1
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2025; 83:e1270-e1285. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
2
|
Guo Y, Zhang J, Yuan T, Yang C, Zhou Q, Shaukat A, Deng G, Wang X. Luteolin Alleviates Inflammation Induced by Staphylococcus aureus in Bovine Mammary Epithelial Cells by Attenuating NF-κB and MAPK Activation. Vet Sci 2025; 12:96. [PMID: 40005856 PMCID: PMC11861667 DOI: 10.3390/vetsci12020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
The internalization of S. aureus in bMECs is a major pathogenic mechanism leading to mastitis, causing significant economic losses in the dairy industry. Numerous plants contain Lut, a natural flavonoid with anti-inflammatory and antioxidant properties. However, little is known about Lut's ability to reduce inflammation caused by S. aureus in bMECs. This research aimed to evaluate the mechanism by which Lut reduces S. aureus-induced inflammation in bMECs. Through GO and KEGG enrichment analysis, researchers analyzed the differentially expressed genes in bMECs infected with S. aureus in NCBI GEO (GSE139612) and also analyzed the targets of Lut predicted by various online platforms. These studies identified two overlapping signaling pathways, the NF-κB and the MAPK pathways. We stimulated bMECs with S. aureus for two hours and then added Lut for ten hours, with a total duration of twelve hours. The expression levels of TLR2-MyD88-TRAF6 components, inflammatory cytokines, and protein phosphorylation associated with the MAPK and NF-κB signaling pathways were then assessed. Based on all of the results, Lut inhibited the generation of inflammatory cytokines in bMECs that were induced by S. aureus through the TLR2, NF-κB, and MAPK signaling pathways. This process might account for the anti-inflammatory properties of Lut.
Collapse
Affiliation(s)
- Yingfang Guo
- School of Physical Education, Wuhan Business University, Wuhan 430056, China;
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430056, China; (J.Z.); (C.Y.); (G.D.)
| | - Jinxin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430056, China; (J.Z.); (C.Y.); (G.D.)
| | - Ting Yuan
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China;
| | - Cheng Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430056, China; (J.Z.); (C.Y.); (G.D.)
| | - Qingqing Zhou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China;
| | - Aftab Shaukat
- Department of College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430056, China; (J.Z.); (C.Y.); (G.D.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China;
| |
Collapse
|
3
|
Robles Ramirez O, Osuna G, Plisson F, Barrientos-Salcedo C. Antimicrobial peptides in livestock: a review with a one health approach. Front Cell Infect Microbiol 2024; 14:1339285. [PMID: 38720961 PMCID: PMC11076698 DOI: 10.3389/fcimb.2024.1339285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 01/18/2025] Open
Abstract
Antimicrobial peptides (AMPs), often referred to as nature's antibiotics, are ubiquitous in living organisms, spanning from bacteria to humans. Their potency, versatility, and unique mechanisms of action have garnered significant research attention. Unlike conventional antibiotics, peptides are biodegradable, adding to their appeal as potential candidates to address bacterial resistance in livestock farming-a challenge that has been under scrutiny for decades. This issue is complex and multifactorial, influenced by a variety of components. The World Health Organization (WHO) has proposed a comprehensive approach known as One Health, emphasizing the interconnectedness of human-animal-environment relationships in tackling such challenges. This review explores the application of AMPs in livestock farming and how they can mitigate the impact of this practice within the One Health framework.
Collapse
Affiliation(s)
- Oscar Robles Ramirez
- Doctorate in Agricultural Sciences, Facultad de Medicina Veterinaria y Zootecnia (FMVZ) Universidad Veracruzana, Veracruz, Mexico
| | - Gabriel Osuna
- Irapuato Unit, Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato, Mexico
| | - Fabien Plisson
- Irapuato Unit, Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato, Mexico
| | - Carolina Barrientos-Salcedo
- Medicinal Chemistry and Chemogenomics Laboratory, Facultad de Bioanálisis, Universidad Veracruzana, Veracruz, Mexico
| |
Collapse
|
4
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Wang Z, Wang Q, Tang C, Yuan J, Luo C, Li D, Xie T, Sun X, Zhang Y, Yang Z, Guo C, Cao Z, Li S, Wang W. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front Immunol 2023; 14:1018867. [PMID: 36776875 PMCID: PMC9911908 DOI: 10.3389/fimmu.2023.1018867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows' health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status.
Collapse
Affiliation(s)
- Zhonghan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuanlan Tang
- Animal Production Systems Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tian Xie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
7
|
Wang FF, Zhao PY, He XJ, Jiang K, Wang TS, Xiao JW, Sun DB, Guo DH. Fusobacterium necrophorum Promotes Apoptosis and Inflammatory Cytokine Production Through the Activation of NF-κB and Death Receptor Signaling Pathways. Front Cell Infect Microbiol 2022; 12:827750. [PMID: 35774408 PMCID: PMC9237437 DOI: 10.3389/fcimb.2022.827750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Fusobacterium necrophorum can cause liver abscess, foot rot in ruminants, and Lemire syndrome in humans, Also, its virulence factors can induce the apoptosis of macrophages and neutrophils. However, the detailed mechanism has not been fully clarified. This study investigated the mechanisms of apoptosis and inflammatory factor production in F. necrophorum–induced neutrophils and macrophages (RAW246.7). After infection of macrophages with F. necrophorum, 5-ethynyl-2’-deoxyuridine labeling assays indicated that F. necrophorum inhibited macrophage proliferation in a time- and dose-dependent manner. Hoechst staining and DNA ladder assays showed significant condensation of the nucleus and fragmentation of genomic DNA in F. necrophorum–infected macrophages, Annexin V (FITC) and propidium iodide (PI) assay confirmed the emergence of apoptosis in the macrophages and sheep neutrophils with F. necrophorum compared with the control. The group with significant apoptosis was subjected to RNA sequencing (RNA-Seq), and the sequencing results revealed 2581 up– and 2907 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of the differentially expressed genes showed that F. necrophorum drove apoptosis and production of inflammatory factors by activating genes related to the Nuclear Factor-κB (NF-κB) and death receptor pathways. Meanwhile, quantitative reverse transcription PCR and Western blot validation results were consistent with the results of transcriptome sequencing analysis. In conclusion, F. necrophorum induced apoptosis and production of pro-inflammatory factors through the NF-κB and death receptor signaling pathway, providing a theoretical basis for further mechanistic studies on the prevention and control of F. necrophorum disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong-Bo Sun
- *Correspondence: Dong-Bo Sun, ; Dong-Hua Guo,
| | | |
Collapse
|
8
|
Myette-Côté É, St-Pierre V, Beaulieu S, Castellano CA, Fortier M, Plourde M, Bocti C, Fulop T, Cunnane SC. The effect of a 6-month ketogenic medium-chain triglyceride supplement on plasma cardiometabolic and inflammatory markers in mild cognitive impairment. Prostaglandins Leukot Essent Fatty Acids 2021; 169:102236. [PMID: 33906081 DOI: 10.1016/j.plefa.2020.102236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mild cognitive impairment (MCI) is often accompanied by metabolic abnormalities and inflammation that might play a role in the development of cognitive impairment. The use of ketogenic medium-chain triglycerides (kMCT) to improve cognition in this population has shown promising results but remains controversial because of the potentially detrimental effect of elevated intake of saturated fatty acids on cardiovascular (CV) health and perhaps inflammatory processes. The primary aim of this secondary data analysis report is to describe changes in cardiometabolic markers and peripheral inflammation during a 6-month kMCT intervention in MCI. METHODS Thirty-nine participants with MCI completed the intervention of 30 g/day of either a kMCT drink or calorie-matched placebo (high-oleic acid) for 6 months. Plasma concentrations of cardiometabolic and inflammatory markers were collected before (fasting state) and after the intervention (2 h following the last drink). RESULTS A mixed model ANOVA analysis revealed a time by group interaction for ketones (P < 0.001), plasma 8:0 and 10:0 acids (both P < 0.001) and IL-8 (P = 0.002) with follow up comparison revealing a significant increase in the kMCT group (+48%, P = 0.005), (+3,800 and +4,900%, both P < 0.001) and (+147%, P < 0.001) respectively. A main effect of time was observed for insulin (P = 0.004), triglycerides (P = 0.011) and non-esterified fatty acids (P = 0.036). CONCLUSION Under these study conditions, 30 g/d of kMCT taken for six months and up to 2-hour before post-intervention testing had minimal effect on an extensive profile of circulating cardiometabolic and inflammatory markers as compared to a placebo calorie-matched drink. Our results support the safety kMCT supplementation in individuals with MCI. The clinical significance of the observed increase in circulating IL-8 levels is presently unknown and awaits future studies.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Valérie St-Pierre
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Sandrine Beaulieu
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Mélanie Fortier
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Bi CL, Zhang SJ, Shen YZ, Pauline M, Li H, Tang H. Selenium Plays an Anti-Inflammatory Role by Regulation NLRP3 Inflammasome in Staphylococcus aureus-Infected Mouse Mammary Gland. Biol Trace Elem Res 2021; 199:604-610. [PMID: 32436066 DOI: 10.1007/s12011-020-02166-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022]
Abstract
Selenium is an essential micronutrient that plays an important role in immunity. However, the mechanism that Selenium modulates mastitis is not fully clear. In this experiment, we investigated whether selenium can inhibit the activation of the NLRP3 inflammasome in a mouse model of Staphylococcus aureus-induced mastitis. Eighty BALB/c female mice were fed with experimental Selenium deficiency basal diet for 2 weeks to achieve the purpose of selenium consumption until pregnancy. Pregnant mice were randomly divided into four groups (control group; selenium supplement group; Staphylococcus aureus infection group and Staphylococcus aureus infection after selenium supplement group). Twenty-four hours after challenging, all mice were euthanized and mammary tissue samples were aseptically collected. Through pathological staining, western blot analysis, real-time fluorescence quantitative polymerase chain reaction analysis, and enzyme-linked immunosorbent assay, the regulation effect of Selenium on NLRP3 inflammasome was detected. The result showed that compared with the control group, selenium significantly inhibited the expression of NLRP3, ASC, Caspase-1, Caspase-1 p20, and Pro-IL-1β (p < 0.01). Meanwhile the mRNA expression and release of IL-1β was suppressed in the treatment group compared with Staphylococcus aureus infection group (p < 0.01). Therefore, these results suggest that dietary selenium can attenuate Staphylococcus aureus mastitis by inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chong-Liang Bi
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China.
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China.
| | - Shu-Jiu Zhang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - Yi-Zhao Shen
- College of animal science and technology, Hebei Agricultural University, Baoding, 071001, Hebei Province, China
| | - Mirielle Pauline
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Hui Li
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| | - He Tang
- College of Agriculture and Forestry Science, Linyi University, Linyi, 276005, Shandong Province, China
- Drug micro vector engineering center of Linyi, Linyi University, Linyi, 276005, Shandong Province, China
| |
Collapse
|
10
|
Shi Y, Zhao W, Liu G, Ali T, Chen P, Liu Y, Kastelic JP, Han B, Gao J. Bacteriophages isolated from dairy farm mitigated Klebsiella pneumoniae-induced inflammation in bovine mammary epithelial cells cultured in vitro. BMC Vet Res 2021; 17:37. [PMID: 33468111 PMCID: PMC7814619 DOI: 10.1186/s12917-020-02738-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
Background Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. Results Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1β concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1β, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. Conclusions Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.
Collapse
Affiliation(s)
- Yuxiang Shi
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, 056038, Handan, Hebei, P.R. China
| | - Wenpeng Zhao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Tariq Ali
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.,Center of Microbiology & Biotechnology, Veterinary Research Institute, Peshawar, Pakistan
| | - Peng Chen
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, 271018, Taìan, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, T2N 4N1, Calgary, AB, Canada
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| | - Jian Gao
- College of Veterinary Medicine, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, 100193, Beijing, P. R. China.
| |
Collapse
|
11
|
Báez-Magaña M, Alva-Murillo N, Medina-Estrada I, Arceo-Martínez MT, López-Meza JE, Ochoa-Zarzosa A. Plant Defensin γ-Thionin Induces MAPKs and Activates Histone Deacetylases in Bovine Mammary Epithelial Cells Infected With Staphylococcus aureus. Front Vet Sci 2020; 7:390. [PMID: 32793642 PMCID: PMC7394055 DOI: 10.3389/fvets.2020.00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Defensins are an important group of host defense peptides. They have immunomodulatory properties, which have been mainly described for mammal defensins, but similar effects for plant defensins remain unknown. Previously, we showed that the defensin γ-thionin (Capsicum chinense) reduces Staphylococcus aureus internalization into bovine mammary epithelial cells (bMECs) while inducing Toll-like receptor 2 (TLR2), modulating the inflammatory response. Here, we analyze the effect of γ-thionin on the TLR2 pathway in bMECs infected with S. aureus and determine if it modulates epigenetic marks. Pre-treated bMECs with γ-thionin (100 ng/ml) reduced the basal activation of p38 and ERK1/2 (~3-fold), but JNK was increased (~1.5-fold). Also, infected bMECs induced p38, but this effect was reversed by γ-thionin, whereas ERK1/2 was reduced by infection but stimulated by γ-thionin. Likewise, γ-thionin reduced the activation of Akt kinase ~50%. Furthermore, γ-thionin induced the activation of transcriptional factors of inflammatory response, highlighting EGR, E2F-1, AP-1, and MEF, which were turned off by bacteria. Also, γ-thionin induced the activation of histone deacetylases (HDACs, ~4-fold) at 24 h in infected bMECs and reduced LSD1 demethylase (HDMs, ~30%) activity. Altogether, these results demonstrated the first time that a plant defensin interferes with inflammatory signaling pathways in mammalian cells.
Collapse
Affiliation(s)
- Marisol Báez-Magaña
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Nayeli Alva-Murillo
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Ivan Medina-Estrada
- Trayectoria en Genómica Alimentaria, Universidad de la Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - María Teresa Arceo-Martínez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
12
|
UFM1-Specific Ligase 1 Ligating Enzyme 1 Mediates Milk Protein and Fat Synthesis-Related Gene Expression via the JNK Signaling Pathway in Mouse Mammary Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4045674. [PMID: 32655766 PMCID: PMC7321527 DOI: 10.1155/2020/4045674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/04/2020] [Accepted: 04/30/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) has been characterized as a ubiquitin-like (Ubl) protein that affects a range of cellular processes across various pathways. In this study, mouse mammary epithelial cells (HC11 cell line) and UFL1 knockout (KO) mice were used to establish UFL1 knockdown models to explore the influence of UFL1 on milk protein and fat synthesis in the mouse mammary gland and the underlying mechanisms. This is the first study to show UFL1 localization in mouse mammary epithelial cells. UFL1 depletion by transfected UFL1 siRNA (siUFL1) caused aggravated apoptosis. In addition, UFL1 depletion suppressed milk protein synthesis-related protein level in vivo and in vitro. Conversely, ACACA and FASN expressions increased in UFL1-deficient mice. Moreover, UFL1 depletion increased triglyceride synthesis levels and inhibited the p-JNK expression. Importantly, the expression of proteins related to milk protein synthesis was decreased in JNK- and UFL1-deficient cells, whereas proteins related to milk fat synthesis showed the opposite trend, indicating that UFL1 affects milk protein and fat synthesis via the suppression of JNK activation. Overall, our findings indicate that UFL1 plays a key role in mammary milk and fat synthesis via JNK activation.
Collapse
|
13
|
Chen Y, Wang Y, Yang M, Guo MY. Allicin Inhibited Staphylococcus aureus -Induced Mastitis by Reducing Lipid Raft Stability via LxRα in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10863-10870. [PMID: 31507180 DOI: 10.1021/acs.jafc.9b04378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mastitis, inflammation of the mammary gland, occurs in both humans and animals. Staphylococcus aureus is the most common infectious bacterial pathogen associated with mastitis. We investigated the effects of allicin on S. aureus-induced mastitis in mice. Pathological histology revealed that allicin inhibited S. aureus-induced pathological damage and myeloperoxidase activity in mammary tissues. Enzyme-linked immunosorbent assays demonstrated that allicin reduced the production of IL-1β and TNF-α as well as inhibited the NF-κB and mitogen-activated protein kinase pathway by reducing phosphorylation of p65, IκBα, p38, JNK, and ERK. Western blotting revealed that allicin reduced TLR2 and TLR6 expression in mammary tissues and cells but not in HEK293 cells. The lipid raft content was reduced by allicin, which inhibited signaling downstream of TLR2 and TLR6. Liver X receptor α (LXRα) luciferase reporter assays and LXRα interference experiments showed that allicin improved the LXRα activity and adenosine 5'-triphosphate-binding cassette G and A1 (ABCG and ABCA1) expression, thereby reducing the cholesterol level, lipid raft formation, and downstream TLR2 and TLR6 pathway activity. These results demonstrated that allicin exerted anti-inflammatory effects against S. aureus mastitis by improving the LXRα activity and reducing lipid raft formation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| |
Collapse
|
14
|
Yang F, Chen F, Li L, Yan L, Badri T, Lv C, Yu D, Zhang M, Jang X, Li J, Yuan L, Wang G, Li H, Li J, Cai Y. Three Novel Players: PTK2B, SYK, and TNFRSF21 Were Identified to Be Involved in the Regulation of Bovine Mastitis Susceptibility via GWAS and Post-transcriptional Analysis. Front Immunol 2019; 10:1579. [PMID: 31447828 PMCID: PMC6691815 DOI: 10.3389/fimmu.2019.01579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Bovine mastitis is a common inflammatory disease caused by multiple factors in early lactation or dry period. Genome wide association studies (GWAS) can provide a convenient and effective strategy for understanding the biological basis of mastitis and better prevention. 2b-RADseq is a high-throughput sequencing technique that offers a powerful method for genome-wide genetic marker development and genotyping. In this study, single nucleotide polymorphisms (SNPs) of the immune-regulated gene correlative with mastitis were screened and identified by two stage association analysis via GWAS-2b-RADseq in Chinese Holstein cows. We have screened 10,058 high quality SNPs from 7,957,920 tags and calculated their allele frequencies. Twenty-seven significant SNPs were co-labeled in two GWAS analysis models [Bayesian (P < 0.001) and Logistic regression (P < 0.01)], and only three SNPs (rs75762330, C > T, PIC = 0.2999; rs88640083, A > G, PIC = 0.1676; rs20438858, G > A, PIC = 0.3366) were annotated to immune-regulated genes (PTK2B, SYK, and TNFRSF21). Identified three SNPs are located in non-coding regions with low or moderate genetic polymorphisms. However, independent sample population validation (Case-control study) data showed that three important SNPs (rs75762330, P < 0.025, OR > 1; rs88640083, P < 0.005, OR > 1; rs20438858, P < 0.001, OR < 1) were significantly associated with clinical mastitis trait. Importantly, PTK2B and SYK expression was down-regulated in both peripheral blood leukocytes (PBLs) of clinical mastitis cows and in vitro LPS (E. coli)-stimulated bovine mammary epithelial cells, while TNFRSF21 was up-regulated. Under the same conditions, expression of Toll-like receptor 4 (TLR4), AKT1, and pro-inflammatory factors (IL-1β and IL-8) were also up-regulated. Interestingly, network analysis indicated that PTK2B and SYK are co-expressed in innate immune signaling pathway of Chinese Holstein. Taken together, these results provided strong evidence for the study of SNPs in bovine mastitis, and revealed the role of SYK, PTK2B, and TNFRSF21 in bovine mastitis susceptibility/tolerance.
Collapse
Affiliation(s)
- Fan Yang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fanghui Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lili Li
- National Animal Husbandry Station, Beijing, China
| | - Li Yan
- Department of Radiation Oncology, Linyi People Hospital, Linyi, China
| | - Tarig Badri
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chenglong Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Daolun Yu
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Manling Zhang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xiaojun Jang
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jie Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Lu Yuan
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jun Li
- Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Lin Y, Cong H, Liu K, Jiao Y, Yuan Y, Tang G, Chen Y, Zheng Y, Xiao J, Li C, Chen Z, Cao P. Microbicidal Phagocytosis of Nucleus Pulposus Cells Against Staphylococcus aureus via the TLR2/MAPKs Signaling Pathway. Front Immunol 2019; 10:1132. [PMID: 31178866 PMCID: PMC6538773 DOI: 10.3389/fimmu.2019.01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc (IVD) is an immune-privileged organ that lacks immunocytes, such as macrophages or neutrophils; therefore, it is unclear how IVD immunological defense against bacterial infection occurs. Here, we demonstrated that nucleus pulposus cells (NPCs), the vital machinery for maintaining the homeostasis of IVD, exerted microbicidal activity against Staphylococcus aureus via induction of phagolysosome formation. Moreover, we found that the Toll-like receptor 2 (TLR2)/mitogen-activated protein kinases (MAPKs) signaling pathway is critical for bacterial phagocytosis and phagolysosome formation of NPCs. These findings demonstrated for the first time that NPCs could function as non-professional phagocytes against S. aureus infection, thereby enhancing antimicrobial defense against bacterial infections in IVDs.
Collapse
Affiliation(s)
- Yazhou Lin
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kewei Liu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yucheng Jiao
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Yuan
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yong Chen
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yuehuan Zheng
- Department of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaqi Xiao
- Department of Medical Microbiology and Parasitology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Chen
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Cao
- Department of Orthopedics, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases With Integrated Chinese-Western Medicine, Ruijin Hospital, Shanghai Institute of Traumatology and Orthopedics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Martínez-Cortés I, Acevedo-Domínguez NA, Olguin-Alor R, Cortés-Hernández A, Álvarez-Jiménez V, Campillo-Navarro M, Sumano-López HS, Gutiérrez-Olvera L, Martínez-Gómez D, Maravillas-Montero JL, Loor JJ, García-Zepeda EA, Soldevila G. Tilmicosin modulates the innate immune response and preserves casein production in bovine mammary alveolar cells during Staphylococcus aureus infection. J Anim Sci 2019; 97:644-656. [PMID: 30517644 DOI: 10.1093/jas/sky463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/01/2018] [Indexed: 12/15/2022] Open
Abstract
Tilmicosin is an antimicrobial agent used to treat intramammary infections against Staphylococcus aureus and has clinical anti-inflammatory effects. However, the mechanism by which it modulates the inflammatory process in the mammary gland is unknown. We evaluated the effect of tilmicosin treatment on the modulation of the mammary innate immune response after S. aureus infection and its effect on casein production in mammary epithelial cells. To achieve this goal, we used immortalized mammary epithelial cells (MAC-T), pretreated for 12 h or treated with tilmicosin after infection with S. aureus (ATCC 27543). Our data showed that tilmicosin decreases intracellular infection (P < 0.01) and had a protective effect on MAC-T reducing apoptosis after infection by 80% (P < 0.01). Furthermore, tilmicosin reduced reactive oxygen species (ROS) (P < 0.01), IL-1β (P < 0.01), IL-6 (P < 0.01), and TNF-α (P < 0.05) production. In an attempt to investigate the signaling pathways involved in the immunomodulatory effect of tilmicosin, mitogen-activated protein kinase (MAPK) phosphorylation was measured by fluorescent-activated cell sorting. Pretreatment with tilmicosin increased ERK1/2 (P < 0.05) but decreased P38 phosphorylation (P < 0.01). In addition, the anti-inflammatory effect of tilmicosin helped to preserve casein synthesis in mammary epithelial cells (P < 0.01). This result indicates that tilmicosin could be an effective modulator inflammation in the mammary gland. Through regulation of MAPK phosphorylation, ROS production and pro-inflammatory cytokine secretion tilmicosin can provide protection from cellular damage due to S. aureus infection and help to maintain normal physiological functions of the bovine mammary epithelial cell.
Collapse
Affiliation(s)
- Ismael Martínez-Cortés
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Naray A Acevedo-Domínguez
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Roxana Olguin-Alor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Arimelek Cortés-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Violeta Álvarez-Jiménez
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Marcia Campillo-Navarro
- Laboratorio de Inmunología Integrativa-INER, Ismael Cosio Villegas. Ciudad de México, Mexico
| | | | | | | | | | - Juan J Loor
- Mammalian NutriPhysioGenomics-University of Illinois, Urbana, IL
| | - Eduardo A García-Zepeda
- Chemokine Biology Research Laboratory, UNAM, Ciudad de México, Mexico.,Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México, Mexico
| |
Collapse
|
17
|
Amentoflavone Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Appl Environ Microbiol 2018; 84:AEM.01804-18. [PMID: 30315078 DOI: 10.1128/aem.01804-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis, an important zoonotic pathogen, has caused considerable economic losses in the swine industry and severe public health issues worldwide. The development of a novel effective strategy for the prevention and therapy of S. suis is urgently needed. Here, amentoflavone, a natural biflavonoid compound isolated from Chinese herbs that has negligible anti-S. suis activity, was identified as a potent antagonist of suilysin (SLY)-mediated hemolysis without interfering with the expression of SLY. Amentoflavone effectively inhibited SLY oligomerization, which is critical for its pore-forming activity. The treatment with amentoflavone reduced S. suis-induced cytotoxicity in macrophages (J774 cells). Furthermore, S. suis-infected mice that received amentoflavone exhibited lower mortality and bacterial burden. Additionally, amentoflavone significantly decreased the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in an S. suis-infected cell model. Analyses of signaling pathways demonstrated that amentoflavone reduced S. suis-induced inflammation in S. suis serotype 2 (SS2)-infected cells by regulating the p38, Jun N-terminal protein kinase 1 and 2 (JNK1/2), and NF-κB pathways. The antivirulence and anti-inflammatory properties of amentoflavone against S. suis infection provide the possibility for future pharmaceutical application of amentoflavone in the treatment of S. suis infection.IMPORTANCE The widespread use of antibiotics in therapy and in the prevention of Streptococcus suis infection in the swine industry raises concerns for the emergence of a resistant strain. The use of antivirulence agents has potential benefits, mainly because of the reduced selective pressure for the development of bacterial resistance. In this study, we found that amentoflavone is an effective agent against S. suis serotype 2 (SS2) infection both in vitro and in vivo Our results demonstrated that amentoflavone is a promising anti-infective therapeutic for S. suis infections, due to its antivirulence and anti-inflammatory effects without antibacterial activity, with fewer side effects than conventional antibacterial agents.
Collapse
|
18
|
Development of a Cell-Based High-Throughput Screening Assay to Identify Porcine Host Defense Peptide-Inducing Compounds. J Immunol Res 2018; 2018:5492941. [PMID: 30581875 PMCID: PMC6276403 DOI: 10.1155/2018/5492941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/19/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
Abstract
Novel alternatives to antibiotics are needed for the swine industry, given increasing restrictions on subtherapeutic use of antibiotics. Augmenting the synthesis of endogenous host defense peptides (HDPs) has emerged as a promising antibiotic-alternative approach to disease control and prevention. To facilitate the identification of HDP inducers for swine use, we developed a stable luciferase reporter cell line, IPEC-J2/PBD3-luc, through permanent integration of a luciferase reporter gene driven by a 1.1 kb porcine β-defensin 3 (PBD3) gene promoter in porcine IPEC-J2 intestinal epithelial cells. Such a stable reporter cell line was employed in a high-throughput screening of 148 epigenetic compounds and 584 natural products, resulting in the identification of 41 unique hits with a minimum strictly standardized mean difference (SSMD) value of 3.0. Among them, 13 compounds were further confirmed to give at least a 5-fold increase in the luciferase activity in the stable reporter cell line, with 12 being histone deacetylase (HDAC) inhibitors. Eight compounds were subsequently observed to be comparable to sodium butyrate in inducing PBD3 mRNA expression in parental IPEC-J2 cells in the low micromolar range. Six HDAC inhibitors including suberoylanilide hydroxamine (SAHA), HC toxin, apicidin, panobinostat, SB939, and LAQ824 were additionally found to be highly effective HDP inducers in a porcine 3D4/31 macrophage cell line. Besides PBD3, other HDP genes such as PBD2 and cathelicidins (PG1–5) were concentration-dependently induced by those compounds in both IPEC-J2 and 3D4/31 cells. Furthermore, the antibacterial activities of 3D4/31 cells were augmented following 24 h exposure to HDAC inhibitors. In conclusion, a cell-based high-throughput screening assay was developed for the discovery of porcine HDP inducers, and newly identified HDP-inducing compounds may have potential to be developed as alternatives to antibiotics for applications in swine and possibly other animal species.
Collapse
|
19
|
Wang L, Wang H, Duan Z, Zhang J, Zhang W. Mechanism of gastrodin in cell apoptosis in rat hippocampus tissue induced by desflurane. Exp Ther Med 2018. [PMID: 29541166 PMCID: PMC5838295 DOI: 10.3892/etm.2018.5770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the protective effect ofgastrodin on cell apoptosis in rats hippocampus tissues induced by desflurane to explore its mechanism. A total of 36 rats were randomly divided into three groups: Blank control group (C group, n=12), desflurane anesthesia group (DF group, n=12) and gastrodin treatment group (GT group, n=12). Rats in DF group were treated with anesthesia using desflurane. Rats in GT group were treated with gavage using gastrodin and the same treatment as DF group. After the experiment, novel object recognition test and water maze test were performed. The hippocampus tissues were taken from the rat after the behavioral experiment; then the number of apoptotic cells was detected using the terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) kit, and the mRNA and protein expression levels of p38 and interleukin-1 (IL-1) were detected via semi-quantitative polymerase chain reaction (PCR) and western blot analysis. After the desflurane anesthesia, novel object recognition showed that compared with that in DF group, the exploration capacity of novel objects in GT group was increased (P<0.01). The water maze test showed that the escape latencies in DF group, T1 in GT group was significantly shortened, but T2 was significantly prolonged (P<0.01). TUNEL assay showed that the number of apoptotic cells in hippocampus tissues in GT group was significantly fewer than that in group DF (P<0.01). Semi-quantitative PCR and western blot analysis showed that the expression levels of p38 and IL-1β in GT group were lower than those in DF group (P<0.01). The results show that gastrodin has a protective effect on the apoptosis of hippocampus cells of rats induced by desflurane. Its protection mechanism may be realized through decreasing the increased p38 and IL-1β expression levels induced by desflurane, thus blocking the p38 mitogen-activated protein kinase (p38 MAPK) pathway.
Collapse
Affiliation(s)
- Luping Wang
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Hushan Wang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zongsheng Duan
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jian Zhang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wenwen Zhang
- Department of Anesthesiology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
20
|
Lin Y, Jiao Y, Yuan Y, Zhou Z, Zheng Y, Xiao J, Li C, Chen Z, Cao P. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway. Emerg Microbes Infect 2018; 7:1. [PMID: 29323102 PMCID: PMC5837142 DOI: 10.1038/s41426-017-0002-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Evidence suggests that intervertebral disc degeneration (IVDD) can be induced by Propionibacterium acnes (P. acnes), although the underlying mechanisms are unclear. In this study, we analyzed the pathological changes in degenerated human intervertebral discs (IVDs) infected with P. acnes. Compared with P. acnes-negative samples, P. acnes-positive IVDs showed increased apoptosis of nucleus pulposus cells (NPCs) concomitant with severe IVDD. Then, a P. acnes-inoculated IVD animal model was established, and severe IVDD was induced by P. acnes infection by promoting NPC apoptosis. The results suggested that P.acnes-induced apoptosis of NPCs via the Toll-like receptor 2 (TLR2)/c-Jun N-terminal kinase (JNK) pathway and mitochondrial-mediated cell death. In addition, P. acnes was found to activate autophagy, which likely plays a role in apoptosis of NPCs. Overall, these findings further validated the involvement of P. acnes in the pathology of IVDD and provided evidence that P. acnes-induced apoptosis of NPCs via the TLR2/JNK pathway is likely responsible for the pathology of IVDD.
Collapse
Affiliation(s)
- Yazhou Lin
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Yucheng Jiao
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Ye Yuan
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Zezhu Zhou
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Yuehuan Zheng
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Jiaqi Xiao
- 0000 0004 0368 8293grid.16821.3cDepartment of Medical Microbiology and Parasitology, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Changwei Li
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Zhe Chen
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Peng Cao
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| |
Collapse
|
21
|
Elmaghraby MM, El-Nahas AF, Fathala MM, Sahwan FM, Tag EL-Dien MA. Association of toll-like receptors 2 and 6 polymorphism with clinical mastitis and production traits in Holstein cattle. IRANIAN JOURNAL OF VETERINARY RESEARCH 2018; 19:202-207. [PMID: 30349567 PMCID: PMC6184031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Mastitis is a costly disease of dairy cattle as it causes a loss in milk yield and milk quality in affected cows. Toll-like receptor (TLR) genes play a role in the host response to a variety of organisms including those inducing mastitis. In the present study, we investigated the polymorphism of TLR2, 4, 6 and 9 genes in Holstein cattle and their possible association with clinical mastitis (CM), milk somatic cell scores (SCS) and milk production traits. From a large commercial Holstein herd, thirty-eight blood samples were collected; 19 from cows without a previous lifetime history of mastitis (non-susceptible), and 19 from Holstein cows with at least three previous episodes of mastitis (susceptible). Genotyping of the four TLRs was done using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPs) with Rsa1, MSP1, Hha1, HaeIII, and Taq1 enzymes guided with DNA sequencing. Seven novel non-synonymous single-nucleotide polymorphisms (SNPs) were identified among TLR2, 4, and 6 in susceptible animals. Association was found in Taq1-TLR2 gene polymorphism with CM, fat percentage and peak yield (PY). The association of Taq1-TLR6 and PY and lactation persistency was also shown. Mutations in TLRs that were repeatedly reported in susceptible cows provide potential genetic marker assisted selection (MAS) for mastitis resistance in dairy cattle.
Collapse
Affiliation(s)
- M. M. Elmaghraby
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - A. F. El-Nahas
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - M. M. Fathala
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - F. M. Sahwan
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - M. A. Tag EL-Dien
- Animal Production Research Institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| |
Collapse
|