1
|
Mahendran S, Mohanapriya V, Wilson JJ, Swain D, Ramalingam V. Organ-Specific Metabolomics of Aerial Parts of Melochia corchorifolia for Antibiofilm and Wound Healing Activities. Appl Biochem Biotechnol 2025; 197:691-713. [PMID: 39215903 DOI: 10.1007/s12010-024-05053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Melochia corchorifolia is a well-known perennial herb and has been used in traditional medicine for the treatment of a wide number of diseases. However, the phytochemical investigation in the different organs of the M. corchorifolia was poorly understood. In the present study, the organ-specific metabolomic profiling of leaves, stems, and vegetable extract of M. corchorifolia was determined, and their potential antibiofilm activity with wound healing properties was evaluated. The UPLC-ESI-Q-TOF-MSE analysis showed 59 compounds in the leaf, stem, and vegetable extracts of M. corchorifolia. The crystal violet staining assay clearly showed that the extracts of M. corchorifolia have excellent antibiofilm activity against Proteus mirabilis and Salmonella typhi. The extracts of M. corchorifolia also caused the architecture of the bacterial biofilm by inhibiting the adherence to polystyrene and auto-aggregation and subsequently inhibiting the growth and colonization of the biofilm-forming bacteria P. mirabilis and S. typhi. The extracts of M. corchorifolia accelerate the wound healing process in BALB/c mice by completely closing the wound on the 20th day of treatment. Together, the phytochemicals present in the leaf, stem, and vegetable extracts of M. corchorifolia are responsible for potent antibiofilm and wound healing properties and could be used as an excellent remedy for treating chronic wounds and their associated infectious disease.
Collapse
Affiliation(s)
- Shunmugiah Mahendran
- Department of Microbiology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626123, India.
| | | | - Jeyaraj John Wilson
- Department of Microbiology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, 626123, India
| | - Debasish Swain
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
2
|
Abo-Kamar AM, Mustafa AERA, Al-Madboly LA. Purified α-Amylase from Bacillus cereus exhibits antibiofilm and antiquorum sensing activities against uropathogenic Escherichia coli, Downregulating fimH, and papC virulence genes: implications for urinary tract infections. BMC Microbiol 2024; 24:502. [PMID: 39604852 PMCID: PMC11600819 DOI: 10.1186/s12866-024-03542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND AIM Pathogenic Escherichia coli is a known harmful microorganism that takes advantage of favorable conditions to cause various infections in healthcare settings, such as bloodstream infections related to catheters, as well as infections in the urinary and respiratory tracts. E. coli utilizes biofilm development as a means to enhance its virulence and pathogenicity. This work aims to investigate the antibiofilm activity of α-amylase enzyme against uropathogenic E. coli (UPEC) and its effect on biofilm-regulatory genes. METHODOLOGY In this study, we evaluated the antibiofilm activity of α-amylase enzyme by spectrophotometric microtiter plate analysis and confocal laser scanning microscopy. Also, the antibacterial activity of the test enzyme was evaluated by measuring the MIC and MBC levels against UPEC. The quorum-quenching activity of α-amylase enzyme was assessed using a qRT-PCR to evaluate the impact on biofilm-regulatory genes. RESULTS Based on our results, purified α-amylase showed MIC and MBC levels ranged between 128 and 512 µg /ml against UPEC isolates using broth microdilution assay. Crystal violet assay revealed MBIC of 128 µg/ml and MBEC of 256 µg/ml for the purified α-amylase. When the biofilm was analyzed by confocal laser scanning microscope, our results showed inhibition of biofilm thickness (56%) and live/dead cell percentages (43/55%). Furthermore, analysis of the effect on the expression of biofilm-encoding genes showed downregulation of both fimH and papC genes by 57 and 25%, respectively, upon treatment of UPEC with ½ of the MIC (64 µg/ml). CONCLUSIONS The results demonstrate that our purified α-amylase from B. cereus exhibits promising antibiofilm activities against UPEC at both phenotypic as well as genotypic levels. These findings suggest that this enzyme may serve as a natural effective tool for removing bacterial biofilms, potentially offering new therapeutic avenues for treating infections caused by UPEC.
Collapse
Affiliation(s)
- Amal M Abo-Kamar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Abd-El-Rahman A Mustafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A Al-Madboly
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
3
|
Bhairamkar S, Kadam P, Anjulal H, Joshi A, Chaudhari R, Bagul D, Javdekar V, Zinjarde S. Comprehensive updates on the biological features and metabolic potential of the versatile extremophilic actinomycete Nocardiopsis dassonvillei. Res Microbiol 2024; 175:104171. [PMID: 37995890 DOI: 10.1016/j.resmic.2023.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Nocardiopsis dassonvillei prevails under harsh environmental conditions and the purpose of this review is to highlight its biological features and recent biotechnological applications. The organism prevails in salt-rich soils/marine systems and some strains endure extreme temperatures and pH. A few isolates are associated with marine organisms and others cause human diseases. Comparative genomic analysis indicates its versatility in producing biotechnologically relevant metabolites. Antimicrobial, cytotoxic, anticancer and growth promoting biomolecules are obtained from this organism. It also synthesizes biotechnologically important enzymes. Bioactive compounds and enzymes obtained from this actinomycete provide evidence regarding its metabolic competence and its potential economic value.
Collapse
Affiliation(s)
- Shivani Bhairamkar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Pratik Kadam
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - H Anjulal
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Avani Joshi
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Riddhi Chaudhari
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Dimpal Bagul
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Vaishali Javdekar
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (With Jointly Merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
4
|
Manikkam R, Murthy S, Palaniappan S, Kaari M, Sahu AK, Said M, Ganesan V, Kannan S, Ramasamy B, Thirugnanasambandan S, Dastager SG, Hanna LE, Kumar V. Antibacterial and Anti-HIV Metabolites from Marine Streptomyces albus MAB56 Isolated from Andaman and Nicobar Islands, India. Appl Biochem Biotechnol 2023; 195:7738-7754. [PMID: 37086378 DOI: 10.1007/s12010-023-04493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Marine-derived actinobacteria have tremendous potential to produce novel metabolites with diverse biological activities. The Andaman coast of India has a lot of microbial diversity, but it is still a relatively unknown ecology for isolating novel actinobacteria with beneficial bioactive compounds. We have isolated 568 actinobacterial strains from mangrove rhizosphere sediments and sponge samples. Crude extracts from 75 distinct strains were produced by agar surface fermentation and extracted using ethyl acetate. In the disc diffusion method, 25 actinobacterial strains showed antimicrobial activity; notably, the strain MAB56 demonstrated promising broad-spectrum activity. Strain MAB56 was identified as Streptomyces albus by cultural, microscopic, and molecular methods. Conditions for bioactive metabolites from MAB56 were optimized and produced in a lab-scale fermenter. Three active metabolites (C1, C2, and C3) that showed promising broad-spectrum antimicrobial activity were isolated through HPLC-based purification. Based on the UV, FT-IR, NMR, and LC-MS analysis, the chemical nature of the active compounds was confirmed as 12-methyltetradecanoic acid (C1), palmitic acid (C2), and tridecanoic acid (C3) with molecular formulae C14H28O2, C16H32O2, and C13H26O2, respectively. Interestingly, palmitic acid (C2) also exhibited anti-HIV activity with an IC50 value of < 1 µg/ml. Our findings reveal that the actinobacteria from the Andaman marine ecosystems are promising for isolating anti-infective metabolites.
Collapse
Affiliation(s)
- Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Sangeetha Murthy
- Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | | | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Amit Kumar Sahu
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Madhukar Said
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Vijayalakshmi Ganesan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sivakumar Kannan
- CAS in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | | | | | - Syed G Dastager
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis, Chennai, 600031, Tamil Nadu, India
| | - Vanaja Kumar
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| |
Collapse
|
5
|
Aloufi AS, Habotta OA, Abdelfattah MS, Habib MN, Omran MM, Ali SA, Abdel Moneim AE, Korany SM, Alrajhi AM. Resistomycin Suppresses Prostate Cancer Cell Growth by Instigating Oxidative Stress, Mitochondrial Apoptosis, and Cell Cycle Arrest. Molecules 2023; 28:7871. [PMID: 38067602 PMCID: PMC10708360 DOI: 10.3390/molecules28237871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 µg/mL) or 5-fluorouracil (5-FU; IC25: 7 µg/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 µg/mL and 14.44 µg/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer.
Collapse
Affiliation(s)
- Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Marina N. Habib
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Sally A. Ali
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shereen M. Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| | - Aisha M. Alrajhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| |
Collapse
|
6
|
Sanya DRA, Onésime D, Vizzarro G, Jacquier N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol 2023; 23:86. [PMID: 36991325 PMCID: PMC10060139 DOI: 10.1186/s12866-023-02832-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is the causal agent of a wide variety of infections. This non-fermentative Gram-negative bacillus can colonize zones where the skin barrier is weakened, such as wounds or burns. It also causes infections of the urinary tract, respiratory system or bloodstream. P. aeruginosa infections are common in hospitalized patients for which multidrug-resistant, respectively extensively drug-resistant isolates can be a strong contributor to a high rate of in-hospital mortality. Moreover, chronic respiratory system infections of cystic fibrosis patients are especially concerning, since very tedious to treat. P. aeruginosa exploits diverse cell-associated and secreted virulence factors, which play essential roles in its pathogenesis. Those factors encompass carbohydrate-binding proteins, quorum sensing that monitor the production of extracellular products, genes conferring extensive drug resistance, and a secretion system to deliver effectors to kill competitors or subvert host essential functions. In this article, we highlight recent advances in the understanding of P. aeruginosa pathogenicity and virulence as well as efforts for the identification of new drug targets and the development of new therapeutic strategies against P. aeruginosa infections. These recent advances provide innovative and promising strategies to circumvent infection caused by this important human pathogen.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Grazia Vizzarro
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
- Present Address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
7
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact 2023; 369:110282. [PMID: 36427553 DOI: 10.1016/j.cbi.2022.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The present study aims to investigate the effect and the molecular mechanism of N-(2-hydroxyphenyl)-2-phenazinamine (NHP) isolated from Nocardiopsis exhalans against the proliferation of human lung cancer cells. The cytotoxic activity of NHP against A549 and H520 cells was determined using MTT assay. The cytotoxic activity of NHP against A549 and H520 lung cancer cells showed excellent activity at 75 μg/mL and damage the mitochondrial membrane and nucleus by generating oxidative stress. NHP causes nuclear condensation and induces apoptosis which was confirmed using AO/EB and PI/DAPI dual staining assay. Moreover, the NHP downregulates the oncogenic genes such as IL-8, TNFα, MMPs and BcL2 and also upregulates the expression of apoptosis marker genes such as Cyto C, p53, p21, caspase 9/3 in A549 and H520 human lung cancer cells. Considering the strong anticancer activity of NHP against lung cancer, NHP may be further evaluated as a potential anticancer drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | | | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|