cell data analysis. Here, we assess the growing body of ultrasensitive single-cell approaches and their tradeoffs as researchers try to balance throughput and precision in their experiments.
Collapse
Affiliation(s)
| | - Joseph Zaia
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biochemistry and Cell Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Truong T, Kelly RT. What's new in single-cell proteomics. Curr Opin Biotechnol 2024; 86:103077. [PMID: 38359605 PMCID: PMC11068367 DOI: 10.1016/j.copbio.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
13
|
Shen B, Pade LR, Nemes P. The 15-min (Sub)Cellular Proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580399. [PMID: 38405838 PMCID: PMC10888744 DOI: 10.1101/2024.02.15.580399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-cell mass spectrometry (MS) opens a proteomic window onto the inner workings of cells. Here, we report the discovery characterization of the subcellular proteome of single, identified embryonic cells in record speed and molecular coverage. We integrated subcellular capillary microsampling, fast capillary electrophoresis (CE), high-efficiency nano-flow electrospray ionization, and orbitrap tandem MS. In proof-of-principle tests, we found shorter separation times to hinder proteome detection using DDA, but not DIA. Within a 15-min effective separation window, CE data-independent acquisition (DIA) was able to identify 1,161 proteins from single HeLa-cell-equivalent (∼200 pg) proteome digests vs. 401 proteins by the reference data-dependent acquisition (DDA) on the same platform. The approach measured 1,242 proteins from subcellular niches in an identified cell in the live Xenopus laevis (frog) embryo, including many canonical components of organelles. CE-MS with DIA enables fast, sensitive, and deep profiling of the (sub)cellular proteome, expanding the bioanalytical toolbox of cell biology. Authorship Contributions P.N. and B.S. designed the study. L.R.P. collected the X. laevis cell aspirates. B.S. prepared and measured the samples. B.S. and P.N. analyzed the data and interpreted the results. P.N. and B.S. wrote the manuscript. All the authors commented on the manuscript.
Collapse
|
14
|
Marín-Vicente C, Calvo E, Rodríguez JM, Villa Del Campo C, Sierra R, Végvári Á, Zubarev RA, Torres M, Vázquez J. A Sample Preparation Procedure for Isobaric Labeling-Based Single-Cell Proteomics. Methods Mol Biol 2024; 2817:33-43. [PMID: 38907145 DOI: 10.1007/978-1-0716-3934-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mass spectrometry-based proteomics has traditionally been limited by the amount of input material for analysis. Single-cell proteomics has emerged as a challenging discipline due to the ultra-high sensitivity required. Isobaric labeling-based multiplex strategies with a carrier proteome offer an approach to overcome the sensitivity limitations. Following this as the basic strategy, we show here the general workflow for preparing cells for single-cell mass spectrometry-based proteomics. This protocol can also be applied to manually isolated cells when large cells, such as cardiomyocytes, are difficult to isolate properly with conventional fluorescence-activated cell sorting (FACS) sorter methods.
Collapse
Affiliation(s)
- Consuelo Marín-Vicente
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
| | - Enrique Calvo
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Manuel Rodríguez
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Cristina Villa Del Campo
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Rocío Sierra
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Ákos Végvári
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Miguel Torres
- Genetic Control of Development and Organ Regeneration Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- Proteomics Unit, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
15
|
Choi SB, Vatan T, Alexander TA, Zhang C, Mitchell SM, Speer CM, Nemes P. Microanalytical Mass Spectrometry with Super-Resolution Microscopy Reveals a Proteome Transition During Development of the Brain's Circadian Pacemaker. Anal Chem 2023; 95:15208-15216. [PMID: 37792996 PMCID: PMC10728713 DOI: 10.1021/acs.analchem.3c01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
During brain development, neuronal proteomes are regulated in part by changes in spontaneous and sensory-driven activity in immature neural circuits. A longstanding model for studying activity-dependent circuit refinement is the developing mouse visual system where the formation of axonal projections from the eyes to the brain is influenced by spontaneous retinal activity prior to the onset of vision and by visual experience after eye-opening. The precise proteomic changes in retinorecipient targets that occur during this developmental transition are unknown. Here, we developed a microanalytical proteomics pipeline using capillary electrophoresis (CE) electrospray ionization (ESI) mass spectrometry (MS) in the discovery setting to quantify developmental changes in the chief circadian pacemaker, the suprachiasmatic nucleus (SCN), before and after the onset of photoreceptor-dependent visual function. Nesting CE-ESI with trapped ion mobility spectrometry time-of-flight (TOF) mass spectrometry (TimsTOF PRO) doubled the number of identified and quantified proteins compared to the TOF-only control on the same analytical platform. From 10 ng of peptide input, corresponding to <∼0.5% of the total local tissue proteome, technical triplicate analyses identified 1894 proteins and quantified 1066 proteins, including many with important canonical functions in axon guidance, synapse function, glial cell maturation, and extracellular matrix refinement. Label-free quantification revealed differential regulation for 166 proteins over development, with enrichment of axon guidance-associated proteins prior to eye-opening and synapse-associated protein enrichment after eye-opening. Super-resolution imaging of select proteins using STochastic Optical Reconstruction Microscopy (STORM) corroborated the MS results and showed that increased presynaptic protein abundance pre/post eye-opening in the SCN reflects a developmental increase in synapse number, but not presynaptic size or extrasynaptic protein expression. This work marks the first development and systematic application of TimsTOF PRO for CE-ESI-based microproteomics and the first integration of microanalytical CE-ESI TimsTOF PRO with volumetric super-resolution STORM imaging to expand the repertoire of technologies supporting analytical neuroscience.
Collapse
Affiliation(s)
- Sam B. Choi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tarlan Vatan
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | | | - Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | | | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
16
|
Lohani V, A.R A, Kundu S, Akhter MDQ, Bag S. Single-Cell Proteomics with Spatial Attributes: Tools and Techniques. ACS OMEGA 2023; 8:17499-17510. [PMID: 37251119 PMCID: PMC10210017 DOI: 10.1021/acsomega.3c00795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Now-a-days, the single-cell proteomics (SCP) concept is attracting interest, especially in clinical research, because it can identify the proteomic signature specific to diseased cells. This information is very essential when dealing with the progression of certain diseases, such as cancer, diabetes, Alzheimer's, etc. One of the major drawbacks of conventional destructive proteomics is that it gives an average idea about the protein expression profile in the disease condition. During the extraction of the protein from a biopsy or blood sample, proteins may come from both diseased cells and adjacent normal cells or any other cells from the disease environment. Again, SCP along with spatial attributes is utilized to learn about the heterogeneous function of a single protein. Before performing SCP, it is necessary to isolate single cells. This can be done by various techniques, including fluorescence-activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture microdissection (LCM), microfluidics, manual cell picking/micromanipulation, etc. Among the different approaches for proteomics, mass spectrometry-based proteomics tools are widely used for their high resolution as well as sensitivity. This Review mainly focuses on the mass spectrometry-based approaches for the study of single-cell proteomics.
Collapse
Affiliation(s)
- Vartika Lohani
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Pharmacy, Banasthali
Vidyapith, Jaipur, Rajasthan 302001, India
| | - Akhiya A.R
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- PG Scholar, Department of Computational
Biology and Bioinformatics, University of
Kerala, Thiruvananthapuram, Kerala 695034, India
| | - Soumen Kundu
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - MD Quasid Akhter
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
| | - Swarnendu Bag
- CSIR
Institute of Genomics and Integrative Biology, New Delhi, Delhi 110025, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
17
|
Eshghi A, Xie X, Hardie D, Chen MX, Izaguirre F, Newman R, Zhu Y, Kelly RT, Goodlett DR. Sample Preparation Methods for Targeted Single-Cell Proteomics. J Proteome Res 2023. [PMID: 37093777 DOI: 10.1021/acs.jproteome.2c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We compared three cell isolation and two proteomic sample preparation methods for single-cell and near-single-cell analysis. Whole blood was used to quantify hemoglobin (Hb) and glycated-Hb (gly-Hb) in erythrocytes using targeted mass spectrometry and stable isotope-labeled standard peptides. Each method differed in cell isolation and sample preparation as follows: 1) FACS and automated preparation in one-pot for trace samples (autoPOTS); 2) limited dilution via microscopy and a novel rapid one-pot sample preparation method that circumvented the need for the solid-phase extraction, low-volume liquid handling instrumentation and humidified incubation chamber; and 3) CellenONE-based cell isolation and the same one-pot sample preparation method used for limited dilution. Only the CellenONE device routinely isolated single-cells from which Hb was measured to be 540-660 amol per red blood cell (RBC), which was comparable to the calculated SI reference range for mean corpuscular hemoglobin (390-540 amol/RBC). FACSAria sorter and limited dilution could routinely isolate single-digit cell numbers, to reliably quantify CMV-Hb heterogeneity. Finally, we observed that repeated measures, using 5-25 RBCs obtained from N = 10 blood donors, could be used as an alternative and more efficient strategy than single RBC analysis to measure protein heterogeneity, which revealed multimodal distribution, unique for each individual.
Collapse
Affiliation(s)
- Azad Eshghi
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Darryl Hardie
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Michael X Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Laboratory Medicine, Pathology, and Medical Genetics, Vancouver Island Health Authority, Vancouver, British Columbia V9A 2P8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Fabiana Izaguirre
- Cellenion SASU, 60 Avenue Rockefeller, Bâtiment BioSerra2, Lyon, Auvergne-Rhône-Alpes 69008, France
| | - Rachael Newman
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - David R Goodlett
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Pomerania 80-309, Poland
| |
Collapse
|
18
|
Lee DK, Rubakhin SS, Sweedler JV. Chemical Decrosslinking-Based Peptide Characterization of Formaldehyde-Fixed Rat Pancreas Using Fluorescence-Guided Single-Cell Mass Spectrometry. Anal Chem 2023; 95:6732-6739. [PMID: 37040477 DOI: 10.1021/acs.analchem.3c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Approaches for the characterization of proteins/peptides in single cells of formaldehyde-fixed (FF) tissues via mass spectrometry (MS) are still under development. The lack of a general method for selectively eliminating formaldehyde-induced crosslinking is a major challenge. A workflow is shown for the high-throughput peptide profiling of single cells isolated from FF tissues, here the rodent pancreas, which possesses multiple peptide hormones from the islets of Langerhans. The heat treatment is enhanced by a collagen-selective multistep thermal process assisting efficient isolation of islets from the FF pancreas and, subsequently, their dissociation into single islet cells. Hydroxylamine-based chemical decrosslinking helped restore intact peptide signals from individual isolated cells. Subsequently, an acetone/glycerol-assisted cell dispersion was optimized for spatially resolved cell deposition onto glass slides, while a glycerol solution maintained the hydrated state of the cells. This sample preparation procedure allowed peptide profiling in FF single cells by fluorescence-guided matrix-assisted laser desorption ionization MS. Here, 2594 single islet cells were analyzed and 28 peptides were detected, including insulin C-peptides and glucagon. T-distributed stochastic neighbor embedding (t-SNE) data visualization demonstrated that cells cluster based on cell-specific pancreatic peptide hormones. This workflow expands the sample availability for single-cell MS characterization to a wide range of formaldehyde-treated tissue specimens stored in biobanks.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Mansuri MS, Williams K, Nairn AC. Uncovering biology by single-cell proteomics. Commun Biol 2023; 6:381. [PMID: 37031277 PMCID: PMC10082756 DOI: 10.1038/s42003-023-04635-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/25/2023] [Indexed: 04/10/2023] Open
Abstract
Recent technological advances have opened the door to single-cell proteomics that can answer key biological questions regarding how protein expression, post-translational modifications, and protein interactions dictate cell state in health and disease.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center and Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kenneth Williams
- Yale/NIDA Neuroproteomics Center and Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center and Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Park J, Yu F, Fulcher JM, Williams SM, Engbrecht K, Moore RJ, Clair GC, Petyuk V, Nesvizhskii AI, Zhu Y. Evaluating Linear Ion Trap for MS3-Based Multiplexed Single-Cell Proteomics. Anal Chem 2023; 95:1888-1898. [PMID: 36637389 DOI: 10.1021/acs.analchem.2c03739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a growing demand to develop high-throughput and high-sensitivity mass spectrometry methods for single-cell proteomics. The commonly used isobaric labeling-based multiplexed single-cell proteomics approach suffers from distorted protein quantification due to co-isolated interfering ions during MS/MS fragmentation, also known as ratio compression. We reasoned that the use of MS3-based quantification could mitigate ratio compression and provide better quantification. However, previous studies indicated reduced proteome coverages in the MS3 method, likely due to long duty cycle time and ion losses during multilevel ion selection and fragmentation. Herein, we described an improved MS acquisition method for MS3-based single-cell proteomics by employing a linear ion trap to measure reporter ions. We demonstrated that linear ion trap can increase the proteome coverages for single-cell-level peptides with even higher gain obtained via the MS3 method. The optimized real-time search MS3 method was further applied to study the immune activation of single macrophages. Among a total of 126 single cells studied, over 1200 and 1000 proteins were quantifiable when at least 50 and 75% nonmissing data were required, respectively. Our evaluation also revealed several limitations of the low-resolution ion trap detector for multiplexed single-cell proteomics and suggested experimental solutions to minimize their impacts on single-cell analysis.
Collapse
Affiliation(s)
- Junho Park
- Department of Pharmacology, School of Medicine, CHA University, Seongnam-si, Gyeonggi-do, Seongnam 13488, Republic of Korea
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristin Engbrecht
- Nuclear, Chemistry, and Biology Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109-1382, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Recent advances in nanowire sensor assembly using laminar flow in open space. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Recent advances in the hyphenation of electromigration techniques with mass spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Cupp-Sutton KA, Fang M, Wu S. Separation methods in single-cell proteomics: RPLC or CE? INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 481:116920. [PMID: 36211475 PMCID: PMC9542495 DOI: 10.1016/j.ijms.2022.116920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.
Collapse
Affiliation(s)
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
24
|
Arias-Hidalgo C, Juanes-Velasco P, Landeira-Viñuela A, García-Vaquero ML, Montalvillo E, Góngora R, Hernández ÁP, Fuentes M. Single-Cell Proteomics: The Critical Role of Nanotechnology. Int J Mol Sci 2022; 23:6707. [PMID: 35743151 PMCID: PMC9224324 DOI: 10.3390/ijms23126707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
In single-cell analysis, biological variability can be attributed to individual cells, their specific state, and the ability to respond to external stimuli, which are determined by protein abundance and their relative alterations. Mass spectrometry (MS)-based proteomics (e.g., SCoPE-MS and SCoPE2) can be used as a non-targeted method to detect molecules across hundreds of individual cells. To achieve high-throughput investigation, novel approaches in Single-Cell Proteomics (SCP) are needed to identify and quantify proteins as accurately as possible. Controlling sample preparation prior to LC-MS analysis is critical, as it influences sensitivity, robustness, and reproducibility. Several nanotechnological approaches have been developed for the removal of cellular debris, salts, and detergents, and to facilitate systematic sample processing at the nano- and microfluidic scale. In addition, nanotechnology has enabled high-throughput proteomics analysis, which have required the improvement of software tools, such as DART-ID or DO-MS, which are also fundamental for addressing key biological questions. Single-cell proteomics has many applications in nanomedicine and biomedical research, including advanced cancer immunotherapies or biomarker characterization, among others; and novel methods allow the quantification of more than a thousand proteins while analyzing hundreds of single cells.
Collapse
Affiliation(s)
- Carlota Arias-Hidalgo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Marina L. García-Vaquero
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
| | - Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
- Department of Pharmaceutical Sciences: Organic Chemistry, Faculty of Pharmacy, University of Salamanca, CIETUS, IBSAL, 37007 Salamanca, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (C.A.-H.); (P.J.-V.); (A.L.-V.); (M.L.G.-V.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|