1
|
Rybicka I, Kaźmierczak Z. The human phageome: niche-specific distribution of bacteriophages and their clinical implications. Appl Environ Microbiol 2025:e0178824. [PMID: 40237489 DOI: 10.1128/aem.01788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages (phages) play a crucial role in shaping the composition and diversity of the human microbiome across various body niches. Recent advancements in high-throughput sequencing technologies have enabled comprehensive analysis of the human phageome in different body sites. This review comprehensively analyzes phage populations across major human body niches, examining their distribution and dynamics through recent metagenomic discoveries. We explore how phage-bacteria interactions within different body sites contribute to homeostasis and disease development. Emerging evidence demonstrates that phageome perturbations can serve as early indicators of various disorders, particularly in the gut microbiome. Understanding these complex microbial interactions offers promising opportunities for developing novel diagnostic markers and therapeutic approaches. However, the causal relationship between phages, bacteria, and disease development remains unclear. Further research is needed to elucidate the role of phages in human health and disease and to explore their potential as diagnostic or therapeutic tools. Understanding the intricate interactions between phages, bacteria, and the human host is crucial for unraveling the complexities of the human microbiome and its impact on health and disease.
Collapse
Affiliation(s)
- Izabela Rybicka
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
- Faculty of Medicine, Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
2
|
Zhang Z, Zhu T, Li Y, Yu B, Tao H, Zhao H, Cui B. Butyrate Regulates Intestinal DNA Virome and Lipopolysaccharide Levels to Prevent High-Fat Diet-Related Liver Damage in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8277-8289. [PMID: 40166958 DOI: 10.1021/acs.jafc.4c07966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
As the adsorption receptor of bacteriophage tail protein, bacterial lipopolysaccharide (LPS) is a main culprit responsible for nonalcoholic fatty liver disease (NAFLD) caused by high-fat diets. However, few studies have focused on how the interaction between intestinal bacteriophages and bacterial LPS affects the development and progression of NAFLD. Herein, we determined that excessive fat intake significantly increases the levels of endogenous LPS, while the administration of beneficial metabolites of the intestinal microbiota (specifically butyrate) alleviated hepatic injury in rats. The beneficial mechanism of butyrate was attributed to the reprogramming of the structure of the intestinal DNA virome (primarily, phageome). Butyrate possesses the potential to augment bacteriophagic microbial diversity, thereby potentially facilitating interactions between intestinal bacteriophages and bacterial LPS (in the case of homologous phage), further improving mitochondrial dysfunction and reactive oxygen species production, which, in turn, lowered HepG2 cell damage. Likewise, fecal phage transplantation further confirmed that intestinal phages from rats that received butyrate could effectively interact with bacterial LPS to reduce liver damage in rats. Taken together, modifying the intestinal phageome is a promising treatment option for high-fat diet-related NAFLD.
Collapse
Affiliation(s)
- Zheng Zhang
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tian Zhu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bin Yu
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haiteng Tao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haibo Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Peñalver Bernabé B, Oliveira ML, Wolf PG, McLeod A, Gabel K, Cares K, Robinson N, DiPiazza B, Varady K, Tussing-Humphreys L. Intermittent Fasting: Implications for Obesity-Related Colorectal Tumorigenesis. Endocrinol Metab Clin North Am 2025; 54:61-83. [PMID: 39919878 DOI: 10.1016/j.ecl.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Obesity is associated with metabolic and immune perturbations (ie, insulin resistance, increased inflammation, and oxidative stress), circadian rhythm dysregulation, and gut microbial changes that can promote colorectal tumorigenesis. Colorectal cancer (CRC) is the third most incident cancer in the United States. This narrative review examines the effects of intermittend fasting on factors influencing colon tumorigenesis, such as body weight, metabolic and immune markers, circadian rythm, and the gut microbiota in humans. Findings suggest that intermittent fasting regimens can lead to weight loss and shifts in metabolic markers, which could be preventive for CRC but effects on the gut microbiota composition and functions still remains elusive.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Biomedical Engineering, University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, USA; Center for Bioinformatics and Quantitative Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Patricia G Wolf
- Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA; Purdue Institute for Cancer Research, West Lafayette, IN, USA
| | - Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; Department of Nutrition Science, Purdue University, 700 Mitch Daniels Boulevard, West Lafayette, IN, USA
| | - Kate Cares
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Nadia Robinson
- College of Nursing, University of Illinois Chicago, 845 South Damen Avenue, MC 802, Chicago, IL, USA
| | - Brittany DiPiazza
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, 1919 West Taylor Street, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Tsantes AG, Liakou AI, Drogari-Apiranthitou M, Kaliouli-Antonopoulou C. The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity-A Narrative Review. Diagnostics (Basel) 2025; 15:413. [PMID: 40002565 PMCID: PMC11854275 DOI: 10.3390/diagnostics15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant's immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | - Andreas G. Tsantes
- Department of Microbiology, Saint Savvas Oncology Hospital, 11522 Athens, Greece;
| | - Aikaterini I. Liakou
- 1st Department of Dermatology-Venereology, “Andreas Sygros” Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Maria Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece;
| | | |
Collapse
|
5
|
Kriti M, Ojha R, Singh S, Sarma DK, Verma V, Yadav AK, Nagpal R, Kumar M. Implication of Gut Mycobiome and Virome in Type-2 Diabetes Mellitus: Uncovering the Hidden Players. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:51-64. [PMID: 40313607 PMCID: PMC12040793 DOI: 10.1007/s43657-024-00199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 05/03/2025]
Abstract
Type-2 diabetes mellitus (T2DM) is a global epidemic with significant societal costs. The gut microbiota, including its metabolites, plays a pivotal role in maintaining health, while gut dysbiosis is implicated in several metabolic disorders, including T2DM. Although data exists on the relationship between the gut bacteriome and metabolic disorders, further attention is needed for the mycobiome and virome. Recent advancements have begun to shed light on these connections, offering potential avenues for preventive measures. However, more comprehensive investigations are required to untangle the interrelations between different microbial kingdoms and their role in T2DM development or mitigation. This review presents a simplified overview of the alterations in the gut bacteriome in T2DM and delves into the current understanding of the mycobiome and virome's role in T2DM, along with their interactions with the cohabiting bacteriome. Subsequently, it explores into the age-related dynamics of the gut microbiome and the changes observed in the microbiome composition with the onset of T2DM. Further, we explore the basic workflow utilized in gut microbiome studies. Lastly, we discuss potential therapeutic interventions in gut microbiome research, which could contribute to the amelioration of the condition, serve as preventive measures, or pave the way towards personalized medicine.
Collapse
Affiliation(s)
- Mona Kriti
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Raj Ojha
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014 Uttar Pradesh India
| | - Ashok Kumar Yadav
- Department of Zoology, Central University of Jammu, 181143 Jammu, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal, 462030 Madhya Pradesh India
| |
Collapse
|
6
|
Ishizaka A, Tamura A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Yasuhara A, Yamamoto S, Nagai H, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Dysbiosis of gut microbiota in COVID-19 is associated with intestinal DNA phage dynamics of lysogenic and lytic infection. Microbiol Spectr 2025; 13:e0099824. [PMID: 39656008 PMCID: PMC11705802 DOI: 10.1128/spectrum.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study compared intestinal DNA phage dynamics and gut microbiota changes observed at the onset of coronavirus disease 2019 (COVID-19). The study participants included 19 healthy individuals and 19 patients with severe acute respiratory syndrome coronavirus 2 infection. Significant differences were observed in the diversity of the intestinal DNA virome after the onset of COVID-19 compared with that in healthy individuals. Classification by their tail morphology resulted in the order Caudovirales, a double-stranded DNA phage, accounting for >95% of all participants. In classifying phages based on host bacteria, a decreased number of phages infecting mainly the Clostridia class was observed immediately after the onset of COVID-19 and recovered over time. After the onset of COVID-19, two distinct movement patterns of intestinal phages and their host bacteria were observed: phage- and bacteria-predominant. The abundance of obligate anaerobes, such as Clostridium_sense_strict_1, Fusicatenibacter, and Romboutsia, and the phages hosting these bacteria decreased immediately after the onset of COVID-19, and faster phage recovery was observed compared with bacterial recovery. In contrast, the genus Staphylococcus, a facultative anaerobic bacterium, increased immediately after the onset of COVID-19, whereas the phages infecting Staphylococcus decreased. Furthermore, immediately after the onset of COVID-19, the percentage of lytic phages increased, whereas that of temperate phages decreased. These observations suggest that the gut microbiota dysbiosis observed immediately after the onset of COVID-19 may be linked to phage dynamics that control gut microbiota and may also affect the recovery from dysbiosis.IMPORTANCEBacteriophages infect and replicate with bacteria and archaea and are closely associated with intestinal bacteria. The symbiotic relationship between gut microbiota and bacteriophages is of interest, but it is challenging to study their dynamics in the human body over time. SARS-CoV-2 infection has been reported to alter the gut microbiota, which is involved in gut immune regulation and pathophysiology, although changes in the intestinal phages of patients with SARS-CoV-2 and their dynamic relationship with the gut microbiota remain unclear. SARS-CoV-2 infection, which follows a transient pathological course from disease onset to cure, may provide a reliable model to investigate these interactions in the gut environment. Therefore, this study aimed to elucidate the correlation between gut microbiota and intestinal DNA virome dynamics in COVID-19 pathogenesis. This study found that the dysbiosis observed in SARS-CoV-2 infection involves a growth strategy that depends on the phage or bacterial dominance.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Azumi Tamura
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Ye J, Meng Q, Jin K, Luo Y, Yue T. Phage cocktail alleviated type 2 diabetes by reshaping gut microbiota and decreasing proinflammatory cytokines. Appl Microbiol Biotechnol 2024; 108:9. [PMID: 38159123 DOI: 10.1007/s00253-023-12912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D), a global health concern, is closely associated with the gut microbiota. Restoration of a balanced microbiota and intestinal homeostasis benefit therapy of T2D. Some special phages may selectively alter the gut microbiota without causing dysbiosis, such as MS2 and P22. However, scarcely systematic analysis of cascading effects triggered by MS2 and P22 phages on the microbiota, as well as interactions between specific gut bacteria and systemic metabolism, seriously inhibit the development of positive interventions of phages. Based on multi-omic analysis, we analyzed the intrinsic correlations among specific microbiota, their bioactive metabolites, and key indicators of T2D. We found that gavage of the MS2-P22 phage cocktail could significantly alter the gut microbiome to attenuate dysbiosis of diabetic C57BL/6 mice caused by high-fat diets (HFDs) and streptozotocin (STZ), by affecting microbial compositions as well as their metabolic pathways and metabolites, especially increasing amounts of short-chain fatty acid-producing (SCFA-producing) bacteria (e.g., Blautia and Romboutsia) and short-chain fatty acids (SCFAs). Correspondingly, a noteworthy reduction in the number of several opportunistic pathogens occurred, e.g., Candidatus Saccharimonas, Aerococcus, Oscillibacter, Desulfovibrio, and Clostridium sensu stricto 1. Synchronously, the levels of proinflammatory cytokines and lipopolysaccharide (LPS) were reduced to recover gut barrier function in T2D mice. These findings might benefit the development of a new dietary intervention for T2D based on phage cocktails. KEY POINTS: • Intestinal barrier integrity of T2D mice is improved by a phage cocktail • Negative relationship between Muribaculaceae and Corynebacterium reshaped gut microbiota • Acetate, propionate, and butyrate decreased the level of proinflammatory factors.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kezhu Jin
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, 710069, Shaanxi, China.
- Research Center of Food Safety Risk Assessment and Control, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
9
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
10
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
11
|
Fang L, Ning J. Gut virome and diabetes: discovering links, exploring therapies. Arch Microbiol 2024; 206:346. [PMID: 38976078 DOI: 10.1007/s00203-024-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
This review offers a comprehensive analysis of the intricate relationship between the gut virome and diabetes, elucidating the mechanisms by which the virome engages with both human cells and the intestinal bacteriome. By examining a decade of scientific literature, we provide a detailed account of the distinct viral variations observed in type 1 diabetes (T1D) and type 2 diabetes (T2D). Our synthesis reveals that the gut virome significantly influences the development of both diabetes types through its interactions, which indirectly modulate immune and inflammatory responses. In T1D, the focus is on eukaryotic viruses that stimulate the host's immune system, whereas T2D is characterized by a broader spectrum of altered phage diversities. Promisingly, in vitro and animal studies suggest fecal virome transplantation as a potential therapeutic strategy to alleviate symptoms of T2D and obesity. This study pioneers a holistic overview of the gut virome's role in T1D and T2D, its interplay with host immunity, and the innovative potential of fecal transplantation therapy in clinical diabetes management.
Collapse
Affiliation(s)
- Lihua Fang
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
12
|
Poulsen CS, Hesse D, Fernandes GR, Hansen TH, Kern T, Linneberg A, Van Espen L, Jørgensen T, Nielsen T, Alibegovic AC, Matthijnssens J, Pedersen O, Vestergaard H, Hansen T, Andersen MK. Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults. Sci Rep 2024; 14:8315. [PMID: 38594375 PMCID: PMC11003976 DOI: 10.1038/s41598-024-58985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Casper S Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Hesse
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Gabriel R Fernandes
- Biosystems Informatics, Institute René Rachou-Fiocruz Minas, Belo Horizonte, Brazil
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics A/S, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lore Van Espen
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amra C Alibegovic
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte University Hospital, Copenhagen, Denmark
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mette K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Scheithauer TPM, Wortelboer K, Winkelmeijer M, Verdoes X, Aydin Ö, Acherman YIZ, de Brauw ML, Nieuwdorp M, Rampanelli E, de Jonge PA, Herrema H. Bacteriophages from treatment-naïve type 2 diabetes individuals drive an inflammatory response in human co-cultures of dendritic cells and T cells. Gut Microbes 2024; 16:2380747. [PMID: 39068518 PMCID: PMC11285347 DOI: 10.1080/19490976.2024.2380747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Individuals with type 2 diabetes (T2D) show signs of low-grade inflammation, which is related to the development of insulin resistance and beta-cell dysfunction. However, the underlying triggers remain unknown. The gut microbiota is a plausible source as it comprises pro-inflammatory bacteria, bacterial metabolites and viruses, including (bacterio)phages. These prokaryotic viruses have been shown to mediate inflammatory responses in gastrointestinal disease. Given the differences in phage populations in healthy individuals versus those with cardiometabolic diseases such as T2D, we here questioned whether phages from T2D individuals would have increased immunogenic potential. To address this, we isolated intestinal phages from a fresh stool sample of healthy controls and individuals with newly diagnosed, treatment-naive T2D. Phages were purified using cesium chloride ultracentrifugation and incubated with healthy donor dendritic cells (DCs) and autologous T cells. Donors with T2D had slightly higher free viral particle numbers compared to healthy controls (p = .1972), which has been previously associated with disease states. Further, phages from T2D induced a higher inflammatory response in DCs and T cells than phages from HC. For example, the expression of the co-stimulatory molecule CD86 on DCs (p < .001) and interferon-y secretion from T cells (p < .01) were increased when comparing the two groups. These results suggest that phages might play a role in low-grade inflammation in T2D individuals.
Collapse
Affiliation(s)
| | - Koen Wortelboer
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Diabetes & Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Diabetes & Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | | | | | - Max Nieuwdorp
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam UMC location AMC, Vascular Medicine, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Diabetes & Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Patrick A. de Jonge
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Diabetes & Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Hilde Herrema
- Experimental Vascular Medicine, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Diabetes & Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Cai L, Wu S, Jia C, Cui C, Sun-Waterhouse D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L) protein through identification, molecular docking, and virtual screening. Food Chem 2023; 429:136912. [PMID: 37480780 DOI: 10.1016/j.foodchem.2023.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
Hemp (Cannabis sativa L) seeds are rich in proteins of high nutritional value, which makes the study of beneficial properties of hemp seed proteins and peptides, such as hypotensive and hypoglycemic effects, increasingly attractive. The present results confirm the good processability and stability of the hemp protein hydrolysate obtained by enzymatic hydrolysis of non-dehulled hemp seed meal (NDHM). Six peptides with potential hypoglycemic activity were obtained by ethanol-graded precipitation, Nano LC-Q-Orbitrap-MS/MS mass spectrometry, and computerized virtual screening. Further, validation experiments for in vitro synthesis showed that TGLGR, SPVI, FY, and FR exhibited good α-glucosidase inhibitory activity, respectively. Animal experiments showed that the hemp protein peptides modulated blood glucose and blood lipids in hyperglycemic rats. These results indicate that hemp protein peptides can reduce blood glucose levels in hyperglycemic rats, suggesting that hemp proteins may be a promising natural source for the prevention and treatment of hyperglycemia.
Collapse
Affiliation(s)
- Lei Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Shengwen Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chenggang Jia
- Guilin Sanjin Pharmaceutical Co., Ltd, Guilin 541100, Guangxi, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
16
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Zhang Y, Sharma S, Tom L, Liao YT, Wu VCH. Gut Phageome-An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms 2023; 11:2454. [PMID: 37894111 PMCID: PMC10609124 DOI: 10.3390/microorganisms11102454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, and viruses, compose a diverse mammalian gut environment and are highly associated with host health. Bacteriophages, the viruses that infect bacteria, are the primary members of the gastrointestinal virome, known as the phageome. However, our knowledge regarding the gut phageome remains poorly understood. In this review, the critical role of the gut phageome and its correlation with mammalian health were summarized. First, an overall profile of phages across the gastrointestinal tract and their dynamic roles in shaping the surrounding microorganisms was elucidated. Further, the impacts of the gut phageome on gastrointestinal fitness and the bacterial community were highlighted, together with the influence of diets on the gut phageome composition. Additionally, new reports on the role of the gut phageome in the association of mammalian health and diseases were reviewed. Finally, a comprehensive update regarding the advanced phage benchwork and contributions of phage-based therapy to prevent/treat mammalian diseases was provided. This study provides insights into the role and impact of the gut phagenome in gut environments closely related to mammal health and diseases. The findings provoke the potential applications of phage-based diagnosis and therapy in clinical and agricultural fields. Future research is needed to uncover the underlying mechanism of phage-bacterial interactions in gut environments and explore the maintenance of mammalian health via phage-regulated gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
18
|
Wortelboer K, de Jonge PA, Scheithauer TPM, Attaye I, Kemper EM, Nieuwdorp M, Herrema H. Phage-microbe dynamics after sterile faecal filtrate transplantation in individuals with metabolic syndrome: a double-blind, randomised, placebo-controlled clinical trial assessing efficacy and safety. Nat Commun 2023; 14:5600. [PMID: 37699894 PMCID: PMC10497675 DOI: 10.1038/s41467-023-41329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
Bacteriophages (phages) are bacterial viruses that have been shown to shape microbial communities. Previous studies have shown that faecal virome transplantation can decrease weight gain and normalize blood glucose tolerance in diet-induced obese mice. Therefore, we performed a double-blind, randomised, placebo-controlled pilot study in which 24 individuals with metabolic syndrome were randomised to a faecal filtrate transplantation (FFT) from a lean healthy donor (n = 12) or placebo (n = 12). The primary outcome, change in glucose metabolism, and secondary outcomes, safety and longitudinal changes within the intestinal bacteriome and phageome, were assessed from baseline up to 28 days. All 24 included subjects completed the study and are included in the analyses. While the overall changes in glucose metabolism are not significantly different between both groups, the FFT is well-tolerated and without any serious adverse events. The phage virion composition is significantly altered two days after FFT as compared to placebo, which coincides with more virulent phage-microbe interactions. In conclusion, we provide evidence that gut phages can be safely administered to transiently alter the gut microbiota of recipients.
Collapse
Affiliation(s)
- Koen Wortelboer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Patrick A de Jonge
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
| | - Ilias Attaye
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
| | - E Marleen Kemper
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Pharmacy and Clinical Pharmacology, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Vascular Medicine, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije University Medical Center, Department of Internal Medicine, Diabetes Center, Amsterdam, The Netherlands
| | - Hilde Herrema
- Amsterdam UMC location University of Amsterdam, Experimental Vascular Medicine, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, metabolism and nutrition, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
20
|
Fujimoto K, Miyaoka D, Uematsu S. Characterization of the human gut virome in metabolic and autoimmune diseases. Inflamm Regen 2022; 42:32. [PMID: 36316749 PMCID: PMC9623931 DOI: 10.1186/s41232-022-00218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The intestinal microbiome is dominated by bacteria and plays a pivotal role in the occurrence and development of disease, including several metabolic and autoimmune disorders. While intestinal viral communities, primarily made up of bacteriophages, are also thought to play a role in disease pathogenesis in the gastrointestinal tract, they have received much less attention than intestinal bacteria. Thus, there is limited information about the relationship between bacteriophages and disease. This review explores a potential role for the intestinal viral microbiome in various metabolic and autoimmune diseases.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Daichi Miyaoka
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XCollaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
21
|
Tang B, Yan C, Shen X, Li Y. The bidirectional biological interplay between microbiome and viruses in periodontitis and type-2 diabetes mellitus. Front Immunol 2022; 13:885029. [PMID: 36131931 PMCID: PMC9483123 DOI: 10.3389/fimmu.2022.885029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontitis was an inflammatory disease associated with a dysbiosis of the oral flora characterized by a chronic sustained inflammation inducing the resorption of alveolar bone and leading to tooth loss. Type 2 diabetes mellitus (T2D) was a metabolic disease caused by impaired insulin action. The oral microbiome played a crucial role in modulating both the innate and adaptive immune system during the trigger and exacerbation of periodontitis and T2D. The bidirectional relationship of T2D and periodontitis had been the focus of intensive research, but those were not well explored. In this commentary, an in-depth analysis of the changes of microbiome and bacterial metabolites in periodontitis with or without diabetes was described. The promotion of periodontitis to T2D might involve inflammatory factors/receptors, oxidative stress, microRNA and so on. The effect of diabetes on periodontitis might involve adipose factor pathway, AGE/RAGE and RANK/RANKL pathway etc. Generally, periodontitis and diabetes are closely related to the microecological-epithelial interaction, soft tissue degradation, bone coupling disorder, immune regulation and gene transcription. The viruses, including HBV, HCV, HSV-1, Coronavirus, HCMV, EBV, HIV, phageome and so on, played an important role in the development of T2D and periodontitis. An in-depth understanding of the relationship between microbiome and host was of great significance to clarify the bidirectional mechanisms, suggesting that the periodontitis or T2D remission will have a positive impact on the other.
Collapse
Affiliation(s)
- Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yan Li,
| |
Collapse
|
22
|
Abstract
EMBL-EBI The European Bioinformatics Institute; E. coli Escherichia coli; E. faecalis Enterobacter faecalis; B. fragilis Bacteroides fragilis; B. vulgatus Bacteroides vulgatus; SaPIs Staphylococcus aureus pathogenicity islands; ARGs Antibiotic resistance genes; STEC Shiga toxigenic E. coli; Stx Shiga toxin; BLAST Basic Local Alignment Search Tool; TSST-1 Toxic shock toxin 1; RBPs Receptor-binding proteins; LPS lipopolysaccharide; OMVs Outer membrane vesicles; PT Phosphorothioate; BREX Bacteriophage exclusion; OCR Overcome classical restriction; Pgl Phage growth limitation; DISARM Defense island system associated with restrictionmodification; R-M system Restriction-modification system; BREX system Bacteriophage exclusion system; CRISPR Clustered regularly interspaced short palindromic repeats; Cas CRISPR-associated; PAMs Prospacer adjacent motifs; crRNA CRISPR RNA; SIE; OMPs; Superinfection exclusion; Outer membrane proteins; Abi Abortive infection; TA Toxin-antitoxin; TLR Toll-like receptor; APCs Antigen-presenting cells; DSS Dextran sulfate sodium; IELs Intraepithelial lymphocytes; FMT Fecal microbiota transfer; IFN-γ Interferon-gamma; IBD Inflammatory bowel disease; AgNPs Silver nanoparticles; MDSC Myeloid-derived suppressor cell; CRC Colorectal cancer; VLPs Virus-like particles; TMP Tape measure protein; PSMB4 Proteasome subunit beta type-4; ALD Alcohol-related liver disease; GVHD Graft-versus-host disease; ROS Reactive oxygen species; RA Rheumatoid arthritis; CCP Cyclic citrullinated protein; AMGs Accessory metabolic genes; T1DM Type 1 diabetes mellitus; T2DM Type 2 diabetes mellitus; SCFAs Short-chain fatty acids; GLP-1 Glucagon-like peptide-1; A. baumannii Acinetobacter baumannii; CpG Deoxycytidylinate-phosphodeoxyguanosine; PEG Polyethylene glycol; MetS Metabolic syndrome; OprM Outer membrane porin M.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Ding Kefeng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Colorectal Surgery and Oncology, Cancer Center Zhejiang University, Hangzhou, China,CONTACT Ding Kefeng Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Building 6 room 2018, Hangzhou, Zhejiang310009, China
| |
Collapse
|
23
|
Tiamani K, Luo S, Schulz S, Xue J, Costa R, Khan Mirzaei M, Deng L. The role of virome in the gastrointestinal tract and beyond. FEMS Microbiol Rev 2022; 46:6608358. [PMID: 35700129 PMCID: PMC9629487 DOI: 10.1093/femsre/fuac027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/11/2023] Open
Abstract
The human gut virome is comprised of diverse commensal and pathogenic viruses. The colonization by these viruses begins right after birth through vaginal delivery, then continues through breastfeeding, and broader environmental exposure. Their constant interaction with their bacterial hosts in the body shapes not only our microbiomes but us. In addition, these viruses interact with the immune cells, trigger a broad range of immune responses, and influence different metabolic pathways. Besides its key role in regulating the human gut homeostasis, the intestinal virome contributes to disease development in distant organs, both directly and indirectly. In this review, we will describe the changes in the gut virome through life, health, and disease, followed by discussing the interactions between the virome, the microbiome, and the human host as well as providing an overview of their contribution to gut disease and disease of distant organs.
Collapse
Affiliation(s)
| | | | - Sarah Schulz
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jinling Xue
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rita Costa
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Mohammadali Khan Mirzaei
- Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany,Chair of Microbial Disease Prevention, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Li Deng
- Corresponding author: Institute of Virology, Helmholtz Centre Munich — German Research Centre for Environmental Health, 85764 Neuherberg, Germany; Chair of Prevention of Microbial Diseases, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany. E-mail:
| |
Collapse
|
24
|
Gupta B, Rai R, Oertel M, Raeman R. Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids. Semin Liver Dis 2022; 42:122-137. [PMID: 35738255 PMCID: PMC9307091 DOI: 10.1055/s-0042-1748037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of progressive liver diseases ranging from simple steatosis to steatohepatitis and fibrosis. Globally, NAFLD is the leading cause of morbidity and mortality associated with chronic liver disease, and NAFLD patients are at a higher risk of developing cirrhosis and hepatocellular carcinoma. While there is a consensus that inflammation plays a key role in promoting NAFLD progression, the underlying mechanisms are not well understood. Recent clinical and experimental evidence suggest that increased hepatic translocation of gut microbial antigens, secondary to diet-induced impairment of the intestinal barrier may be important in driving hepatic inflammation in NAFLD. Here, we briefly review various endogenous and exogenous factors influencing the intestinal barrier and present recent advances in our understanding of cellular and molecular mechanisms underlying intestinal barrier dysfunction in NAFLD.
Collapse
Affiliation(s)
- Biki Gupta
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ravi Rai
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Reben Raeman
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Van Espen L, Bak EG, Beller L, Close L, Deboutte W, Juel HB, Nielsen T, Sinar D, De Coninck L, Frithioff-Bøjsøe C, Fonvig CE, Jacobsen S, Kjærgaard M, Thiele M, Fullam A, Kuhn M, Holm JC, Bork P, Krag A, Hansen T, Arumugam M, Matthijnssens J. A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. mSystems 2021; 6:e0038221. [PMID: 34665009 PMCID: PMC8525569 DOI: 10.1128/msystems.00382-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 01/06/2023] Open
Abstract
Gut viruses are important, yet often neglected, players in the complex human gut microbial ecosystem. Recently, the number of human gut virome studies has been increasing; however, we are still only scratching the surface of the immense viral diversity. In this study, 254 virus-enriched fecal metagenomes from 204 Danish subjects were used to generate the Danish Enteric Virome Catalog (DEVoC) containing 12,986 nonredundant viral scaffolds, of which the majority was previously undescribed, encoding 190,029 viral genes. The DEVoC was used to compare 91 healthy DEVoC gut viromes from children, adolescents, and adults that were used to create the DEVoC. Gut viromes of healthy Danish subjects were dominated by phages. While most phage genomes (PGs) only occurred in a single subject, indicating large virome individuality, 39 PGs were present in more than 10 healthy subjects. Among these 39 PGs, the prevalences of three PGs were associated with age. To further study the prevalence of these 39 prevalent PGs, 1,880 gut virome data sets of 27 studies from across the world were screened, revealing several age-, geography-, and disease-related prevalence patterns. Two PGs also showed a remarkably high prevalence worldwide-a crAss-like phage (20.6% prevalence), belonging to the tentative AlphacrAssvirinae subfamily, and a previously undescribed circular temperate phage infecting Bacteroides dorei (14.4% prevalence), called LoVEphage because it encodes lots of viral elements. Due to the LoVEphage's high prevalence and novelty, public data sets in which the LoVEphage was detected were de novo assembled, resulting in an additional 18 circular LoVEphage-like genomes (67.9 to 72.4 kb). IMPORTANCE Through generation of the DEVoC, we added numerous previously uncharacterized viral genomes and genes to the ever-increasing worldwide pool of human gut viromes. The DEVoC, the largest human gut virome catalog generated from consistently processed fecal samples, facilitated the analysis of the 91 healthy Danish gut viromes. Characterizing the biggest cohort of healthy gut viromes from children, adolescents, and adults to date confirmed the previously established high interindividual variation in human gut viromes and demonstrated that the effect of age on the gut virome composition was limited to the prevalence of specific phage (groups). The identification of a previously undescribed prevalent phage illustrates the usefulness of developing virome catalogs, and we foresee that the DEVoC will benefit future analysis of the roles of gut viruses in human health and disease.
Collapse
Affiliation(s)
- Lore Van Espen
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emilie Glad Bak
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leen Beller
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lila Close
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Ward Deboutte
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Helene Bæk Juel
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Deniz Sinar
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Christine Frithioff-Bøjsøe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Cilius Esmann Fonvig
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
| | - Suganya Jacobsen
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maria Kjærgaard
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jens-Christian Holm
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Children’s Obesity Clinic, accredited European Centre for Obesity Management, Department of Paediatrics, Copenhagen University Hospital Holbaek, Holbaek, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Centre for Liver Research, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Division of Clinical & Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
26
|
Zhuang P, Li H, Jia W, Shou Q, Zhu Y, Mao L, Wang W, Wu F, Chen X, Wan X, Wu Y, Liu X, Li Y, Zhu F, He L, Chen J, Zhang Y, Jiao J. Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. MICROBIOME 2021; 9:185. [PMID: 34507608 PMCID: PMC8434703 DOI: 10.1186/s40168-021-01126-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been suggested to prevent the development of metabolic disorders. However, their individual role in treating hyperglycemia and the mechanism of action regarding gut microbiome and metabolome in the context of diabetes remain unclear. RESULTS Supplementation of DHA and EPA attenuated hyperglycemia and insulin resistance without changing body weight in db/db mice while the ameliorative effect appeared to be more pronounced for EPA. DHA/EPA supplementation reduced the abundance of the lipopolysaccharide-containing Enterobacteriaceae whereas elevated the family Coriobacteriaceae negatively correlated with glutamate level, genera Barnesiella and Clostridium XlVa associated with bile acids production, beneficial Bifidobacterium and Lactobacillus, and SCFA-producing species. The gut microbiome alterations co-occurred with the shifts in the metabolome, including glutamate, bile acids, propionic/butyric acid, and lipopolysaccharide, which subsequently relieved β cell apoptosis, suppressed hepatic gluconeogenesis, and promoted GLP-1 secretion, white adipose beiging, and insulin signaling. All these changes appeared to be more evident for EPA. Furthermore, transplantation with DHA/EPA-mediated gut microbiota mimicked the ameliorative effect of DHA/EPA on glucose homeostasis in db/db mice, together with similar changes in gut metabolites. In vitro, DHA/EPA treatment directly inhibited the growth of Escherichia coli (Family Enterobacteriaceae) while promoted Coriobacterium glomerans (Family Coriobacteriaceae), demonstrating a causal effect of DHA/EPA on featured gut microbiota. CONCLUSIONS DHA and EPA dramatically attenuated hyperglycemia and insulin resistance in db/db mice, which was mediated by alterations in gut microbiome and metabolites linking gut to adipose, liver and pancreas. These findings shed light into the gut-organs axis as a promising target for restoring glucose homeostasis and also suggest a better therapeutic effect of EPA for treating diabetes. Video abstract.
Collapse
Affiliation(s)
- Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Haoyu Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wenqiao Wang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|