1
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Cao X, Huang L, Tang M, Liang Y, Liu X, Hou H, Liang S. Antibiotics daptomycin interacts with S protein of SARS-CoV-2 to promote cell invasion of Omicron (B1.1.529) pseudovirus. Virulence 2024; 15:2339703. [PMID: 38576396 PMCID: PMC11057663 DOI: 10.1080/21505594.2024.2339703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed enormous challenges to global public health. The use of antibiotics has greatly increased during the SARS-CoV-2 epidemic owing to the presence of bacterial co-infection and secondary bacterial infections. The antibiotics daptomycin (DAP) is widely used in the treatment of infectious diseases caused by gram-positive bacteria owing to its highly efficient antibacterial activity. It is pivotal to study the antibiotics usage options for patients of coronavirus infectious disease (COVID-19) with pneumonia those need admission to receive antibiotics treatment for bacterial co-infection in managing COVID-19 disease. Herein, we have revealed the interactions of DAP with the S protein of SARS-CoV-2 and the variant Omicron (B1.1.529) using the molecular docking approach and Omicron (B1.1.529) pseudovirus (PsV) mimic invasion. Molecular docking analysis shows that DAP has a certain degree of binding ability to the S protein of SARS-CoV-2 and several derived virus variants, and co-incubation of 1-100 μM DAP with cells promotes the entry of the PsV into human angiotensin-converting enzyme 2 (hACE2)-expressing HEK-293T cells (HEK-293T-hACE2), and this effect is related to the concentration of extracellular calcium ions (Ca2+). The PsV invasion rate in the HEK-293T-hACE2 cells concurrently with DAP incubation was 1.7 times of PsV infection alone. In general, our findings demonstrate that DAP promotes the infection of PsV into cells, which provides certain reference of antibiotics selection and usage optimization for clinicians to treat bacterial coinfection or secondary infection during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xu Cao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huijin Hou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cho BH, Kim J, Jang YS. The Papain-like Protease Domain of Severe Acute Respiratory Syndrome Coronavirus 2 Conjugated with Human Beta-Defensin 2 and Co1 Induces Mucosal and Systemic Immune Responses against the Virus. Vaccines (Basel) 2024; 12:441. [PMID: 38675823 PMCID: PMC11053661 DOI: 10.3390/vaccines12040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Most of the licensed vaccines against SARS-CoV-2 target spike proteins to induce viral neutralizing antibodies. However, currently prevalent SARS-CoV-2 variants contain many mutations, especially in their spike proteins. The development of vaccine antigens with conserved sequences that cross-react with variants of SARS-CoV-2 is needed to effectively defend against SARS-CoV-2 infection. Given that viral infection is initiated in the respiratory mucosa, strengthening the mucosal immune response would provide effective protection. We constructed a mucosal vaccine antigen using the papain-like protease (PLpro) domain of non-structural protein 3 of SARS-CoV-2. To potentiate the mucosal immune response, PLpro was combined with human beta-defensin 2, an antimicrobial peptide with mucosal immune adjuvant activity, and Co1, an M-cell-targeting ligand. Intranasal administration of the recombinant PLpro antigen conjugate into C57BL/6 and hACE2 knock-in (KI) mice induced antigen-specific T-cell and antibody responses with complement-dependent cytotoxic activity. Viral challenge experiments using the Wuhan and Delta strains of SARS-CoV-2 provided further evidence that immunized hACE2 KI mice were protected against viral challenge infections. Our study shows that PLpro is a useful candidate vaccine antigen against SARS-CoV-2 infection and that the inclusion of human beta-defensin 2 and Co1 in the recombinant construct may enhance the efficacy of the vaccine.
Collapse
Affiliation(s)
- Byeol-Hee Cho
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
4
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
5
|
Zak AJ, Hoang T, Yee CM, Rizvi SM, Prabhu P, Wen F. Pseudotyping Improves the Yield of Functional SARS-CoV-2 Virus-like Particles (VLPs) as Tools for Vaccine and Therapeutic Development. Int J Mol Sci 2023; 24:14622. [PMID: 37834067 PMCID: PMC10572262 DOI: 10.3390/ijms241914622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA (P.P.)
| |
Collapse
|
6
|
Chu KB, Quan FS. Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced? Viruses 2023; 15:v15020392. [PMID: 36851606 PMCID: PMC9965150 DOI: 10.3390/v15020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Du M, Hou Z, Liu L, Xuan Y, Chen X, Fan L, Li Z, Xu B. 1Progress, applications, challenges and prospects of protein purification technology. Front Bioeng Biotechnol 2022; 10:1028691. [PMID: 36561042 PMCID: PMC9763899 DOI: 10.3389/fbioe.2022.1028691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.
Collapse
Affiliation(s)
- Miao Du
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Zhuru Hou
- Science and Technology Centre, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Xiaocong Chen
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Lei Fan
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Zhuoxi Li
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
| |
Collapse
|
8
|
Qu Q, Hao P, Xu W, Li L, Jiang Y, Xu Z, Chen J, Gao Z, Pang Z, Jin N, Li C. A Vaccine of SARS-CoV-2 S Protein RBD Induces Protective Immunity. Int J Mol Sci 2022; 23:ijms232213716. [PMID: 36430190 PMCID: PMC9698474 DOI: 10.3390/ijms232213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
The pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to the world in many aspects. There is an urgent requirement for an effective preventive vaccine. The receptor binding domain (RBD), located on the spike (S) gene, is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor of host cells. The RBD protein is an effective and safe antigen candidate. The six-helix bundle (6HB) "molecular clamp" is a novel thermally-stable trimerization domain derived from a human immunodeficiency virus (HIV) gp41 protein segment. We selected the baculovirus system to fuse and express the RBD protein and 6HB for imitating the natural trimeric structure of RBD, named RBD-6HB. Recombinant RBD-6HB was successfully obtained from the cell culture supernatant and purified to high homogeneity. The purity of the final protein preparation was more than 97%. The results showed that the protein was identified as a homogeneous polymer. Further studies showed that the RBD-6HB protein combined with AL/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges. Our findings highlight the importance of trimerized SARS-CoV-2 S protein RBD in designing SARS-CoV-2 vaccines and provide a rationale for developing a protective vaccine through the induction of antibodies against the RBD domain.
Collapse
Affiliation(s)
- Qiaoqiao Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jing Chen
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhaoxia Pang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Correspondence: (N.J.); (C.L.)
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Correspondence: (N.J.); (C.L.)
| |
Collapse
|
9
|
Yang N, Zhang J, Xu M, Yi J, Wang Z, Wang Y, Chen C. Virus-like particles vaccines based on glycoprotein E0 and E2 of bovine viral diarrhea virus induce Humoral responses. Front Microbiol 2022; 13:1047001. [PMID: 36439839 PMCID: PMC9687372 DOI: 10.3389/fmicb.2022.1047001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 07/27/2023] Open
Abstract
Bovine viral diarrhea/mucosal disease (BVD/MD) is a viral infectious disease that seriously endangers the health of cattle herds and brings serious economic losses to the global cattle industry. Virus-like particles (VLPs) are empty shell structures without viral nucleic acid, which are similar to natural virus particles in morphology and structure. Because of their strong immunogenicity and biological activity, some of them have been used as vaccines in clinical trials. In this study, we developed a strategy to generate BVDV (E0 + E2, E2 + E2) VLPs using an insect baculovirus expression vector system (BEVS). The VLPs obtained were detected by immunofluorescence assay (IFA), western blotting analyses and transmission electron microscope (TEM), and the results showed that VLPs of high purity were obtained. Mice immunized with VLPs (15 μg) and Freund's adjuvant (100 μl) elicited higher BVDV-neutralizing antibody in comparison with Freund's adjuvant control (p < 0.0001), and even on day 21 or 35 post-prime immunization, the neutralizing antibody levels of mice immunized with E0 + E2 or E2 + E2 VLPs were significantly higher compared with inactivated vaccine (p < 0.05). A subsequent challenge reveals that the viral loads of livers, kidneys, spleens, lungs and small intestines were significantly lower compared with control (p < 0.0001), and the viral loads of mice immunized with E0 + E2 or E2 + E2 VLPs in the small intestines were significantly lower compared with inactivated vaccine (p < 0.05). Thus, VLPs are a promising candidate vaccine and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiangwei Zhang
- Intelligent Breeding of Livestock and Poultry, Tiemenguan Vocational and Technical College, Tiemenguan, China
| | - Mingguo Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi, China
- Co-Innovation Center for Zoonotic Infectious Diseases in the Western Region, Shihezi, China
| |
Collapse
|