1
|
Santos JFBD, Bombaça ACS, Vitório BDS, Dias-Lopes G, Garcia-Gomes ADS, Menna-Barreto RSF, d'Avila CM, Ennes-Vidal V. Differential expression of peptidases in Strigomonas culicis wild-type and aposymbiotic strains: from proteomic data to proteolytic activity. Mem Inst Oswaldo Cruz 2024; 119:e240110. [PMID: 39661825 DOI: 10.1590/0074-02760240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Strigomonas culicis is a monoxenic trypanosomatid parasite of insects that naturally contains an endosymbiotic bacterium. The aposymbiotic strain can be obtained, making this strain a model for evolutive research about organelle origins. In addition, S. culicis contains homologues of virulence factors of pathogenic trypanosomatids, which functions are waiting for further analysis. In this sense, the publication of S. culicis proteome makes feasible additional investigations regarding the differential expression of peptidases from the wild-type (WT) and the aposymbiotic (APO) strains. OBJECTIVES Here, we analysed two proteomic data from S. culicis WT and APO strains screening for peptidases differentially expressed and assessed the differential expression of cysteine and metallopeptidases. METHODS A comparative proteomic screening between WT and APO identified 43 modulated peptidases. FINDINGS Cysteine and metallopeptidases, such as calpains and GP63, were the major classes, highlighting their significance. GP63 exhibited an increased proteolysis in a specific metallopeptidase substrate, an up-modulation gene expression in RT-PCR, and a higher protein identification by flow cytometry in the aposymbiotic strain. Notwithstanding, the wild-type strain showed enhanced cysteine peptidase activity. MAIN CONCLUSION Our study highlighted the endosymbiont influence in S. culicis peptidase expression, with GP63 expression and activity raised in the aposymbiotic strain, whereas cysteine peptidase levels were reduced.
Collapse
Affiliation(s)
| | - Ana Cristina Souza Bombaça
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Celular, Rio de Janeiro, RJ, Brasil
| | - Bianca da Silva Vitório
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ciências Biomédicas e Saúde, Cabo Frio, RJ, Brasil
| | - Aline Dos Santos Garcia-Gomes
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Laboratório de Microbiologia, Rio de Janeiro, RJ, Brasil
| | | | - Claudia Masini d'Avila
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Maruyama SR. Spotlight on Leishmaniasis Research: Insights from the Special Issue "Emerging Topics in Leishmaniasis Research". Trop Med Infect Dis 2024; 9:200. [PMID: 39330889 PMCID: PMC11436176 DOI: 10.3390/tropicalmed9090200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Leishmaniases, caused by dixenous trypanosomatids from the Leishmaniinae subfamily (over 20 Leishmania species), manifest in three primary clinical forms: visceral (VL), cutaneous (CL), and mucocutaneous (MCL) [...].
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Clinical Analyses, Toxicology, and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| |
Collapse
|
3
|
González CR, Reyes C, Castillo A, Valderrama L, Llanos L, Fernández J, Eastwood G, Cancino-Faure B. Molecular evidence of pathogens and endosymbionts in the black horse fly Osca lata (Diptera: Tabanidae) in Southern Chile. PLoS Negl Trop Dis 2024; 18:e0012525. [PMID: 39331668 PMCID: PMC11463783 DOI: 10.1371/journal.pntd.0012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/09/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Little is known about the role of horse flies in potential pathogen transmission in Chile. This study provides evidence of the molecular detection of microorganisms in southern Chile. In the present study, adult Osca lata horse flies were trapped from Punucapa (39°45'06"S/73°16'08"W, Región de Los Ríos) and Puyehue (40°39'10"S/72°10'57"W, Región de Los Lagos), Chile. Among the 95 samples analyzed by PCR using specific primers, microorganisms were detected in 23.2% (n = 22) of the samples. Rickettsia spp. DNA was detected in 15.8% (n = 15) of the samples, Trypanosomatidae DNA in 5.3% (n = 5) of the samples, and filarial DNA in 2.1% (n = 2) of the samples. This study found that horse flies in the region are capable of carrying a variety of both parasites and endosymbionts. Further research is needed to understand the specific impact of horse flies as mechanical or biological vectors and develop effective control measures to prevent the spread of any microorganisms associated with disease.
Collapse
Affiliation(s)
- Christian R. González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Carolina Reyes
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Andrés Castillo
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Lara Valderrama
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Lorena Llanos
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jorge Fernández
- Sección Entomología y Genética Vectores, Sección Genética de Agentes Infecciosos, Subdepartamento de Genómica y Genética Molecular, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Gillian Eastwood
- Department of Entomology, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Beatriz Cancino-Faure
- Laboratorio de Microbiología y Parasitología, Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
5
|
Takamiya NT, Rogerio LA, Torres C, Leonel JAF, Vioti G, de Sousa Oliveira TMF, Valeriano KC, Porcino GN, de Miranda Santos IKF, Costa CHN, Costa DL, Ferreira TS, Gurgel-Gonçalves R, da Silva JS, Teixeira FR, De Almeida RP, Ribeiro JMC, Maruyama SR. Parasite Detection in Visceral Leishmaniasis Samples by Dye-Based qPCR Using New Gene Targets of Leishmania infantum and Crithidia. Trop Med Infect Dis 2023; 8:405. [PMID: 37624343 PMCID: PMC10457869 DOI: 10.3390/tropicalmed8080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Visceral leishmaniasis (VL) is a neglected disease considered a serious public health problem, especially in endemic countries. Several studies have discovered monoxenous trypanosomatids (Leptomonas and Crithidia) in patients with VL. In different situations of leishmaniasis, investigations have examined cases of co-infection between Leishmania spp. and Crithidia spp. These coinfections have been observed in a wide range of vertebrate hosts, indicating that they are not rare. Diagnostic techniques require improvements and more robust tools to accurately detect the causative agent of VL. This study aimed to develop a real-time quantitative dye-based PCR (qPCR) assay capable of distinguishing Leishmania infantum from Crithidia-related species and to estimate the parasite load in samples of VL from humans and animals. The primer LinJ31_2420 targets an exclusive phosphatase of L. infantum; the primer Catalase_LVH60-12060_1F targets the catalase gene of Crithidia. Therefore, primers were designed to detect L. infantum and Crithidia sp. LVH60A (a novel trypanosomatid isolated from VL patients in Brazil), in samples related to VL. These primers were considered species-specific, based on sequence analysis using genome data retrieved from the TriTryp database and the genome assembling of Crithidia sp. LVH60A strain, in addition to experimental and clinical data presented herein. This novel qPCR assay was highly accurate in identifying and quantifying L. infantum and Crithidia sp. LVH60A in samples obtained experimentally (in vitro and in vivo) or collected from hosts (humans, dogs, cats, and vectors). Importantly, the screening of 62 cultured isolates from VL patients using these primers surprisingly revealed that 51 parasite cultures were PCR+ for Crithidia sp. In addition, qPCR assays identified the co-infection of L. infantum with Crithidia sp. LVH60A in two new VL cases in Brazil, confirming the suspicion of co-infection in a previously reported case of fatal VL. We believe that the species-specific genes targeted in this study can be helpful for the molecular diagnosis of VL, as well as for elucidating suspected co-infections with monoxenous-like trypanosomatids, which is a neglected fact of a neglected disease.
Collapse
Affiliation(s)
- Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (N.T.T.); (F.R.T.)
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (N.T.T.); (F.R.T.)
| | - Caroline Torres
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (N.T.T.); (F.R.T.)
| | - João Augusto Franco Leonel
- Post-Graduate Program in Experimental Epidemiology Applied to Zoonoses at the Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Geovanna Vioti
- Post-Graduate Program in Experimental Epidemiology Applied to Zoonoses at the Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Tricia Maria Ferreira de Sousa Oliveira
- Post-Graduate Program in Experimental Epidemiology Applied to Zoonoses at the Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Karoline Camila Valeriano
- Ribeirão Preto Medical School, University of São Paulo, FMRP-USP, Ribeirão Preto 14049-900, SP, Brazil
| | | | | | - Carlos H. N. Costa
- Natan Portela Institute of Tropical Diseases, Teresina 64002-510, PI, Brazil
| | | | - Tauana Sousa Ferreira
- Laboratory of Medical Parasitology and Vector Biology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Rodrigo Gurgel-Gonçalves
- Laboratory of Medical Parasitology and Vector Biology, Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - João Santana da Silva
- Fiocruz-Bi-Institutional Translational Medicine Project, Oswaldo Cruz Foundation, Ribeirão Preto 14040-900, SP, Brazil
| | - Felipe Roberti Teixeira
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (N.T.T.); (F.R.T.)
| | - Roque Pacheco De Almeida
- Department of Medicine, Center for Biology and Health Sciences, Federal University of Sergipe (UFS), Aracaju 49060-108, SE, Brazil
| | - José M. C. Ribeiro
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, NIH/NIAID, Rockville, MD 20892, USA
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil; (N.T.T.); (F.R.T.)
| |
Collapse
|
6
|
Rogerio LA, Takahashi TY, Cardoso L, Takamiya NT, de Melo EV, de Jesus AR, de Oliveira FA, Forrester S, Jeffares DC, da Silva JS, Ribeiro JM, Almeida RP, Maruyama SR. Co-infection of Leishmania infantum and a Crithidia-related species in a case of refractory relapsed visceral leishmaniasis with non-ulcerated cutaneous manifestation in Brazil. Int J Infect Dis 2023; 133:85-88. [PMID: 37182549 PMCID: PMC10330508 DOI: 10.1016/j.ijid.2023.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023] Open
Abstract
We report a refractory and relapsed visceral leishmaniasis case in a male child patient followed from 2016 to 2020, whose clinical isolates from multiple relapses were analyzed at the genome level. To the best of our knowledge, it is the first report that both visceral leishmaniasis and non-ulcerated cutaneous leishmaniasis have concomitantly manifested in the same patient. Importantly, sequence analysis revealed that the patient was co-infected with Leishmania infantum and a Crithidia-related parasite, which was previously found in a fatal case of visceral leishmaniasis from the same endemic region.
Collapse
Affiliation(s)
- Luana Aparecida Rogerio
- Department of Genetics and Evolution, Centre for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Talita Yuri Takahashi
- Department of Genetics and Evolution, Centre for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Luria Cardoso
- Department of Medicine, Centre for Biology and Health Sciences, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Centre for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, Centre for Biology and Health Sciences, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Amelia Ribeiro de Jesus
- Department of Medicine, Centre for Biology and Health Sciences, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Fabricia Alvisi de Oliveira
- Laboratory of Molecular Biology, University Hospital (HU-UFS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Sarah Forrester
- Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - Daniel C Jeffares
- Department of Biology and York Biomedical Research Institute, University of York, York, UK
| | - João Santana da Silva
- Fiocruz - Bi-Institutional Translational Medicine Project, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, Centre for Biology and Health Sciences, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Centre for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil.
| |
Collapse
|
7
|
First Evidence of Co-Circulation of Emerging Leishmania martiniquensis, Leishmania orientalis, and Crithidia sp. in Culicoides Biting Midges (Diptera: Ceratopogonidae), the Putative Vectors for Autochthonous Transmission in Southern Thailand. Trop Med Infect Dis 2022; 7:tropicalmed7110379. [PMID: 36422930 PMCID: PMC9696774 DOI: 10.3390/tropicalmed7110379] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Since 1996, autochthonous cases of emerging leishmaniasis caused by Leishmania (Mundinia) martiniquensis and Leishmania (Mundinia) orientalis have been more frequently reported, especially in the northern and southern parts of Thailand. However, the accurate identification of their natural vectors and reservoirs remains unconfirmed. Previous studies have suggested that these emerging parasites might be transmitted by other non-phlebotomine vectors. Herein, we speculated that Culicoides biting midges might act as the competent vectors responsible for autochthonous leishmaniasis in southern Thailand. In this research, 187 non-engorged, parous and gravid Culicoides females and 47 blood-engorged ones were trapped from the residences of two recently diagnosed visceral leishmaniasis patients in Sadao District and the unaffected site in Rattaphum District, Songkhla Province, southern Thailand. Species diversity and abundance of biting midges varied among the trapping sites. Using ITS1-PCR and BLASTn analysis, L. martiniquensis was predominantly detected in several Culicoides species, including C. peregrinus, C. oxystoma, C. mahasarakhamense, and C. huffi from the vicinity of patients’ houses; and in C. fordae and C. fulvus from the unaffected site. L. orientalis was also co-circulated in C. peregrinus and C. oxystoma caught near the second patient’s house. Additionally, Crithidia sp. were also detected using SSU rRNA-PCR across Culicoides spp. Host blood meal analysis of eight different Culicoides species from the unaffected site also revealed that all trapped Culicoides had fed on cows and goats, indicating the possible role of these mammalian species as reservoir hosts. Essentially, this study is the first entomological investigation, revealing the co-circulation of emerging trypanosomatids among several species of Culicoides biting midges and strongly supporting the potential role of this insect group as the main vectors responsible for the epidemiology of autochthonous leishmaniasis in southern Thailand.
Collapse
|
8
|
Sunantaraporn S, Hortiwakul T, Kraivichian K, Siriyasatien P, Brownell N. Molecular Identification of Host Blood Meals and Detection of Blood Parasites in Culicoides Latreille (Diptera: Ceratopogonidae) Collected from Phatthalung Province, Southern Thailand. INSECTS 2022; 13:insects13100912. [PMID: 36292860 PMCID: PMC9604321 DOI: 10.3390/insects13100912] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
Five hundred and fifty-nine female biting midges were collected, and seventeen species in six subgenera (Avaritia, Haemophoructus, Hoffmania, Meijerehelea, Remmia, and Trithecoides) and two groups (Clavipalpis and Shortti) were identified. The dominant Culicoides species was C. peregrinus (30.94%), followed by C. subgenus Trithecoides. From blood meal analysis of engorged biting midges, they were found to feed on cows, dogs, pigs, and avians. The majority of blood preferences of biting midges (68%; 49/72) displayed a mixed pattern of host blood DNA (cow and avian). The overall non-engorged biting midge field infectivity rate was 1.44 % (7/487). We detected Leucocytozoon sp. in three Culicoides specimens, one from each species: C. fulvus, C. oxystoma, and C. subgenus Trithecoides. Crithidia sp. was found in two C. peregrinus specimens, and Trypanosoma sp. and P. juxtanucleare were separately found in two C. guttifer. More consideration should be paid to the capacity of biting midges to transmit pathogens such as avian haemosporidian and trypanosomatid parasites. To demonstrate that these biting midges are natural vectors of trypanosomatid parasites, additional research must be conducted with a greater number of biting midges in other endemic regions.
Collapse
Affiliation(s)
- Sakone Sunantaraporn
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanyarat Kraivichian
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narisa Brownell
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
9
|
Differences in Charge Distribution in Leishmania tarentolae Leishmanolysin Result in a Reduced Enzymatic Activity. Int J Mol Sci 2022; 23:ijms23147660. [PMID: 35887004 PMCID: PMC9321319 DOI: 10.3390/ijms23147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmania tarentolae is a non-pathogenic trypanosomatid isolated from lizards widely used for heterologous protein expression and extensively studied to understand the pathogenic mechanisms of leishmaniasis. The repertoire of leishmanolysin genes was reported to be expanded in L. tarentolae genome, but no proteolytic activity was detected. Here, we analyzed L. tarentolae leishmanolysin proteins from the genome to the structural levels and evaluated the enzymatic activity of the wild-type and overexpressing mutants of leishmanolysin. A total of 61 leishmanolysin sequences were retrieved from the L. tarentolae genome. Five of them were selected for phylogenetic analysis, and for three of them, we built 3D models based on the crystallographic structure of L. major ortholog. Molecular dynamics simulations of these models disclosed a less negative electrostatic potential compared to the template. Subsequently, L. major LmjF.10.0460 and L. tarentolae LtaP10.0650 leishmanolysins were cloned in a pLEXSY expression system into L. tarentolae. Proteins from the wild-type and the overexpressing parasites were submitted to enzymatic analysis. Our results revealed that L. tarentolae leishmanolysins harbor a weak enzymatic activity about three times less abundant than L. major leishmanolysin. Our findings strongly suggest that the less negative electrostatic potential of L. tarentolae leishmanolysin can be the reason for the reduced proteolytic activity detected in this parasite.
Collapse
|