1
|
Yosri N, Gao S, Zhou R, Wang C, Zou X, El-Seedi HR, Guo Z. Innovative quantum dots-based SERS for ultrasensitive reporting of contaminants in food: Fundamental concepts and practical implementations. Food Chem 2025; 467:142395. [PMID: 39667301 DOI: 10.1016/j.foodchem.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Food contamination poses serious health risks, compelling the discovery of new methods to guarantee regulatory compliance and build consumer conviction. Surface Enhanced Raman Spectroscopy (SERS) has come into sight as a sophisticated approach for the ultrasensitive discovery of toxins in food and water, proposing non-destructive, quick, and precise analysis. Instantaneously, quantum dots (QDs) are astonishing nanomaterials, characterized by distinctive attributes such as quantum confinement and optical photostability. This article extends a decisive outline of SERS technology, pointing out its amalgamation with QDs and discussing numerous augmentation approaches i.e., chemical enhancement, electromagnetic enhancement, Van Hove singularities, the Brus equation, Förster resonance energy transfer, band gap energy, and quantum yield. The amalgamation of SERS with QDs commands an important promise in international food security and conservational sustainability. Nevertheless, QDs provide several compensations, they also aspect a few concerns, counting probable toxicity, stability problems, and predisposition to interference. To tackle these items, further research is required to synthesize safer, more stable QD materials and to refine protocols for practical real-world applications. While some reviews on SERS have been published recently, to our knowledge, the current review is the first one dedicated to QDs-assisted SERS in food safety.
Collapse
Affiliation(s)
- Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Nam NN, Trinh TND, Do HDK, Phan TB, Trinh KTL, Lee NY. Advances and Opportunities of luminescence Nanomaterial for bioanalysis and diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125347. [PMID: 39486236 DOI: 10.1016/j.saa.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Luminescence nanomaterials (LNMs) have recently received great attention in biological analysis and sensing owing to their key advances in easy design and functionalization with high photostability, luminescence stability, low autofluorescence, and multiphoton capacity. The number of publications surrounding LNMs for biological applications has grown rapidly. LNMs based on Stokes and anti-Stokes shifts are powerful tools for biological analysis. Especially, unique properties of anti-Stokes luminescence such as upconversion nanoparticles (UCNPs) with an implementation strategy to use longer-wavelength excitation sources such as near-infrared (NIR) light can depth penetrate to biological tissue for bioanalysis and bioimaging. We observed that the LNMs-based metal-organic frameworks (MOFs) have been developed and paid attention to the field of bioimaging and luminescence-based sensors, because of their structural flexibility, and multifunctionality for the encapsulation of luminophores. This article provides an overview of innovative LNMs such as quantum dots (QDs), UCNPs, and LMOFs. A brief summary of recent progress in design strategies and applications of LNMs including pH and temperature sensing in biologically responsive platforms, pathogen detection, molecular diagnosis, bioimaging, photodynamic, and radiation therapy published within the past three years is highlighted. It was found that the integrated nanosystem of lab-on-a-chip (LOC) with nanomaterials was rapidly widespread and erupting in interest after the COVID-19 pandemic. The simple operation and close processes of the integration nanosystem together with the optimized size and low energy and materials consumption of biochips and devices allow their trend study and application to develop portable and intelligent diagnostics tools. The last part of this work is the introduction of the utilization use of LNMs in LOC applications in terms of microfluidics and biodevices.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 72820, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 72820, VietNam; Vietnam National University, Ho Chi Minh City 72820, VietNam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
3
|
Hiep Tran T, Thu Phuong Tran T. Current status of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Int Immunopharmacol 2024; 142:113085. [PMID: 39276455 DOI: 10.1016/j.intimp.2024.113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Immunogenic cell death (ICD) encompasses various forms of cell death modalities, including apoptosis, necroptosis, ferroptosis, and pyroptosis. It arises from a harmonious interplay of adjuvant (damage-associated molecular patterns-DAMPs and chemokines/cytokines) and antigenicity (tumor-associated antigens-TAA) to induce immune-reaction toward cancer cells. Inducing ICD stands out as a promising approach in cancer immunotherapy, capable of directly eliminating cancer cells and of eliciting enduring antitumor immune responses. Conventional tumor therapies like radiation therapy, photodynamic therapy, and chemotherapy can also induce ICD which could amplify their activities. The development of effective ICD inducers like nano-systems is crucial for ensuring safe and efficacious immunotherapy. Nanoparticles hold considerable promise in cancer therapy, offering enhanced therapeutic outcomes and mitigated side effects. They could be the capacity to adjust systemic biodistribution, augment the accumulation of therapeutic agents at the intended site and protect active agents from the complexity of human biofluid. This review aims to outline the role of nanoparticles in triggering ICD for cancer immunotherapy that potentially pave the way for cancer treatment.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Thi Thu Phuong Tran
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
4
|
Mei L, Zhang Y, Wang K, Chen S, Song T. Nanomaterials at the forefront of antimicrobial therapy by photodynamic and photothermal strategies. Mater Today Bio 2024; 29:101354. [PMID: 39655165 PMCID: PMC11626539 DOI: 10.1016/j.mtbio.2024.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
In the face of the increasing resistance of microorganisms to traditional antibiotics, the development of innovative treatment methods is becoming increasingly urgent. Nanophototherapy technology can precisely target the infected area and achieve synergistic antibacterial effects in multiple modes. This phototherapy method has shown significant efficacy in treating diseases caused by drug-resistant bacteria, especially in the elimination of biofilms, where it has demonstrated strong dissolution capabilities. PTT utilizes photothermal agents to convert near-infrared light into heat, effectively killing bacteria and promoting tissue regeneration. Similarly, PDT utilizes photosensitizers, which produce reactive oxygen species (ROS) when activated by light, destroying the structure and function of bacterial cells. This review summarizes photothermal agents and photosensitizers used for antibacterial purposes. In conducting our literature review, we employed a systematic approach to ensure a comprehensive and representative selection of studies. Additionally, this article explores the potential of phototherapy in regulating wound microenvironments, promoting wound healing, and activating the immune system. Nanophototherapeutic materials show great potential for application in antibacterial treatment and are expected to provide innovative solutions for drug-resistant bacterial infections that traditional antibiotics are struggling to address.
Collapse
Affiliation(s)
- Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Kaixi Wang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Sijing Chen
- Sichuan Electric Power Hospital, Chengdu, Sichuan Province, China
| | - Tao Song
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
5
|
Mohanaraman SP, Chidambaram R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 2024; 10:e35760. [PMID: 39220916 PMCID: PMC11365325 DOI: 10.1016/j.heliyon.2024.e35760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.
Collapse
Affiliation(s)
- Shanmuga Priya Mohanaraman
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: a comprehensive review. NANOSCALE ADVANCES 2024; 6:4015-4046. [PMID: 39114135 PMCID: PMC11304082 DOI: 10.1039/d4na00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterials (NMs) exhibit unique properties that render them highly suitable for developing sensitive and selective nanosensors across various domains. This review aims to provide a comprehensive overview of nanomaterial-based nanosensors, highlighting their applications and the classification of frequently employed NMs to enhance sensitivity and selectivity. The review introduces various classifications of NMs commonly used in nanosensors, such as carbon-based NMs, metal-based NMs, and others, elucidating their exceptional properties, including high thermal and electrical conductivity, large surface area-to-volume ratio and good biocompatibility. A thorough examination of literature sources was conducted to gather information on NMs-based nanosensors' characteristics, properties, and fabrication methods and their application in diverse sectors such as healthcare, environmental monitoring, industrial processes, and security. Additionally, advanced applications incorporating machine learning techniques were analyzed to enhance the sensor's performance. This review advances the understanding and development of nanosensor technologies by providing insights into fabrication techniques, characterization methods, applications, and future outlook. Key challenges such as robustness, biocompatibility, and scalable manufacturing are also discussed, offering avenues for future research and development in this field.
Collapse
Affiliation(s)
- Moustafa A Darwish
- Physics Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Walaa Abd-Elaziem
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University P.O. Box 44519 Egypt
- Department of Materials Science and Engineering, Northwestern University Evanston IL 60208 USA
| | - Ammar Elsheikh
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
- Department of Industrial and Mechanical Engineering, Lebanese American University P.O. Box 36 / S-12 Byblos Lebanon
| | - Abdelhameed A Zayed
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Tanta University Tanta 31521 Egypt
| |
Collapse
|
7
|
Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, Gholami A, Chiang WH. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B 2024; 12:7041-7062. [PMID: 38946657 DOI: 10.1039/d4tb00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Water-soluble graphene quantum dots (GQDs) have recently exhibited considerable potential for diverse biomedical applications owing to their exceptional optical and chemical properties. However, the pronounced heterogeneity in the composition, size, and morphology of GQDs poses challenges for a comprehensive understanding of the intricate correlation between their structural attributes and functional properties. This variability also introduces complexities in scaling the production processes and addressing safety considerations. Light and sound have firmly established their role in clinical applications as pivotal energy sources for minimally invasive therapeutic interventions. Given the limited penetration depth of light, photodynamic therapy (PDT) predominantly targets superficial conditions such as dermatological disorders, head and neck malignancies, ocular ailments, and early-stage esophageal cancer. Conversely, ultrasound-based sonodynamic therapy (SDT) capitalizes on its superior ability to propagate and focus ultrasound within biological tissues, enabling a diverse range of therapeutic applications, including the management of gliomas, breast cancer, hematological tumors, and modulation of the blood-brain barrier (BBB). Considering the advancements in theranostic and precision therapies, reevaluating these conventional energy sources and their associated sensitizers is imperative. This review introduces three prevalent treatment modalities that harness light and sound stimuli: PDT, SDT, and a synergistic approach that integrates PDT and SDT. This study delineated the therapeutic dynamics and contemporary designs of sensitizers tailored to these modalities. By exploring the historical context of the field and elucidating the latest design strategies, this review underscores the pivotal role of GQDs in propelling the evolution of PDT and SDT. This aspires to stimulate researchers to develop "multimodal" therapies integrating both light and sound stimuli.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | | | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, Quebec, J2C 0R5, Canada.
- Centre national intégré du manufacturier intelligent (CNIMI), Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan
| |
Collapse
|
8
|
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. BIOSENSORS 2024; 14:353. [PMID: 39056629 PMCID: PMC11275078 DOI: 10.3390/bios14070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of allergic diseases has increased tremendously in recent decades, which can be attributed to growing exposure to environmental triggers, changes in dietary habits, comorbidity, and the increased use of medications. In this context, the multiplexed diagnosis of sensitization to various allergens and the monitoring of the effectiveness of treatments for allergic diseases become particularly urgent issues. The detection of allergen-specific antibodies, in particular, sIgE and sIgG, is a modern alternative to skin tests due to the safety and efficiency of this method. The use of allergen microarrays to detect tens to hundreds of allergen-specific antibodies in less than 0.1 mL of blood serum enables the transition to a deeply personalized approach in the diagnosis of these diseases while reducing the invasiveness and increasing the informativeness of analysis. This review discusses the technological approaches underlying the development of allergen microarrays and other protein microarrays, including the methods of selection of the microarray substrates and matrices for protein molecule immobilization, the obtainment of allergens, and the use of different types of optical labels for increasing the sensitivity and specificity of the detection of allergen-specific antibodies.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Irina Evsegneeva
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
| | - Alyona Sukhanova
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (I.E.); (A.K.)
- Laboratoire BioSpecT, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
9
|
Majdoub M, Sengottuvelu D, Nouranian S, Al-Ostaz A. Graphitic Carbon Nitride Quantum Dots (g-C 3N 4 QDs): From Chemistry to Applications. CHEMSUSCHEM 2024; 17:e202301462. [PMID: 38433108 DOI: 10.1002/cssc.202301462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since their emergence in 2014, graphitic carbon nitride quantum dots (g-C3N4 QDs) have attracted much interest from the scientific community due to their distinctive physicochemical features, including structural, morphological, electrochemical, and optoelectronic properties. Owing to their desirable characteristics, such as non-zero band gap, ability to be chemically functionalized or doped, possessing tunable properties, outstanding dispersibility in different media, and biocompatibility, g-C3N4 QDs have shown promise for photocatalysis, energy devices, sensing, bioimaging, solar cells, optoelectronics, among other applications. As these fields are rapidly evolving, it is very strenuous to pinpoint the emerging challenges of the g-C3N4 QDs development and application during the last decade, mainly due to the lack of critical reviews of the innovations in the g-C3N4 QDs synthesis pathways and domains of application. Herein, an extensive survey is conducted on the g-C3N4 QDs synthesis, characterization, and applications. Scenarios for the future development of g-C3N4 QDs and their potential applications are highlighted and discussed in detail. The provided critical section suggests a myriad of opportunities for g-C3N4 QDs, especially for their synthesis and functionalization, where a combination of eco-friendly/single step synthesis and chemical modification may be used to prepare g-C3N4 QDs with, for example, enhanced photoluminescence and production yields.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Dineshkumar Sengottuvelu
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
| | - Sasan Nouranian
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, University, MS 38677, United States
- Department of Civil Engineering, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
10
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
11
|
Priyadarshi R, Pourmoslemi S, Khan A, Riahi Z, Rhim JW. Sulfur quantum dots as sustainable materials for biomedical applications: Current trends and future perspectives. Colloids Surf B Biointerfaces 2024; 237:113863. [PMID: 38552287 DOI: 10.1016/j.colsurfb.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Discovered over a decade ago, sulfur quantum dots (SQDs) have rapidly emerged as a sustainable, safe, and inexpensive quantum material. Sustainably synthesizing SQDs using sublimed sulfur powders, typically produced as waste in industrial petrochemical refining processes, has attracted researchers to use these functional quantum materials in various research fields. SQDs quickly found applications in various research fields, such as electronics, environmental sensing, food packaging, and biomedical engineering. Although low production yields, time-consuming and energy-intensive synthetic methods, and low photoluminescence quantum yield (PLQY) have been some problems, researchers have found ways to improve synthetic methods, develop passivating agents, and systematically modify reaction schemes and energy sources to achieve large-scale synthesis of stable SQDs with high PLQY. Nonetheless, SQDs have succeeded tremendously in biomedical and related applications due to their low toxicity, antibacterial and antioxidant properties, biocompatibility, appropriate cellular uptake, and photoluminescent properties. Although the bioimaging applications of SQDs have been extensively studied, their other reported properties indicate their suitability for use as antimicrobial agents, free radical scavengers, and drug carriers in other biomedical applications, such as tissue regeneration, wound healing, and targeted drug delivery.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | | | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Zohreh Riahi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
12
|
Sun L, Zhao Y, Peng H, Zhou J, Zhang Q, Yan J, Liu Y, Guo S, Wu X, Li B. Carbon dots as a novel photosensitizer for photodynamic therapy of cancer and bacterial infectious diseases: recent advances. J Nanobiotechnology 2024; 22:210. [PMID: 38671474 PMCID: PMC11055261 DOI: 10.1186/s12951-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dots (CDs) are novel carbon-based nanomaterials that have been used as photosensitizer-mediated photodynamic therapy (PDT) in recent years due to their good photosensitizing activity. Photosensitizers (PSs) are main components of PDT that can produce large amounts of reactive oxygen species (ROS) when stimulated by light source, which have the advantages of low drug resistance and high therapeutic efficiency. CDs can generate ROS efficiently under irradiation and therefore have been extensively studied in disease local phototherapy. In tumor therapy, CDs can be used as PSs or PS carriers to participate in PDT and play an extremely important role. In bacterial infectious diseases, CDs exhibit high bactericidal activity as CDs are effective in disrupting bacterial cell membranes leading to bacterial death upon photoactivation. We focus on recent advances in the therapy of cancer and bacteria with CDs, and also briefly summarize the mechanisms and requirements for PSs in PDT of cancer, bacteria and other diseases. We also discuss the role CDs play in combination therapy and the potential for future applications against other pathogens.
Collapse
Affiliation(s)
- Lingxiang Sun
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Hongyi Peng
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jian Zhou
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan, China
| | - Jingyu Yan
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yingyu Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Susu Guo
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| | - Bing Li
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China.
| |
Collapse
|
13
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
14
|
Alvarez N, Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int J Mol Sci 2024; 25:1023. [PMID: 38256096 PMCID: PMC10815790 DOI: 10.3390/ijms25021023] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted in this review, both conceptually and as they are currently applied clinically. We further explore the recent advancements of PDT with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments. Finally, we emphasize the potential significance of organoids as physiologically relevant models for PDT.
Collapse
Affiliation(s)
- Niuska Alvarez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona (IBUB), 08036 Barcelona, Spain
| |
Collapse
|
15
|
Soy R, Babu B, Mack J, Nyokong T. The photodynamic activity properties of a series of structurally analogous tetraarylporphyrin, chlorin and N-confused porphyrin dyes and their Sn(IV) complexes. Photodiagnosis Photodyn Ther 2023; 44:103815. [PMID: 37777078 DOI: 10.1016/j.pdpdt.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
A series of tetraarylporphyrin, -chlorin and N-confused porphyrin dyes with 4‑methoxy‑meso-aryl rings (1-Por, 1-Chl and 1-NCP) and their Sn(IV) complexes (1-SnPor, 1-SnChl and 1-SnNCP) have been synthesized and characterized. The heavy atom effect of the Sn(IV) ion results in relatively high singlet oxygen quantum yield values of 0.67, 0.71 and 0.85 for 1-SnPor, 1-SnChl and 1-SnNCP, respectively. The photodynamic activities of 1-Por, 1-Chl, 1-NCP, 1-SnPor, 1-SnChl and 1-SnNCP were determined against MCF-7 breast cancer cells through illumination with Thorlabs 625 or 660 nm (240 or 280 mW.cm-2) light emitting diodes (LEDs) for 20 min. The IC50 values for 1-SnChl and 1-SnNCP lie between 1.4 - 6.1 and 1.6 - 4.8 µM upon photoirradiation with the 660 and 625 nm LEDs, respectively, while higher values of >10 µM were obtained for 1-SnPor and the free base dyes. In a similar manner, 1-SnChl and 1-SnNCP were found to also have significantly higher photodynamic antimicrobial activity against planktonic Gram-(+) Staphylococcus aureus and Gram-(-) Escherichia coli bacteria than the other dyes studied. Upon illumination with Thorlabs 625 and 660 nm LEDs for 75 min, Log10 reduction values of 7.62 and > 2.40-3.69 were obtained with 1 and 5 µM solutions, respectively.
Collapse
Affiliation(s)
- Rodah Soy
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Balaji Babu
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa; Department of Chemistry, SRM University - AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
16
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
17
|
Rodrigues JA, Correia JH. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int J Mol Sci 2023; 24:12204. [PMID: 37569580 PMCID: PMC10418644 DOI: 10.3390/ijms241512204] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This review provides an update on the current state of photodynamic therapy (PDT) for colorectal cancer (CRC) and explores potential future directions in this field. PDT has emerged as a promising minimally invasive treatment modality that utilizes photosensitizers and specific light wavelengths to induce cell death in targeted tumor tissues. In recent years, significant progress has been made in understanding the underlying mechanisms, optimizing treatment protocols, and improving the efficacy of PDT for CRC. This article highlights key advancements in PDT techniques, including novel photosensitizers, light sources, and delivery methods. Furthermore, it discusses ongoing research efforts and potential future directions, such as combination therapies and nanotechnology-based approaches. By elucidating the current landscape and providing insights into future directions, this review aims to guide researchers and clinicians in harnessing the full potential of PDT for the effective management of CRC.
Collapse
Affiliation(s)
- José A. Rodrigues
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| | - José H. Correia
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| |
Collapse
|
18
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
19
|
Antibacterial nanophotosensitizers in photodynamic therapy: An update. Drug Discov Today 2023; 28:103493. [PMID: 36657636 DOI: 10.1016/j.drudis.2023.103493] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/18/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Bacterial infections constitute a major challenge of clinical medicine, particularly in specialties such as dermatology and dental medicine. Antiseptics and antibiotics are the main adjunctive therapies to anti-infective procedures in these specialties. However, antibacterial photodynamic therapy (PDT) has been introduced as a novel and promising alternative to conventional antibacterial approaches. PDT relies on the formation of reactive oxygen species (ROS) by a photosensitizer (PS) after activation by a specific light source. Nanotechnology was later introduced to enhance the antibacterial efficacy of PS during PDT. In this review, we describe the different nanoparticles (NPs) used in PDT and their properties. Recent in vivo data of NPs in antibacterial PDT in dermatology and dental medicine and their safety concerns are also reviewed.
Collapse
|
20
|
Borodina L, Borisov V, Annas K, Dubavik A, Veniaminov A, Orlova A. Nanostructured Luminescent Gratings for Sensorics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8195. [PMID: 36431680 PMCID: PMC9697765 DOI: 10.3390/ma15228195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional holographic structures based on photopolymer compositions with luminescent nanoparticles, such as quantum dots, are promising candidates for multiresponsive luminescence sensors. However, their applicability may suffer from the incompatibility of the components, and hence aggregation of the nanoparticles. We showed that the replacement of an organic shell at the CdSe/ZnS quantum dots' surface with monomer molecules of the photopolymerizable medium achieved full compatibility with the surrounding medium. The effect was demonstrated by luminescence spectroscopy, and steady-state and time-resolved luminescent laser scanning microscopy. We observed the complete spectral independence of local photoluminescence decay, thus proving the absence of even nanoscale aggregation, either in the liquid composition or in the nodes and antinodes of the grating. Therefore, nanostructured luminescent photopolymer gratings with monomer-covered quantum dots can act as hybrid diffractive-luminescent sensor elements.
Collapse
|
21
|
Quantum Dots Mediated Imaging and Phototherapy in Cancer Spheroid Models: State of the Art and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14102136. [PMID: 36297571 PMCID: PMC9611360 DOI: 10.3390/pharmaceutics14102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum Dots (QDs) are fluorescent nanoparticles known for their exceptional optical properties, i.e., high fluorescence emission, photostability, narrow emission spectrum, and broad excitation wavelength. These properties make QDs an exciting choice for bioimaging applications, notably in cancer imaging. Challenges lie in their ability to specifically label targeted cells. Numerous studies have been carried out with QDs coupled to various ligands like peptides, antibodies, aptamers, etc., to achieve efficient targeting. Most studies were conducted in vitro with two-dimensional cell monolayers (n = 8902) before evolving towards more sophisticated models. Three-dimensional multicellular tumor models better recapitulate in vivo conditions by mimicking cell-to-cell and cell-matrix interactions. To date, only few studies (n = 34) were conducted in 3D in vitro models such as spheroids, whereas these models could better represent QDs behavior in tumors compared to monolayers. Thus, the purpose of this review is to present a state of the art on the studies conducted with Quantum Dots on spheroid models for imaging and phototherapy purposes.
Collapse
|