1
|
Wu Y, Wen F, Gou S, Ran Q, Chu Y, Ma W, Zhao K. Multifaceted quorum-sensing inhibiting activity of 3-(Benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one mitigates Pseudomonas aeruginosa virulence. Virulence 2025; 16:2479103. [PMID: 40104940 DOI: 10.1080/21505594.2025.2479103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
As antibiotic resistance escalates into a global health crisis, novel therapeutic approaches against infectious diseases are in urgent need. Pseudomonas aeruginosa, an adaptable opportunistic pathogen, poses substantial challenges in treating a range of infections. The quorum-sensing (QS) system plays a pivotal role in orchestrating the production of a large set of virulence factors in a cell density-dependent manner, and the anti-virulence strategy targeting QS may show huge potential. Here, we present a comprehensive investigation into the potential of the synthesized compound 3-(benzo[d][1,3]dioxol-4-yl)oxazolidin-2-one (OZDO, C10H9NO4) as a QS inhibitor to curb the virulence of P. aeruginosa. By employing an integrated approach encompassing in silico screening, in vitro and in vivo functional identification, we elucidated the multifaceted effects of OZDO. Molecular docking predicted that OZDO interfered with three core regulatory proteins of P. aeruginosa QS system. Notably, OZDO exhibited significant inhibition on the production of pyocyanin, rhamnolipid and extracellular proteases, biofilm formation, and cell motilities of P. aeruginosa. Transcriptomic analysis and quantitative real-time PCR displayed the down-regulation of QS-controlled genes in OZDO-treated PAO1, reaffirming the QS-inhibition activity of OZDO. In vivo assessments using a Caenorhabditis elegans-infection model demonstrated OZDO mitigated P. aeruginosa pathogenicity, particularly against the hypervirulent strain PA14. Moreover, OZDO in combination with polymyxin B and aztreonam presented a promising avenue for innovative anti-infective therapy. Our study sheds light on the multifaceted potential of OZDO as an anti-virulence agent and its significance in combating P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Yi Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Fulong Wen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Shiyi Gou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Qiman Ran
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Wenbo Ma
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Bhangu SK, Welch N, Lewis M, Li F, Gardner B, Thissen H, Kowalczyk W. Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides. SMALL SCIENCE 2025; 5:2400579. [PMID: 40529865 PMCID: PMC12168616 DOI: 10.1002/smsc.202400579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/07/2025] [Indexed: 06/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) offer a highly potent alternative solution due to their broad-spectrum activity and minimum resistance development against the rapidly evolving antibiotic-resistant pathogens. Herein, to accelerate the discovery process of new AMPs, a predictive and generative algorithm is build, which constructs new peptide sequences, scores their antimicrobial activity using a machine learning (ML) model, identifies amino acid motifs, and assembles high-ranking motifs into new peptide sequences. The eXtreme Gradient Boosting model achieves an accuracy of ≈87% in distinguishing between AMPs and non-AMPs. The generated peptide sequences are experimentally validated against the bacterial pathogens, and an accuracy of ≈60% is achieved. To refine the algorithm, the physicochemical features are analyzed, particularly charge and hydrophobicity of experimentally validated peptides. The peptides with specific range of charge and hydrophobicity are then removed, which lead to a substantial increase in an experimental accuracy, from ≈60% to ≈80%. Furthermore, generated peptides are active against different fungal strains with minimal off-target toxicity. In summary, in silico predictive and generative models for functional motif and AMP discovery are powerful tools for engineering highly effective AMPs to combat multidrug resistant pathogens.
Collapse
Affiliation(s)
| | - Nicholas Welch
- CSIRO ManufacturingResearch WayClaytonVictoria3168Australia
| | - Morgan Lewis
- CSIRO Information Management & TechnologyKensingtonWestern Australia6151Australia
| | - Fanyi Li
- CSIRO ManufacturingResearch WayClaytonVictoria3168Australia
| | - Brint Gardner
- CSIRO Information Management & TechnologyResearch WayClaytonVictoria3168Australia
| | - Helmut Thissen
- CSIRO ManufacturingResearch WayClaytonVictoria3168Australia
| | | |
Collapse
|
3
|
Ciriminna R, Petri GL, Angellotti G, Luque R, Fabiano Tixier A, Meneguzzo F, Pagliaro M. Citrus Flavonoids as Antimicrobials. Chem Biodivers 2025; 22:e202403210. [PMID: 39898883 PMCID: PMC12168191 DOI: 10.1002/cbdv.202403210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
Citrus flavonoids are highly bioactive compounds exerting numerous health benefits including anticancer, antioxidant, antimicrobial, anti-inflammatory, mitoprotective, and neuroprotective activity. Research on their broad-scope bioactivity experienced a renaissance in the early 2000s, and further accelerated after COVID-19, including research on their antimicrobial properties. Summarizing selected research achievements on the antimicrobial activity of the main Citrus flavonoids, this study aims to provide a unified picture on the antimicrobial properties of these valued compounds that will hopefully assist in the development of flavonoid-based antimicrobials, including antibacterial treatments suitable for clinical use minimizing antimicrobial resistance.
Collapse
Affiliation(s)
- Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNRPalermoItaly
| | - Giovanna Li Petri
- Istituto per lo Studio dei Materiali Nanostrutturati, CNRPalermoItaly
| | | | - Rafael Luque
- Universidad Espíritu Santo (UEES)SamborondónEcuador
| | | | | | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNRPalermoItaly
| |
Collapse
|
4
|
Dandekar SS, Thanikkal S, Londhe A, Bhutada P, Saha U, Pawar S, Samson R, Dharne M, Saroj SD, Koratkar S. Characterization of novel phages KPAФ1, KP149Ф1, and KP149Ф2 for lytic efficiency against clinical MDR Klebsiella pneumoniae infections. Microb Pathog 2025; 202:107440. [PMID: 40024540 DOI: 10.1016/j.micpath.2025.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Phage therapy offers a promising approach to the increasing antimicrobial resistance of Klebsiella pneumoniae. This study highlights three novel lytic bacteriophages-KPAФ1, KP149Ф1, and KP149Ф2- targeting multidrug-resistant (MDR) K. pneumoniae. These phages belong to the Myoviridae and Podoviridae family and demonstrate their efficacy and stability across a wide range of temperatures (up to 60°C) and pH levels (pH 4 to 11). Genomic analysis reveals that they are free from virulence, toxicity, and antimicrobial resistance genes, making them promising candidates for therapeutic use. Among these phages, KPAФ1 showed the highest lytic activity with a 26.15% lysis against MDR K. pneumoniae isolates. Additionally, a phage cocktail comprising all three phages improved lytic efficacy to 32.30%. This study also examined the antimicrobial resistance profiles of K. pneumoniae isolates, emphasizing the critical need for alternative treatments. By effectively targeting resistant strains, these phages offer a potential candidacy to be used as a viable alternative or a complementary antimicrobial agent to traditional antibiotics, opening up the possibility for advanced phage-based therapies. The promising results from this study pave the way for developing new treatments that could significantly improve patient care and outcomes from the growing issue of resistant bacterial infections.
Collapse
Affiliation(s)
- Shraddha S Dandekar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Sinta Thanikkal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Arti Londhe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Pankhudi Bhutada
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Ujjayni Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Shubhankar Pawar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune, Maharashtra, 411008, India.
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Maharashtra, India.
| |
Collapse
|
5
|
Frolov NA, Tyutin AA, Tyurina AN, Seferyan MA, Detusheva EV, Son E, Saverina EA, Vereshchagin AN. Expanding the Variety of Pyridinium-Based Bis-QACs with Antimicrobial Properties: Investigation into Linker Structure-Activity Correlation. ChemMedChem 2025; 20:e202400972. [PMID: 39821485 DOI: 10.1002/cmdc.202400972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
For decades quaternary ammonium compounds (QACs) have served as main component of a top antiseptic and disinfectant compositions. Among them, bis-QACs are the most prominent and effective class of biocides. Although mono-QACs still dominate the antiseptic market, their activity against Gram-negative bacteria is largely inferior to bis-QACs. Moreover, the new wave of bacterial resistance during the COVID-19 pandemic is threatening the efficiency of popular antiseptics. Therefore, the requirement for novel biocides is urgent. Reported here is a unified and simple two-step synthesis to achieve novel biocide's architectures with aromatic linkers. Thus, a series of 14 bis-QACs have been prepared using an Ullman-type reaction following by N-alkylation. The most prominent compounds showed strong bioactivity against a panel of nineteen microbial pathogens, multi-resistant bacterial ESKAPEE strains, fungi and biofilms, including strains, which acquired resistance during COVID-19 in 2021. Moreover, significant improvements in antibiofilm action were observed, where bis-QACs 5 c and 6 a outperformed gold standard pyridinium antiseptic octenidine. These findings will serve as a good basis for further studies of bis-QACs architectures as highly effective biocides.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| | - Alexander A Tyutin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Departments of the Faculty of Natural Sciences and Department of Chemistry and Technology of Biomedical Drugs, Miusskaya square 9, 125047, Moscow, Russia
| | - Alexandra N Tyurina
- Mendeleev University of Chemical Technology of Russia, Departments of the Faculty of Natural Sciences and Department of Chemistry and Technology of Biomedical Drugs, Miusskaya square 9, 125047, Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Federal Budget Institution of Science «State research center for applied microbiology and biotechnology», 142279, Obolensk, Serpukhov, Moscow Region, Russia
| | - Elizabeth Son
- Federal Budget Institution of Science «State research center for applied microbiology and biotechnology», 142279, Obolensk, Serpukhov, Moscow Region, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Prospekt Lenina 92, 300012, Tula, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| |
Collapse
|
6
|
Yang C, Zheng YX, Gu HY, Chen H, Li W, Li F, Bi YW, Chen J, Wang FK, Sun QQ, Meng HB, Wu ZH, Yu S, Gu J, Cheng Y. Genomic characteristics, virulence potential, antimicrobial resistance profiles, and phylogenetic insights into Nocardia cyriacigeorgica. Ann Clin Microbiol Antimicrob 2025; 24:22. [PMID: 40188140 PMCID: PMC11972502 DOI: 10.1186/s12941-025-00791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Nocardia cyriacigeorgica, an opportunistic pathogen, is increasingly implicated in human infections. This pathogen predominantly causes pulmonary infections, leading to acute, subacute, or chronic necrotizing suppurative lesions, in severe cases, may progress to disseminated infections. Effective clinical diagnosis, prevention, and treatment strategies require a thorough understanding of its biological characteristics and pathogenic mechanisms. However, despite the rising incidence of nocardial diseases, research on the pathogenicity of N. cyriacigeorgica remains limited, primarily focusing on case reports and epidemiological studies. This study aimed to provide a comprehensive analysis of the genomic features, phylogenetic relationships, antimicrobial resistance profiles, and candidate virulence factors of N. cyriacigeorgica strains to inform future investigations into its pathogenesis. METHODS Whole-genome sequencing was conducted on five N. cyriacigeorgica strains isolated from patients with pulmonary infection at our hospital. This analysis utilized a combination of second-generation Illumina HiSeq and third-generation PacBio sequencing technologies. Additionally, publicly available genomic data from 58 strains in the National Center Biotechnology Information database were integrated, resulting in a dataset of 63 genomes. These genomes were subjected to comparative genomic analyses, including phylogenetic reconstruction, pan-genome evaluation, and gene distribution assessments. RESULTS Phylogenetic analysis identified five major clades within N. cyriacigeorgica. ANI analysis further subdivided clade B into five distinct subgroups. Pan-genome analysis revealed clade-specific orthogroups in the distribution of genes assigned to Clusters of Orthologous Groups, with clade A containing the highest number of clade-specific gene families. Comparative genomic analysis uncovered several potential pathogenic genes implicated in host cell invasion, phagosomal maturation arrest, and intracellular survival within macrophages, which were conserved across all analyzed strains. Notable differences in the distribution of enterobactin-encoding genes were observed among the clades. The mce3C gene also displayed variable distributions across clades; however, no correlation was established between its presence and strain source. Among the 63 strains, 27 were found to harbor both mce3C and mce4F genes, which were categorized into five distinct patterns. Furthermore, antibiotic resistance genes, including VanSO, VanRO, erm(O)-Irm, srmB, ermH, bcl, bla1, and cmIR, demonstrated clade-specific distribution patterns. Notably, the genes erm(O)-Irm, srmB, and ermH were associated with the isolation origin of the strains. CONCLUSIONS This study provides a comprehensive evaluation of the genomic characteristics, potential virulence factors, antimicrobial resistance genes, and phylogenetic relationships of N. cyriacigeorgica. The findings offer valuable insights into the mechanisms underlying intracellular survival, replication within macrophages, and pathogen-host interactions in N. cyriacigeorgica infections. These results establish a foundation for future research into the pathogenesis and clinical management of N. cyriacigeorgica.
Collapse
Affiliation(s)
- Chen Yang
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yue-Xin Zheng
- Department of General Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Hong-Yi Gu
- Department of Public Affairs Management, Tianjin Medical University, Tianjin, 300203, China
| | - Hong Chen
- Department of Clinical Pharmacy, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Wei Li
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Fang Li
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Yu-Wang Bi
- Department of Information, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Jing Chen
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Fu-Kun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Qing-Qing Sun
- Department of Basic Medical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Han-Bing Meng
- Department of Basic Medical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Zuo-Hao Wu
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China
| | - Shu Yu
- Department of Laboratory Medicine, People's Hospital of Chongqing Hechuan, Chongqing, 401520, China.
| | - Jiang Gu
- National Engineering Research Center of Immunological ProductsDepartment of Microbiology and Biochemical PharmacyCollege of Pharmacy, Army Medical University, Chongqing, 400038, China.
| | - Yan Cheng
- Department of Clinical Laboratory, Bethune International Peace Hospital, Shijiazhuang, 050081, China.
| |
Collapse
|
7
|
Ojo O, Njanje I, Abdissa D, Swart T, Higgitt RL, Dorrington RA. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:19. [PMID: 40097883 PMCID: PMC11914449 DOI: 10.1007/s13659-025-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The rapid emergence of drug-resistant microbial pathogens has posed challenges to global health in the twenty-first century. This development has significantly made most antibiotics ineffective in the treatment of infections they cause, resulting in increasing treatment costs and annual death rates. To address the challenge posed by these pathogens, we explore the potential of secondary metabolites from Aspergillus species as a source of new and effective therapeutic agents to treat drug-resistant infections. Terpenoids, a distinct group of natural products, are extensively distributed in plants and fungi, and have been attributed with significant antibacterial, anticancer, and antiviral activities. In this review, we present an overview of Aspergillus species, and review the novel terpenoids isolated from them from 2019 to April 2024, highlighting anti-infective activity against members of the ESKAPE pathogens. We further focus on the strategies through which the structural framework of these new terpenoids could be modified and/or optimized to feed a pipeline of new lead compounds targeting microbial pathogens. Overall, this review provides insight into the therapeutic applications of terpenoids sourced from Aspergillus species and the potential for the discovery of new compounds from these fungi to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
- Department of Chemical Sciences, Lead City University, P.O. Box 30678, Ibadan, Oyo State, Nigeria.
| | - Idris Njanje
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Dele Abdissa
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O Box 378, Jimma, Ethiopia
| | - Tarryn Swart
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Roxanne L Higgitt
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
8
|
Danilova TA, Adzhieva AA, Danilina GA, Minko AG, Dmitrenko OA, Zhukhovitsky VG. Antimicrobial Effect of Lactobacillus Supernatant on Polyresistant Bacteria of the ESKAPE Group. Bull Exp Biol Med 2025; 178:615-618. [PMID: 40293592 DOI: 10.1007/s10517-025-06385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 04/30/2025]
Abstract
Lactobacillus supernatants exhibit pronounced antimicrobial activity against a number of bacteria of bacteria of the ESKAPE group. The antimicrobial activity of the supernatant was evaluated using the broth microdilution assay on polystyrene plates. The highest level of inhibition (more than 10 times compared with the control) was observed against gram-positive S. aureus. Among gram-negative bacteria, the maximum level of inhibition (9.4 times compared with the control) was noted for P. aeruginosa and slightly lower in A. baumannii and K. pneumoniae. The supernatants also inhibited biofilm formation by both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- T A Danilova
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A A Adzhieva
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Danilina
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Minko
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O A Dmitrenko
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zhukhovitsky
- N. F. Gamaleya Federal Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Imani S, Lv S, Qian H, Cui Y, Li X, Babaeizad A, Wang Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol Adv 2025; 79:108492. [PMID: 39637949 DOI: 10.1016/j.biotechadv.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The prevalence of multidrug-resistant (MDR) ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, represents a critical global public health challenge. In response, mRNA vaccines offer an adaptable and scalable platform for immunotherapy against ESKAPE pathogens by encoding specific antigens that stimulate B-cell-driven antibody production and CD8+ T-cell-mediated cytotoxicity, effectively neutralizing these pathogens and combating resistance. This review examines recent advancements and ongoing challenges in the development of mRNA vaccines targeting MDR ESKAPE pathogens. We explore antigen selection, the nuances of mRNA vaccine technology, and the complex interactions between bacterial infections and antibiotic resistance. By assessing the potential efficacy of mRNA vaccines and addressing key barriers to their paraclinical implementation, this review highlights the promising function of mRNA-based immunization in combating MDR ESKAPE pathogens.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shuojie Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Hongbo Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yulan Cui
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - XiaoYan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
10
|
Mariani M, Scaglione M, Russo C, Rainelli A, Mesini A, Saffioti C, Ricci E, Cafaro A, Cangemi G, Bavastro M, Bellini T, Brisca G, Moscatelli A, Castagnola E. A Real-Life Study of Prolonged Meropenem Infusion in Neonates and Children Admitted to Intensive Care Units: Are Three Hours Long Enough? J Clin Med 2025; 14:1488. [PMID: 40094943 PMCID: PMC11900062 DOI: 10.3390/jcm14051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/30/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Background/Objectives: Meropenem is a broad-spectrum antibiotic essential for treating resistant Gram-negative infections in pediatric patients. Current dosing recommendations may not consistently achieve optimal pharmacokinetic (PK) targets, especially in critically ill children. Methods: We conducted a retrospective cohort study at IRCCS Istituto Giannina Gaslini, analyzing 97 plasma levels from 86 pediatric patients (<18 years) hospitalized between January 2020 and December 2023 in the neonatal and pediatric intensive care unit. Patients receiving meropenem for proven or suspected infections were included. Demographic, clinical, and PK parameters were assessed, with a focus on trough concentrations (Ctrough). Results: The median age was 25 months, with neonates representing 15.5% of cases. The median Ctrough was 2.8 mg/L and was significantly higher in neonates (8.9 mg/L) compared to older patients (2.2 mg/L, p < 0.001). Only 27.8% of patients achieved the target Ctrough of >8 mg/L, with estimated glomerular filtration rate (eGFR) being the primary factor influencing these levels. Patients with Ctrough > 8 mg/L had a significantly lower eGFR (61 mL/min/1.73 m2) compared to those below this threshold (131 mL/min/1.73 m2, p = 0.001). Conclusions: The current meropenem dosing regimen may not reliably meet PK targets in critically ill pediatric patients, particularly those with augmented renal clearance or when treating pathogens with increased meropenem MIC. Our findings suggest that increased dosages and prolonged infusion times may be necessary to optimize therapeutic efficacy against resistant Gram-negative bacteria in this vulnerable population. Further studies are needed to refine dosing strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Marcello Mariani
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Marco Scaglione
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Chiara Russo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Andrea Rainelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Alessio Mesini
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Carolina Saffioti
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Erica Ricci
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessia Cafaro
- Unit of Biochemistry, Pharmacology and Newborn Screening, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Unit of Biochemistry, Pharmacology and Newborn Screening, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Martina Bavastro
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy
| | - Tommaso Bellini
- Pediatric Emergency Room and Emergency Medicine Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giacomo Brisca
- Neonatal and Pediatric Intensive Care Unit and Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Pediatric Intensive Care Unit and Intermediate Care Unit, Emergency Department, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elio Castagnola
- Pediatric Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
11
|
Dolph L, Santa EE, Stoutland IM, Mesa KM, Dickson CC, Blackwell HE, Franz AK. Silyl-Lipid Functionalized N-Acyl Homoserine Lactones as Modulators of Bacterial Cell-Cell Communication. ACS Chem Biol 2025; 20:412-420. [PMID: 39945376 PMCID: PMC11851432 DOI: 10.1021/acschembio.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
We report silyl-lipid derivatives of N-acyl l-homoserine lactones (AHLs) that have nanomolar activities in LuxR-type quorum sensing receptors in Gram-negative bacterial pathogens. A collection of silyl-lipid AHLs were designed and synthesized to represent three general structural classes based on native AHL signals and synthetic LuxR-type receptor modulators. The synthetic routes feature straightforward hydrosilylation and aryl silylation reactions to access silyl-lipid groups that are not readily accessible in analogous all-carbon chemistry. Of the 17 compounds evaluated, eight silyl-lipid AHLs were identified with either nanomolar agonistic or submicromolar antagonistic activities in the LasR receptor from the common pathogen Pseudomonas aeruginosa using E. coli reporter gene assays. Several silyl-lipid AHL agonists retained high activities in LasR in a native P. aeruginosa reporter system and also were active in another related LuxR-type receptor, EsaR from Pantoea stewartii. Light scattering and computational experiments indicate that the silyl-lipid group can alter the aggregation capabilities and lipophilicities of AHLs relative to native all-carbon tails, engendering larger aggregate formation in water and higher lipophilicities on average. These properties, along with their strong activity profiles in LuxR-type receptors, suggest silyl-lipid AHLs could provide value as chemical probes to study the mechanisms of quorum sensing in Gram-negative bacteria and the roles of signal lipophilicity in this chemical communication process.
Collapse
Affiliation(s)
- Linnea
S. Dolph
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Emma E. Santa
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Irene M. Stoutland
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kelsey M. Mesa
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cole C. Dickson
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Annaliese K. Franz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Khodaparast L, Khodaparast L, Duran-Romaña R, Wu G, Houben B, Duverger W, De Vleeschouwer M, Konstantoulea K, Nysen F, Schalck T, Curwen DJ, Martin LL, Carpentier S, Scorneaux B, Michiels J, Schymkowitz J, Rousseau F. Co-translational protein aggregation and ribosome stalling as a broad-spectrum antibacterial mechanism. Nat Commun 2025; 16:1561. [PMID: 39939597 PMCID: PMC11821998 DOI: 10.1038/s41467-025-56873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
Drug-resistant bacteria pose an urgent global health threat, necessitating the development of antibacterial compounds with novel modes of action. Protein biosynthesis accounts for up to half of the energy expenditure of bacterial cells, and consequently inhibiting the efficiency or fidelity of the bacterial ribosome is a major target of existing antibiotics. Here, we describe an alternative mode of action that affects the same process: allowing translation to proceed but causing co-translational aggregation of the nascent peptidic chain. We show that treatment with an aggregation-prone peptide induces formation of polar inclusion bodies and activates the SsrA ribosome rescue pathway in bacteria. The inclusion bodies contain ribosomal proteins and ribosome hibernation factors, as well as mRNAs and cognate nascent chains of many proteins in amyloid-like structures, with a bias for membrane proteins with a fold rich in long-range beta-sheet interactions. The peptide is bactericidal against a wide range of pathogenic bacteria in planktonic growth and in biofilms, and reduces bacterial loads in mouse models of Escherichia coli and Acinetobacter baumannii infections. Our results indicate that disrupting protein homeostasis via co-translational aggregation constitutes a promising strategy for development of broad-spectrum antibacterials.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Duverger
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Fleur Nysen
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Schalck
- Centre of Microbial and Plant Genetics;KU Leuven, Leuven, Belgium
- Center for Microbiology;VIB-KU Leuven, Leuven, Belgium
| | - Daniel J Curwen
- School of Chemistry, Monash University, Clayton, Vic, Australia
| | | | - Sebastien Carpentier
- Systems Biology based Mass Spectrometry Laboratory (SyBioMa), KULeuven, Leuven, Belgium
| | | | - Jan Michiels
- Centre of Microbial and Plant Genetics;KU Leuven, Leuven, Belgium
- Center for Microbiology;VIB-KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Park S, Jin Y, Ko KS. Effect of colistin-tigecycline combination on colistin-resistant and carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii. Microbiol Spectr 2025; 13:e0202124. [PMID: 39699248 PMCID: PMC11792479 DOI: 10.1128/spectrum.02021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
There is a critical need for treatment strategies to combat carbapenem-resistant Gram-negative pathogens. This study investigates the efficacy of combining low concentrations of colistin with tigecycline against colistin- and carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii strains. We used two strains of KPC-2-producing K. pneumoniae and OXA-23-producing A. baumannii, both of which are highly colistin-resistant. In the in vitro time-killing assays, monotherapy with colistin (2 mg/L) and tigecycline (4 or 8 mg/L) was ineffective against all strains. However, the combination of colistin (2 mg/L) and tigecycline (4 or 8 mg/L) inhibited bacterial growth. Survival analysis of Galleria mellonella larvae also demonstrated the efficacy of low concentrations of colistin and tigecycline against colistin- and carbapenem-resistant strains. All larvae survived when treated with a combination of colistin and tigecycline, whereas monotherapy with either colistin or tigecycline did not increase larval survival rates. This study proposes using a combination of tigecycline and colistin at clinical concentrations to treat carbapenem-resistant K. pneumoniae and A. baumannii, regardless of colistin resistance. IMPORTANCE Colistin resistance in carbapenem-resistant Gram-negative pathogens is a serious challenge in clinical settings. Our study showed that low concentration of colistin can be effective when combined with tigecycline. It presents the possibility of an available treatment option for antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yanhong Jin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
14
|
Gani Z, Kumar A, Raje M, Raje CI. Antimicrobial peptides: An alternative strategy to combat antimicrobial resistance. Drug Discov Today 2025; 30:104305. [PMID: 39900281 DOI: 10.1016/j.drudis.2025.104305] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Antimicrobial peptides (AMPs) are a diverse group of naturally occurring molecules produced by eukaryotes and prokaryotes. They have an important role in innate immunity via their direct microbicidal properties or immunomodulatory activities against pathogens. With the widespread occurrence of antimicrobial resistance (AMR), AMPs are considered as viable alternatives for the treatment of multidrug-resistant microbes, inflammation, and, wound healing. The broad-spectrum antibacterial activity of AMPs is predominantly attributed to membrane disruption, leading to the formation of transmembrane pores and, eventually, cell lysis. However, mechanisms related to inhibition of cell wall synthesis, nucleic acid synthesis, protein synthesis, or enzymatic activity are also associated with these peptides. In this review, we discuss our current understanding, therapeutic uses and challenges associated with the clinical applications of AMPs.
Collapse
Affiliation(s)
- Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Center of Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India; Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manoj Raje
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab 160067, India.
| |
Collapse
|
15
|
Sastalla I, Kwon K, Huntley C, Taylor K, Brown L, Samuel T, Zou L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13:87. [PMID: 39852866 PMCID: PMC11768834 DOI: 10.3390/vaccines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
On 14-15 November 2023, the National Institute of Allergy and Infectious Diseases (NIAID) organized a workshop entitled "Systematic Approaches for ESKAPE Bacteria Antigen Discovery". The goal of the workshop was to engage scientists from diverse relevant backgrounds to explore novel technologies that can be harnessed to identify and address current roadblocks impeding advances in antigen and vaccine discoveries for the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The workshop consisted of four sessions that addressed ESKAPE infections, antigen discovery and vaccine efforts, and new technologies including systems immunology and vaccinology approaches. Each session was followed by a panel discussion. In total, there were over 260 in-person and virtual attendees, with high levels of engagement. This report provides a summary of the event and highlights challenges and opportunities in the field of ESKAPE vaccine discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanling Zou
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (I.S.); (K.K.); (C.H.); (K.T.); (L.B.); (T.S.)
| |
Collapse
|
16
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Roque‐Borda CA, Primo LMDG, Medina‐Alarcón KP, Campos IC, Nascimento CDF, Saraiva MMS, Berchieri Junior A, Fusco‐Almeida AM, Mendes‐Giannini MJS, Perdigão J, Pavan FR, Albericio F. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410893. [PMID: 39530703 PMCID: PMC11714181 DOI: 10.1002/advs.202410893] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Polymicrobial biofilms adhere to surfaces and enhance pathogen resistance to conventional treatments, significantly contributing to chronic infections in the respiratory tract, oral cavity, chronic wounds, and on medical devices. This review examines antimicrobial peptides (AMPs) as a promising alternative to traditional antibiotics for treating biofilm-associated infections. AMPs, which can be produced as part of the innate immune response or synthesized therapeutically, have broad-spectrum antimicrobial activity, often disrupting microbial cell membranes and causing cell death. Many specifically target negatively charged bacterial membranes, unlike host cell membranes. Research shows AMPs effectively inhibit and disrupt polymicrobial biofilms and can enhance conventional antibiotics' efficacy. Preclinical and clinical research is advancing, with animal studies and clinical trials showing promise against multidrug-resistant bacteria and fungi. Numerous patents indicate increasing interest in AMPs. However, challenges such as peptide stability, potential cytotoxicity, and high production costs must be addressed. Ongoing research focuses on optimizing AMP structures, enhancing stability, and developing cost-effective production methods. In summary, AMPs offer a novel approach to combating biofilm-associated infections, with their unique mechanisms and synergistic potential with existing antibiotics positioning them as promising candidates for future treatments.
Collapse
Affiliation(s)
- Cesar Augusto Roque‐Borda
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
- Vicerrectorado de InvestigaciónUniversidad Católica de Santa MaríaArequipa04000Peru
| | - Laura Maria Duran Gleriani Primo
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Kaila Petronila Medina‐Alarcón
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Isabella C. Campos
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Mauro M. S. Saraiva
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP)School of Agricultural and Veterinarian SciencesJaboticabalSao Paulo14884‐900Brazil
| | - Ana Marisa Fusco‐Almeida
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Maria José Soares Mendes‐Giannini
- Department of Clinical AnalysisSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - João Perdigão
- iMed.ULisboa–Institute for Medicines ResearchFaculty of PharmacyUniversity of LisbonLisbon1649004Portugal
| | - Fernando Rogério Pavan
- Department of Biological SciencesSchool of Pharmaceutical SciencesUniversidade Estadual Paulista (UNESP)AraraquaraSao Paulo14800‐903Brazil
| | - Fernando Albericio
- Peptide Science LaboratorySchool of Chemistry and PhysicsUniversity of KwaZulu‐NatalDurban4001South Africa
- CIBER‐BBNNetworking Centre on BioengineeringBiomaterials and Nanomedicineand Department of Organic ChemistryUniversity of BarcelonaBarcelona08028Spain
| |
Collapse
|
18
|
Gonzales MEM, Ureta JC, Shrestha AMS. PHIStruct: improving phage-host interaction prediction at low sequence similarity settings using structure-aware protein embeddings. Bioinformatics 2024; 41:btaf016. [PMID: 39804673 PMCID: PMC11783280 DOI: 10.1093/bioinformatics/btaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
MOTIVATION Recent computational approaches for predicting phage-host interaction have explored the use of sequence-only protein language models to produce embeddings of phage proteins without manual feature engineering. However, these embeddings do not directly capture protein structure information and structure-informed signals related to host specificity. RESULTS We present PHIStruct, a multilayer perceptron that takes in structure-aware embeddings of receptor-binding proteins, generated via the structure-aware protein language model SaProt, and then predicts the host from among the ESKAPEE genera. Compared against recent tools, PHIStruct exhibits the best balance of precision and recall, with the highest and most stable F1 score across a wide range of confidence thresholds and sequence similarity settings. The margin in performance is most pronounced when the sequence similarity between the training and test sets drops below 40%, wherein, at a relatively high-confidence threshold of above 50%, PHIStruct presents a 7%-9% increase in class-averaged F1 over machine learning tools that do not directly incorporate structure information, as well as a 5%-6% increase over BLASTp. AVAILABILITY AND IMPLEMENTATION The data and source code for our experiments and analyses are available at https://github.com/bioinfodlsu/PHIStruct.
Collapse
Affiliation(s)
- Mark Edward M Gonzales
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila 1004, Philippines
- College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Jennifer C Ureta
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila 1004, Philippines
- College of Computer Studies, De La Salle University, Manila 1004, Philippines
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Anish M S Shrestha
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, De La Salle University, Manila 1004, Philippines
- College of Computer Studies, De La Salle University, Manila 1004, Philippines
| |
Collapse
|
19
|
Taub L, Hampton TH, Sarkar S, Doing G, Neff SL, Finger CE, Ferreira Fukutani K, Stanton BA. E.PathDash, pathway activation analysis of publicly available pathogen gene expression data. mSystems 2024; 9:e0103024. [PMID: 39422483 PMCID: PMC11575265 DOI: 10.1128/msystems.01030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
E.PathDash facilitates re-analysis of gene expression data from pathogens clinically relevant to chronic respiratory diseases, including a total of 48 studies, 548 samples, and 404 unique treatment comparisons. The application enables users to assess broad biological stress responses at the KEGG pathway or gene ontology level and also provides data for individual genes. E.PathDash reduces the time required to gain access to data from multiple hours per data set to seconds. Users can download high-quality images such as volcano plots and boxplots, differential gene expression results, and raw count data, making it fully interoperable with other tools. Importantly, users can rapidly toggle between experimental comparisons and different studies of the same phenomenon, enabling them to judge the extent to which observed responses are reproducible. As a proof of principle, we invited two cystic fibrosis scientists to use the application to explore scientific questions relevant to their specific research areas. Reassuringly, pathway activation analysis recapitulated results reported in original publications, but it also yielded new insights into pathogen responses to changes in their environments, validating the utility of the application. All software and data are freely accessible, and the application is available at scangeo.dartmouth.edu/EPathDash. IMPORTANCE Chronic respiratory illnesses impose a high disease burden on our communities and people with respiratory diseases are susceptible to robust bacterial infections from pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus, that contribute to morbidity and mortality. Public gene expression datasets generated from these and other pathogens are abundantly available and an important resource for synthesizing existing pathogenic research, leading to interventions that improve patient outcomes. However, it can take many hours or weeks to render publicly available datasets usable; significant time and skills are needed to clean, standardize, and apply reproducible and robust bioinformatic pipelines to the data. Through collaboration with two microbiologists, we have shown that E.PathDash addresses this problem, enabling them to elucidate pathogen responses to a variety of over 400 experimental conditions and generate mechanistic hypotheses for cell-level behavior in response to disease-relevant exposures, all in a fraction of the time.
Collapse
Affiliation(s)
- Lily Taub
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Georgia Doing
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Samuel L Neff
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Carson E Finger
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kiyoshi Ferreira Fukutani
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
20
|
He F, Liu X, Yang S, Tan H, Yang LP, Wang LL. Guanidinium-Functionalized Carbon Dots: An Efficient Antibacterial Agent against Multidrug-Resistant ESKAPE Pathogens. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561278 DOI: 10.1021/acsami.4c16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The rise of multidrug-resistant (MDR) bacteria poses a substantial challenge in clinical settings, particularly with the increasing prevalence of ESKAPE pathogens (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and E. coli) as critical MDR bacteria. These ESKAPE pathogens have the capability to undermine antibiotic treatments, leading to a high incidence of drug resistance. However, the development of efficient antibacterial agents against ESKAPE pathogens is still in the bottleneck. Herein, the first example of antibacterial carbon dots against ESKAPE pathogens was reported. Onion powder-based carbon dots were melted with poly(hexamethylene biguanide) hydrochloride (PHMB) to obtain guanidinium-functionalized carbon dots (GCDs), which exhibited satisfactory antibacterial activity against all the tested bacteria, including both Gram-positive and Gram-negative bacteria, and even ESKAPE pathogens. The efficient antibacterial ability of GCDs derives from the rupture of the bacterial cell membrane and elevated ROS levels. Safety assessments revealed that GCDs neither trigger detectable drug resistance nor exhibit any cytotoxic effects. Furthermore, GCDs effectively promoted wound healing without observable adverse reactions of mixed MDR bacteria-infected wounds in rats. The GCDs also showed excellent long-term stability. These findings indicate that GCDs hold promise as an efficient antibacterial agent for the treatment of MDR strain-caused clinical infected-wound healing.
Collapse
Affiliation(s)
- Fangli He
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Liu
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Sihui Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Huaxin Tan
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Liu-Pan Yang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li-Li Wang
- Department of Biochemistry and Molecular Biology, Laboratory of Nuclear Radiation DNA Damage and Repair, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
21
|
Ferrusca Bernal D, Mosqueda J, Pérez-Sánchez G, Chávez JAC, Neri Martínez M, Rodríguez A, Carvajal-Gamez B. Loop-Mediated Isothermal Amplification Coupled with Reverse Line Blot Hybridization for the Detection of Pseudomonas aeruginosa. Microorganisms 2024; 12:2316. [PMID: 39597705 PMCID: PMC11596522 DOI: 10.3390/microorganisms12112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen of critical priority importance according to the WHO. Due to its multi-resistance and expression of various virulence factors, it is the causal agent of severe healthcare-acquired infections (HAIs). Effective strategies to control infections caused by P. aeruginosa must include early and specific detection of the pathogen for early and timely antibiotic prescription. The need to develop a specific and reproducible diagnostic technique is urgent, which must often be more sensitive and faster than current clinical diagnostic methods. In this study, we implement and standardize the loop-mediated isothermal amplification (LAMP) technique, coupled with the reverse line blot hybridization (RLBH) technique for the detection of P. aeruginosa. A set of primers and probes was designed to amplify a specific region of the P. aeruginosa 16s rRNA gene. The sensitivity of the LAMP-RLBH method was 3 × 10-4 ng/μL, 1000 times more sensitive than the PCR and LAMP technique (this work), with a sensitivity of 3 × 10-3 ng/μL. The LAMP-RLBH and LAMP techniques showed specific amplification and no cross-reaction with members of the ESKAPE group and other Pseudomonas species. The present investigation provides a technique that can be easily performed in less time, achieving a faster and more reliable alternative compared to traditional microbial diagnostic methods for the detection of P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Ferrusca Bernal
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
| | - Juan Mosqueda
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | | | - Mónica Neri Martínez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Angelina Rodríguez
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Bertha Carvajal-Gamez
- Immunology and Vaccines Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico; (D.F.B.); (J.M.); (M.N.M.)
- Cuerpo Académico, Salud Animal y Microbiología Ambiental, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico;
- Proteogenomic and Molecular Diagnosis Laboratory, Natural Sciences College, Autonomous University of Queretaro, Queretaro 76010, Mexico
- Maestría en Química Clínica Diagnóstica, Facultad de Química, Autonomous University of Queretaro, Queretaro 76010, Mexico
| |
Collapse
|
22
|
Zhang X, Liang J, Zhang D, Wang L, Ye S. Unraveling Whole-Genome Sequence and Functional Characterization of P. megaterium PH3. Foods 2024; 13:3555. [PMID: 39593971 PMCID: PMC11593290 DOI: 10.3390/foods13223555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Priestia megaterium (P. megaterium PH3) is an endophytic bacterium isolated from peanuts. It has natural resveratrol production ability and shows potential application value. This study analyzed its genetic function and metabolic mechanism through whole-genome sequencing and found that the genome size is 5,960,365 bp, the GC content is 37.62%, and 6132 genes are annotated. Functional analysis showed that this strain contained 149 carbohydrate active enzyme genes, 7 secondary metabolite synthesis gene clusters, 509 virulence genes, and 273 drug-resistance genes. At the same time, this strain has the ability to regulate salt stress, low temperature, and hypoxia. Genomic analysis reveals a stilbene-synthase-containing type III polyketide synthase gene cluster that contributes to resveratrol synthesis. A safety assessment showed that the strain is non-hemolytic, does not produce amino acid decarboxylase, and is not resistant to multiple antibiotics. In the mouse model, P. megaterium PH3 did not have significant effects on body weight, behavior, or physiological indicators. These results provide important basic data and theoretical support for its industrial application and the research and development of plant protection agents.
Collapse
Affiliation(s)
- Xiaohan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.Z.); (J.L.); (D.Z.); (L.W.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Junbo Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.Z.); (J.L.); (D.Z.); (L.W.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Dong Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.Z.); (J.L.); (D.Z.); (L.W.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Liang Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (X.Z.); (J.L.); (D.Z.); (L.W.)
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Shuhong Ye
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| |
Collapse
|
23
|
Zhou J, Refat M, Guo Y, Zhang J, Jiao M, He W, He X, Rabie MA, Ouyang Z, Zheng F. The Functional Study of Response Regulator ArlR Mutants in Staphylococcus Aureus. Appl Biochem Biotechnol 2024; 196:7687-7702. [PMID: 38530540 PMCID: PMC11645427 DOI: 10.1007/s12010-024-04919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.
Collapse
Affiliation(s)
- Jinhong Zhou
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Moath Refat
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Min Jiao
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenbo He
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mai A Rabie
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenlin Ouyang
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
24
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
25
|
Steuber J, Fritz G. The Na +-translocating NADH:quinone oxidoreductase (Na +-NQR): Physiological role, structure and function of a redox-driven, molecular machine. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149485. [PMID: 38955304 DOI: 10.1016/j.bbabio.2024.149485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Many bacterial processes are powered by the sodium motive force (smf) and in case of pathogens, the smf contributes to virulence. Vibrio cholerae, the causative agent of Cholera disease, possesses a Na+-translocating NADH:quinone oxidoreductase (NQR), a six-subunit membrane protein assembly. The 3D structure of NQR revealed the arrangement of the six subunits NqrABCDEF, the position of all redox cofactors (four flavins, two [2Fe-2S] centers) and the binding sites for the substrates NADH (in NqrF) and ubiquinone (in NqrB). Upon oxidation of NADH, electrons are shuttled twice across the membrane, starting with cytoplasmic FADNqrF and electron transfer to the [2Fe2S] clusterNqrF and from there to an intra-membranous [2Fe-2S] clusterNqrDE, periplasmic FMNNqrC, FMNNqrB and from there to riboflavinNqrB. This riboflavin is located at the cytoplasmic entry site of the sodium channel in NqrB, and it donates electrons to ubiquinone-8 positioned at the cytoplasmic side of NqrB. Targeting the substrate binding sites of NQR is a promising strategy to identify new inhibitors against many bacterial pathogens. Detailed structural information on the binding mode of natural inhibitors and small molecules in the active sites of NQR is now available, paving the way for the development of new antibiotics. The NQR shows different conformations as revealed in recent cryo-EM and crystallographic studies combined with spectroscopic analyses. These conformations represent distinct steps in the catalytic cycle. Considering the structural and functional data available, we propose a mechanism of Na+-NQR based on conformational coupling of electron transfer and Na+ translocation reaction steps.
Collapse
Affiliation(s)
- Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| |
Collapse
|
26
|
Sicks B, Gurow O, Sommerfeld F, Hessling M. Decontamination of Fused-Silica Surfaces by UVC Irradiation as Potential Application on Touchscreens. Microorganisms 2024; 12:2099. [PMID: 39458408 PMCID: PMC11510117 DOI: 10.3390/microorganisms12102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The contamination of surfaces by antibiotic-resistant pathogens presents an escalating challenge, especially on touchscreens in public settings such as hospitals, airports, and means of transport. Traditional chemical cleaning agents are often ineffective and leave behind harmful residues. Thus, the application of optical radiation is gaining relevance as a rapid, effective, and environmentally friendly disinfection method. This study examines the contamination of publicly accessible touchscreens and the efficacy of an irradiation approach for the radiation disinfection of microorganisms on quartz surfaces with UVC LEDs. In this setup, the LED radiation is laterally coupled into a quartz plate that serves as cover glass of a simplified touchscreen model. The process allows for the irradiation of microorganisms on the surface, without the user being exposed to hazardous radiation. To assess the efficacy of the disinfection process, a range of bacteria, mostly ESKAPE surrogates, such as Staphylococcus carnosus, Acinetobacter kookii, Escherichia coli, Enterococcus mundtii, and additionally Micrococcus luteus, were spread over a quartz plate with a homebuilt nebulization system. After operating the side-mounted LEDs for 30 s, a reduction in all bacteria except M. luteus by more than three orders of magnitude was observed. In the case of M. luteus, a significant reduction was achieved after 60 s (p < 0.05). This result demonstrates the potential of side-mounted UVC LEDs for rapid disinfection of touchscreens between two users and thus for reducing the spread of pathogens without irradiating humans.
Collapse
Affiliation(s)
| | | | | | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89075 Ulm, Germany; (B.S.); (O.G.); (F.S.)
| |
Collapse
|
27
|
Sahayarayan JJ, Thiyagarajan R, Prathiviraj R, Tn K, Rajan KS, Manivannan P, Balasubramanian S, Mohd Zainudin MH, Alodaini HA, Moubayed NM, Hatamleh AA, Ravindran B, Mani RR. Comparative genome analysis reveals putative and novel antimicrobial resistance genes common to the nosocomial infection pathogens. Microb Pathog 2024; 197:107028. [PMID: 39426637 DOI: 10.1016/j.micpath.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The 21st century has witnessed several clinical outcomes regarding AMR. One health concept has been foreseen as a standard global public health initiative in ensuring human, animal and environmental health. The present study explores critical Gram-negative ESKAPE pathogens encompassing Acinetobacter baumannii (ACB), Klebsiella pneumoniae (KPX) and Pseudomonas aeruginosa (PAE). A comparative genomic analysis approach was utilized for identifying novel and putative genes coercing global health consequences stressing the significance of the above iatrogenic and nosocomial pathogens. O findings reveal that Pseudomonas aeruginosaPAO1 (PAE) possesses the largest genome, measuring 62,64,404 base pairs, containing 14,342 protein-coding genes and an elevated count of ORFs, surpassing other organisms. Notably, P. aeruginosa PAO1 exhibits a comprehensive metabolic landscape with 355 pathways and 1659 metabolic reactions, encompassing 200 biosynthesis and 132 degradation pathways. Transferases are the predominant enzyme category across all three genomes, followed by oxidoreductases and hydrolases. The pivotal role of beta-lactamase in conferring resistance against antibiotics is also evident in all three microbes. This investigation underscores the PAE genome harbours genes and enzymes associated with heightened virulence in antibiotic resistance. The holistic review combined with comparative genomics underlines the significance of delving into the genomes of these antimicrobial-resistant organisms. In silico methodologies are increasingly stressed in aiding the successful accomplishment of the United Nations Sustainable Development Goal -3: Good Health and Well-being. The prominent findings establish Carbapenem resistance and evolutionary lineages of the MCR-1 gene conferring AMR landscapes for future research.
Collapse
Affiliation(s)
| | - Ramesh Thiyagarajan
- Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Pondicherry, 605014, Tamil Nadu, India.
| | - Kumaresan Tn
- Department of Microbiology, Pondicherry University, Pondicherry, 605014, Tamil Nadu, India.
| | | | | | | | - Mohd Huzairi Mohd Zainudin
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia.
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nadine Ms Moubayed
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, college of science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Balasubramani Ravindran
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Gyeonggi-Do, 16227, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Oyenuga N, Cobo-Díaz JF, Alvarez-Ordóñez A, Alexa EA. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms 2024; 12:2084. [PMID: 39458393 PMCID: PMC11510272 DOI: 10.3390/microorganisms12102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antimicrobial resistance is an increasing societal burden worldwide, with ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and Escherichia coli) pathogens overwhelming the healthcare sectors and more recently becoming predominantly a concern for their persistence in food and food industries, including agricultural settings and animal husbandry environments. The aim of this review is to explore the mechanisms by which the ESKAPEE group gained its multidrug resistance profiles, to analyse their occurrence in different foods and other related reservoirs, including water, and to address the current challenges due to their spread within the food production chain. Moreover, the repertoire of surveillance programmes available focused on monitoring their occurrence, common reservoirs and the spread of antimicrobial resistance are described in this review paper. Evidence from the literature suggests that restricting our scope in relation to multidrug resistance in ESKAPEE pathogens to healthcare and healthcare-associated facilities might actually impede unveiling the actual issues these pathogens can exhibit, for example, in food and food-related reservoirs. Furthermore, this review addresses the need for increasing public campaigns aimed at addressing this challenge, which must be considered in our fight against antimicrobial resistance shown by the ESKAPEE group in food and food-related sectors.
Collapse
Affiliation(s)
- Naomi Oyenuga
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
29
|
De Plano LM, Caratozzolo M, Conoci S, Guglielmino SPP, Franco D. Impact of Nutrient Starvation on Biofilm Formation in Pseudomonas aeruginosa: An Analysis of Growth, Adhesion, and Spatial Distribution. Antibiotics (Basel) 2024; 13:987. [PMID: 39452253 PMCID: PMC11504098 DOI: 10.3390/antibiotics13100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives: This study investigates the impact of nutrient availability on the growth, adhesion, and biofilm formation of Pseudomonas aeruginosa ATCC 27853 under static conditions. Methods: Bacterial behaviour was evaluated in nutrient-rich Luria-Bertani (LB) broth and nutrient-limited M9 media, specifically lacking carbon (M9-C), nitrogen (M9-N), or phosphorus (M9-P). Bacterial adhesion was analysed microscopically during the transition from reversible to irreversible attachment (up to 120 min) and during biofilm production/maturation stages (up to 72 h). Results: Results demonstrated that LB and M9 media supported bacterial growth, whereas nutrient-starved conditions halted growth, with M9-C and M9-N inducing stationary phases and M9-P leading to cell death. Fractal analysis was employed to characterise the spatial distribution and complexity of bacterial adhesion patterns, revealing that nutrient-limited conditions affected both adhesion density and biofilm architecture, particularly in M9-C. In addition, live/dead staining confirmed a higher proportion of dead cells in M9-P over time (at 48 and 72 h). Conclusions: This study highlights how nutrient starvation influences biofilm formation and bacterial dispersion, offering insights into the survival strategies of P. aeruginosa in resource-limited environments. These findings should contribute to a better understanding of biofilm dynamics, with implications for managing biofilm-related infections and industrial biofouling.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Manuela Caratozzolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- LAB Sense Beyond Nano—URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, 98166 Messina, Italy
| | - Salvatore P. P. Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
30
|
Volynets GP, Iungin OS, Gudzera OI, Vyshniakova HV, Rybak MY, Moshynets OV, Balanda AO, Borovykov OV, Prykhod'ko AO, Lukashov SS, Maiula TH, Pletnova LV, Yarmoluk SM, Tukalo MA. Identification of novel antistaphylococcal hit compounds. J Antibiot (Tokyo) 2024; 77:665-678. [PMID: 38914797 DOI: 10.1038/s41429-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
Staphylococcus aureus is one of the most common nosocomial biofilm-forming pathogens worldwide that has developed resistance mechanisms against majority of the antibiotics. Therefore, the search of novel antistaphylococcal agents with unexploited mechanisms of action, especially with antibiofilm activity, is of great interest. Seryl-tRNA synthetase is recognized as a promising drug target for the development of antibacterials. We have carried out molecular docking of compounds with antistaphycoccal activity, which were earlier found by us using phenotypic screening, into synthetic site of S. aureus SerRS and found seven hit compounds with low inhibitory activity. Further, we have performed search of S. aureus SerRS inhibitors among compounds which were previously tested by us for inhibitory activity toward S. aureus ThrRS, that belong to the same class of aminoacyl-tRNA synthetases. Among them six hits were identified. We have selected four compounds for antibacterial study and found that the most active compound 1-methyl-3-(1H-imidazol-1-methyl-2-yl)-5-nitro-1H-indazole has MIC values toward S. aureus multidrug-resistant clinical isolates ranging from 78.12 to 156.2 µg/ml. However, this compound precipitated during anti-biofilm study. Therefore, we used 3-[N'-(2-hydroxy-3-methoxybenzylidene)hydrazino]-6-methyl-4H-[1,2,4]triazin-5-one with better solubility (ClogS value = 2.9) among investigated compounds toward SerRS for anti-biofilm study. It was found that this compound has a significant inhibitory effect on the growth of planktonic and biofilm culture of S. aureus 25923 with MIC value of 32 µg ml-1. At the same time, this compound does not reveal antibacterial activity toward Esherichia coli ATCC 47076. Therefore, this compound can be proposed as effective antiseptic toward multidrug-resistant biofilm-forming S. aureus isolates.
Collapse
Affiliation(s)
- Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine.
| | - Olga S Iungin
- Department of Functional Genomics, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Hanna V Vyshniakova
- Laboratory of Medical Microbiology with the Museum of Human Pathogenic Microorganisms, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases NAMS of Ukraine, 5 Amosova St., Kyiv, 03038, Ukraine
| | - Mariia Yu Rybak
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Olena V Moshynets
- Biofilm study group, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Oleksiy V Borovykov
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Andrii O Prykhod'ko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
- Research and Development Department, Scientific Services Company Otava Ltd, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Sergiy S Lukashov
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Taras H Maiula
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
- Research and Development Department, Scientific Services Company Otava Ltd, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Larysa V Pletnova
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics, the NAS of Ukraine, 150 Zabolotnogo St., Kyiv, 03143, Ukraine
| |
Collapse
|
31
|
Konwar B, De S, Das G, Ramesh A. Napthalimide-based nuclease inhibitor: A multifunctional therapeutic material to bolster MRSA uptake by macrophage-like cells and mitigate pathogen adhesion on orthopaedic implant. Int J Biol Macromol 2024; 277:134023. [PMID: 39032881 DOI: 10.1016/j.ijbiomac.2024.134023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The healthcare burden rendered by methicillin-resistant Staphylococcus aureus (MRSA) warrants the development of therapeutics that offer a distinct benefit in the clinics as compared to conventional antibiotics. The present study describes the potential of napthalimide-based synthetic ligands (C1-C3) as inhibitors of the staphylococcal nuclease known as micrococcal nuclease (MNase), a key virulence factor of the pathogen. Amongst the ligands, the most potent MNase inhibitor C1 rendered non-competitive inhibition, reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of ~950 nM. CD spectroscopy suggested distortion of MNase conformation in presence of C1. Flow cytometry and confocal microscopy indicated that C1 restored the ability of activated THP-1 cells to engulf DNA-entrapped MRSA cells. Interestingly, C1 could inhibit MRSA adhesion onto collagen. For potential application, C1-loaded pluronic F-127 micellar nanocarrier (C1-PMC) was generated, wherein the anti-adhesion activity of the pluronic carrier (PMC) and C1 was harnessed in tandem to deter MRSA cell adhesion onto collagen. MRSA biofilm formation was hindered on C1-PMC-coated titanium (Ti) wire, while eluates from C1-PMC-coated Ti wires were non-toxic to HEK 293, MG-63 and THP-1 cells. The multifunctional C1 provides a blueprint for designing therapeutic materials that hold translational potential for mitigation of MRSA infections.
Collapse
Affiliation(s)
- Barlina Konwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
32
|
Qiongxian Y, Jun D, Zhenfeng Z, Tongyou L, Zhicong T, Zhenyou T. The therapeutic potential of indole hybrids, dimers, and trimers against drug-resistant ESKAPE pathogens. Arch Pharm (Weinheim) 2024; 357:e2400295. [PMID: 38924571 DOI: 10.1002/ardp.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter (ESKAPE) species as causative agents are characterized by increased levels of resistance toward multiple classes of first-line as well as last-resort antibiotics and represent serious global health concerns, creating a critical need for the development of novel antibacterials with therapeutic potential against drug-resistant ESKAPE species. Indole derivatives with structural and mechanistic diversity demonstrated broad-spectrum antibacterial activity against various clinically important pathogens including drug-resistant ESKAPE. Moreover, several indole-based agents that are exemplified by creatmycin have already been used in clinics or under clinical trials for the treatment of bacterial infections, demonstrating that indole derivatives hold great promise for the development of novel antibacterials. This review is an endeavor to highlight the current scenario of indole hybrids, dimers, and trimers with therapeutic potential against drug-resistant ESKAPE pathogens, covering articles published from 2020 to the present, to open new avenues for the exploration of novel antidrug-resistant ESKAPE candidates.
Collapse
Affiliation(s)
- Ye Qiongxian
- Guangdong Huanan Pharmaceutical Co. Ltd., Guangdong, Dongguan, China
| | - Deng Jun
- Guangdong Zhongsheng Pharmaceutical Co. Ltd., Guangdong, Dongguan, China
| | - Zhang Zhenfeng
- Guangdong Zhongsheng Pharmaceutical Co. Ltd., Guangdong, Dongguan, China
| | - Luo Tongyou
- Guangdong Xianqiang Pharmaceutical Co. Ltd., Guangdong, Guangzhou, China
| | - Tan Zhicong
- Guangdong Xianqiang Pharmaceutical Co. Ltd., Guangdong, Guangzhou, China
| | - Tan Zhenyou
- Guangdong Zhongsheng Pharmaceutical Co. Ltd., Guangdong, Dongguan, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
33
|
Roque-Borda CA, Carnero Canales CS, Primo LMDG, Colturato VMM, Polinário G, Di Filippo LD, Duarte JL, Chorilli M, da Silva Barud H, Pavan FR. Cellulose from bacteria as a delivery system for improved treatment of infectious diseases: A review of updates and prospects. Int J Biol Macromol 2024; 277:133831. [PMID: 39084978 DOI: 10.1016/j.ijbiomac.2024.133831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Cellulose from bacteria is a high-purity biomaterial naturally produced by bacteria as part of their metabolic process. Although it inherently lacks antimicrobial activity, its modification with bioactive substances can significantly enhance its efficacy beyond that of the original compounds. This biomaterial features a unique ability to retain substantial quantities of liquids within its three-dimensional network, making it a prime candidate for biomedical applications. Versatile in its properties, it can be utilized across various industries. Previous research has highlighted its capacity to exhibit antimicrobial properties and to encapsulate nanostructured materials, thereby augmenting its antibacterial effectiveness. This review focuses on the use of cellulose from bacteria as a carrier for active compounds, specifically targeting antibacterial activity against drug-resistant strains. We explore its role in innovative bacterial cellulose-based systems, which present a promising solution for tackling bacterial resistance. This review aims to showcase the potential of bacterial cellulose in developing new devices and treatment strategies that address critical concerns in global health.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Universidad Católica de Santa María, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Arequipa, Peru.
| | | | | | | | - Giulia Polinário
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Biopolymers and Biomaterials Laboratory (BIOPOLMAT), Araraquara, São Paulo, Brazil
| | - Fernando R Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Brazil.
| |
Collapse
|
34
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
35
|
Wang Y, Wu F, Li Y, Wang S, Ren Y, Shi L, van der Mei HC, Liu Y. Ellagic acid-modified gold nanoparticles to combat multi-drug resistant bacterial infections in vitro and in vivo. MATERIALS HORIZONS 2024; 11:4781-4790. [PMID: 39026466 DOI: 10.1039/d4mh00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The overuse of antibiotics has led to the rapid development of multi-drug resistant bacteria, making antibiotics increasingly ineffective against bacterial infections. Consequently, there is an urgent need to develop alternative strategies to combat multi-drug-resistant bacterial infections. In this study, gold nanoparticles modified with ellagic acid (EA-AuNPs) were prepared using a simple and mild one-pot hydrothermal process. EA-AuNPs demonstrated high bactericidal efficacy and broad-spectrum antimicrobial activities against clinical isolates of the antibiotic-resistant ESKAPE pathogens. Furthermore, EA-AuNPs effectively disperse biofilms of multi-drug-resistant bacteria. Additionally, EA-AuNPs mitigated inflammatory responses at the bacterial infection sites. The combined bactericidal and anti-inflammatory treatment with EA-AuNPs resulted in faster curing of peritonitis caused by Staphylococcus aureus in mice compared to treatment with free EA or gentamicin. Moreover, transcriptome analysis revealed that EA-AuNPs exhibited a multi-targeting mechanism, making resistance development in pathogens more challenging than traditional antibiotics that recognize specific cellular targets. Overall, EA-AuNPs emerged as a promising antimicrobial agent against multi-drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yaran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Fan Wu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Siran Wang
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Groningen, The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Groningen, The Netherlands.
| | - Yong Liu
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
36
|
Jayathilaka EHTT, Han J, De Zoysa M, Whang I. Antimicrobial Peptide Octoprohibitin-Encapsulated Chitosan Nanoparticles Enhanced Antibacterial Activity against Acinetobacter baumannii. Pharmaceutics 2024; 16:1245. [PMID: 39458577 PMCID: PMC11510178 DOI: 10.3390/pharmaceutics16101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This study focused on evaluating the physiochemical characteristics and antibacterial activity of Octoprohibitin-encapsulated CNPs (Octoprohibitin-CNPs) against Acinetobacter baumannii. Methods: Octoprohibitin was encapsulated into CNPs via ionotropic gelation with carboxymethyl chitosan (CMC) and low molecular weight chitosan (CS). Octoprohibitin-CNPs were dispersed in phosphate-buffered saline and the release kinetic profile was determined. Then Octoprohibitin-CNPs were examined using field-emission transmission electron microscopy and physicochemical characterization was performed. Antibacterial activity of Octoprohibitin-CNPs against A. baumannii was evaluated. Biofilm inhibition and eradication assays were performed using the crystal violet (CV) staining-based method for biofilm quantification. Results: The average diameter, zeta potential, encapsulation efficiency, and loading capacity of Octoprohibitin-CNPs were 244.5 ± 21.97 nm, +48.57 ± 0.38 mV, and 85.7% and 34.2%, respectively. TEM analysis imaging revealed that Octoprohibitin-CNPs are irregularly shaped, with fewer aggregates than CNPs. Octoprohibitin-CNPs exhibited a biphasic release pattern, characterized by an initial rapid phase followed by a sustained release over time, extending up to 93.68 ± 6.48% total release until 96 h. In vitro, Octoprohibitin-CNPs showed lower cytotoxicity compared to Octoprohibitin alone. Time-kill kinetic and bacterial viability reduction assays showed Octoprohibitin-CNPs exhibited slightly higher antibacterial activity against A. baumannii than Octoprohibitin. Conclusions: Octoprohibitin-CNP-treated A. baumannii exhibited higher levels of morphological deviation, increased membrane permeability, and the production of reactive oxygen species, as well as antibiofilm activity with greater biofilm inhibition and eradication than Octoprohibitin. These findings show that Octoprohibitin-CNPs perform better against A. baumannii compared to Octoprohibitin alone.
Collapse
Affiliation(s)
- E. H. T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Jinwook Han
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seocheon 33662, Republic of Korea;
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seocheon 33662, Republic of Korea;
| |
Collapse
|
37
|
Zhou C, Chang X, Zou Y, Zhao F, Zhou G, Ye K. The mechanism of Enterococcus faecium on the virulence of Listeria monocytogenes during the storage of fermented sausages by whole genome analysis. Int J Food Microbiol 2024; 422:110826. [PMID: 39024730 DOI: 10.1016/j.ijfoodmicro.2024.110826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
This study investigated the safety characteristics and potential probiotic properties of Enterococcus faecium by using whole genome analysis, and then explored the effect of this strain on the virulence of Listeria monocytogenes in vitro and during the storage of fermented sausages. Results showed that E. faecium B1 presented enterocin A, B, and P, enterolysin A, and UviB, and the exotoxin related genes and exoenzyme related genes were not detected in the genome of E. faecium B1. However, the adherence genes including acm and scm were present in this strain, which also positively correlated with characteristics related to probiotic potential. In addition, E. faecium could adapt to the condition of fermented sausages, and decrease the survival of L. monocytogenes in vitro and in vivo. The expression of the virulence genes (prfA, hly, inlA, and inlB) and sigB-related genes (prli42, rsbT, rsbU, rsbV, rsbW, and sigB) were all inhibited by E. faecium B1 to different extents during the storage of fermented sausages at 4 °C. Moreover, compared with the E. faecium B1 group, the expression level of entA, entB, and entP genes of E. faecium B1 in the co-culture of fermented sausages was increased during the storage, which may be the inhibition mechanism of E. faecium B1 on L. monocytogenes. These results demonstrated that E. faecium B1 could potentially be used as bio-protection to control L. monocytogenes in meat products.
Collapse
Affiliation(s)
- Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
38
|
Shi YZ, Wang ZJ, Shi N, Bai LY, Jiang YM, Jiang L, Liu T, Wei MZ, Qin ML, Luo XD. Anti-MRSA mechanism of spirostane saponin in Rohdea pachynema F.T.Wang & tang. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118327. [PMID: 38750987 DOI: 10.1016/j.jep.2024.118327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Rohdea pachynema F.T.Wang & Tang (R. pachynema), is a traditional folk medicine used for the treatment of stomach pain, stomach ulcers, bruises, and skin infections in China. Some of the diseases may relate to microbial infections in traditional applications. However few reports on its antimicrobial properties and bioactive components. AIM OF THE STUDY To identify its bioactive constituents against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, and its mechanism. MATERIALS AND METHODS The anti-MRSA ingredient 6α-O-[β-D-xylopyranosyl-(1 → 3)-β-D-quinovopyranosyl]-(25S)-5α-spirostan-3β-ol (XQS) was obtained from R. pachynema by phytochemical isolation. Subsequently, XQS underwent screening using the broth microdilution method and growth inhibition curves to assess its antibacterial activity. The mechanism of XQS was evaluated by multigeneration induction, biofilm resistance assay, scanning electron microscopy, transmission electron microscopy, and metabolomics. Additionally, a mouse skin infection model was established in vivo. RESULTS 26 compounds were identified from the R. pachynema, in which anti-MRSA spirostane saponin (XQS) was reported for the first time with a minimum inhibitory concentration (MIC) of 8 μg/mL. XQS might bind to peptidoglycan (PGN) of the cell wall, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) of the cell membrane, then destroying the cell wall and the cell membrane, resulting in reduced membrane fluidity and membrane depolarization. Furthermore, XQS affected MRSA lipid metabolism, amino acid metabolism, and ABC transporters by metabolomics analysis, which targeted cell walls and membranes causing less susceptibility to drug resistance. Furthermore, XQS (8 mg/kg) recovered skin wounds in mice infected by MRSA effectively, superior to vancomycin (8 mg/kg). CONCLUSIONS XQS showed anti-MRSA bioactivity in vitro and in vivo, and its mechanism association with cell walls and membranes was reported for the first, which supported the traditional uses of R. pachynema and explained its sensitivity to MRSA.
Collapse
Affiliation(s)
- Yang-Zhu Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Nian Shi
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Li-Yu Bai
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yue-Ming Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ling Jiang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Tie Liu
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Mei-Zheng Wei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ma-Long Qin
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| |
Collapse
|
39
|
Mathuria A, Vora C, Ali N, Mani I. Advances in CRISPR-Cas systems for human bacterial disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:19-41. [PMID: 39266183 DOI: 10.1016/bs.pmbts.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
40
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
41
|
Chen P, Qin J, Su HK, Du L, Zeng Q. Harmine acts as a quorum sensing inhibitor decreasing the virulence and antibiotic resistance of Pseudomonas aeruginosa. BMC Infect Dis 2024; 24:760. [PMID: 39085766 PMCID: PMC11293143 DOI: 10.1186/s12879-024-09639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND As antimicrobial resistance (AMR) has become a global health crisis, new strategies against AMR infection are urgently needed. Quorum sensing (QS), responsible for bacterial communication and pathogenicity, is among the targets for anti-virulence drugs that thrive as one of the promising treatments against AMR infection. METHODS We identified a natural compound, Harmine, through virtual screening based on three QS receptors of Pseudomonas aeruginosa (P. aeruginosa) and explored the effect of Harmine on QS-controlled and pathogenicity-related phenotypes including pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14. The protective effect of Harmine on Caenorhabditis elegans (C. elegans) and mice infection models was determined and the synergistic effect of Harmine combined with common antibiotics was explored. The underlaying mechanism of Harmine's QS inhibitory effect was illustrated by molecular docking analysis, transcriptomic analysis, and target verification assay. RESULTS In vitro results suggested that Harmine possessed QS inhibitory effects on pyocyanin production, exocellular protease excretion, biofilm formation, and twitching motility of P. aeruginosa PA14, and in vivo results displayed Harmine's protective effect on C. elegans and mice infection models. Intriguingly, Harmine increased susceptibility of both PA14 and clinical isolates of P. aeruginosa to polymyxin B and kanamycin when used in combination. Moreover, Harmine down-regulated a series of QS controlled genes associated with pathogenicity and the underlying mechanism may have involved competitively antagonizing autoinducers' receptors LasR, RhlR, and PqsR. CONCLUSIONS This study shed light on the anti-virulence potential of Harmine against QS targets, suggesting the possible use of Harmine and its derivates as anti-virulence compounds.
Collapse
Affiliation(s)
- Pei Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China
| | - Jiangyue Qin
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, 610081, China
| | - Helene K Su
- Seven Lakes High School, Katy, TX, 77494, USA
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, China.
| | - Qianglin Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital/Clinical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, China.
| |
Collapse
|
42
|
Liu X, Xin J, Sun Y, Zhao F, Niu C, Liu S. Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Mar Drugs 2024; 22:347. [PMID: 39195463 DOI: 10.3390/md22080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is an urgent need for new antibacterial and antifungal agents to combat the growing challenge of antibiotic resistance. As the largest ecosystem on Earth, the marine ecosystem includes a vast array of microorganisms (primarily bacteria and fungi), plants, invertebrates, and vertebrates, making it a rich source of various antimicrobial compounds. Notably, terpenoids, known for their complex structures and diverse bioactivities, are a significant and promising group of compounds in the battle against bacterial and fungal infections. In the past five years, numerous antimicrobial terpenoids have been identified from marine organisms such as bacteria, fungi, algae, corals, sea cucumbers, and sponges. This review article provides a detailed overview of 141 terpenoids with antibacterial and/or antifungal properties derived from marine organisms between 2019 and 2024. Terpenoids, a diverse group of natural organic compounds derived from isoprene units, are systematically categorized based on their carbon skeleton structures. Comprehensive information is provided about their names, structures, biological sources, and the extent of their antibacterial and/or antifungal effectiveness. This review aims to facilitate the rapid identification and development of prospective antimicrobials in the pharmaceutical sector.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jianzeng Xin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of life sciences, Yantai University, Yantai 264005, China
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
43
|
Gutiérrez-Santana JC, Rosas-Espinosa V, Martinez E, Casiano-García E, Coria-Jiménez VR. Metal Nanoparticle-Based Biosensors for the Early Diagnosis of Infectious Diseases Caused by ESKAPE Pathogens in the Fight against the Antimicrobial-Resistance Crisis. BIOSENSORS 2024; 14:339. [PMID: 39056615 PMCID: PMC11274948 DOI: 10.3390/bios14070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Viridiana Rosas-Espinosa
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| | - Evelin Martinez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Esther Casiano-García
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacán C.P. 04960, Mexico;
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán C.P. 04530, Mexico (V.R.C.-J.)
| |
Collapse
|
44
|
Sadeghi Rad Z, Farahmand M, Kavousi M. Secapin: a promising antimicrobial peptide against multidrug-resistant Acinetobacter baumannii. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc36. [PMID: 39224503 PMCID: PMC11367255 DOI: 10.3205/dgkh000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Acinetobacter baumannii, renowned for its exceptional multidrug resistance and its role as a prevalent nosocomial pathogen, poses a formidable challenge to conventional antibiotic therapies. The primary objective of this investigation was to evaluate the efficacy of Secapin, an antimicrobial peptide, against multidrug-resistant (MDR) baumannii. Furthermore, the mechanisms underlying Secapin's antibacterial and antibiofilm activities were elucidated. Methods The antimicrobial and antibiofilm effectiveness of Secapin against MDR A. baumannii was assessed through a series of experiments. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Secapin were determined using established protocols. Time-kill kinetic analysis was performed to assess the concentration-dependent bactericidal effect of Secapin. Additionally, the capacity of Secapin to impede biofilm formation and eradicate A. b aumannii biofilms was investigated. Hemolytic potential was evaluated using human red blood cells, while mammalian cell viability was examined at varying Secapin concentrations. Results Secapin exhibited robust bactericidal activity at minimal concentrations, with an MIC of 5 µg/mL and an MBC of 10 µg/mL against MDR A. baumannii. The time-kill kinetic analysis confirmed the concentration-dependent efficacy of Secapin in diminishing bacterial viability. Moreover, Secapin demonstrated the ability to prevent biofilm formation and eliminate established A. baumannii biofilms. Notably, Secapin exhibited no hemolytic activity and preserved mammalian cell viability up to a concentration of 100 µg/mL. Conclusion These findings underscore the substantial potential of Secapin as a potent agent against multidrug-resistant A. baumannii, showcasing its efficacy in both antibacterial and antibiofilm capacities. The favorable attributes of Secapin, characterized by its minimal hemolytic effects and high mammalian cell viability, position it as a promising contender in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Zohreh Sadeghi Rad
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Farahmand
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kavousi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Santajit S, Tunyong W, Horpet D, Binmut A, Kong-Ngoen T, Wisessaowapak C, Thavorasak T, Pumirat P, Indrawattana N. Unveiling the Antimicrobial, Anti-Biofilm, and Anti-Quorum-Sensing Potential of Paederia foetida Linn. Leaf Extract against Staphylococcus aureus: An Integrated In Vitro-In Silico Investigation. Antibiotics (Basel) 2024; 13:613. [PMID: 39061295 PMCID: PMC11273848 DOI: 10.3390/antibiotics13070613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance poses a global health threat, with Staphylococcus aureus emerging as a notorious pathogen capable of forming stubborn biofilms and regulating virulence through quorum sensing (QS). In the quest for novel therapeutic strategies, this groundbreaking study unveils the therapeutic potential of Paederia foetida Linn., an Asian medicinal plant containing various bioactive compounds, contributing to its antimicrobial activities, in the battle against S. aureus. Through a comprehensive approach, we investigated the effect of ethanolic P. foetida leaf extract on S. aureus biofilms, QS, and antimicrobial activity. The extract exhibited promising inhibitory effects against S. aureus including the biofilm-forming strain and MRSA. Real-time PCR analysis revealed significant downregulation of key virulence and biofilm genes, suggesting interference with QS. Biofilm assays quantified the extract's ability to disrupt and prevent biofilm formation. LC-MS/MS analysis identified quercetin and kaempferol glycosides as potential bioactive constituents, while molecular docking studies explored their binding to the QS transcriptional regulator SarA. Computational ADMET predictions highlighted favorable intestinal absorption but potential P-glycoprotein interactions limiting oral bioavailability. While promising anti-virulence effects were demonstrated, the high molecular weights and excessive hydrogen bond donors/acceptors of the flavonoid glycosides raise concerns regarding drug-likeness and permeability. This integrated study offers valuable insights for developing novel anti-virulence strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala 80160, Thailand; (S.S.); (D.H.); (A.B.)
- Research Center in Tropical Pathobiology, Walailak University, Tha Sala 80160, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.T.); (T.K.-N.); (P.P.)
| | - Dararat Horpet
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala 80160, Thailand; (S.S.); (D.H.); (A.B.)
| | - Asma Binmut
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala 80160, Thailand; (S.S.); (D.H.); (A.B.)
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.T.); (T.K.-N.); (P.P.)
| | | | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.T.); (T.K.-N.); (P.P.)
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.T.); (T.K.-N.); (P.P.)
- Siriraj Center of Research Excellence in Allergy and Immunology, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
46
|
Marino A, Augello E, Stracquadanio S, Bellanca CM, Cosentino F, Spampinato S, Cantarella G, Bernardini R, Stefani S, Cacopardo B, Nunnari G. Unveiling the Secrets of Acinetobacter baumannii: Resistance, Current Treatments, and Future Innovations. Int J Mol Sci 2024; 25:6814. [PMID: 38999924 PMCID: PMC11241693 DOI: 10.3390/ijms25136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Acinetobacter baumannii represents a significant concern in nosocomial settings, particularly in critically ill patients who are forced to remain in hospital for extended periods. The challenge of managing and preventing this organism is further compounded by its increasing ability to develop resistance due to its extraordinary genomic plasticity, particularly in response to adverse environmental conditions. Its recognition as a significant public health risk has provided a significant impetus for the identification of new therapeutic approaches and infection control strategies. Indeed, currently used antimicrobial agents are gradually losing their efficacy, neutralized by newer and newer mechanisms of bacterial resistance, especially to carbapenem antibiotics. A deep understanding of the underlying molecular mechanisms is urgently needed to shed light on the properties that allow A. baumannii enormous resilience against standard therapies. Among the most promising alternatives under investigation are the combination sulbactam/durlobactam, cefepime/zidebactam, imipenem/funobactam, xeruborbactam, and the newest molecules such as novel polymyxins or zosurabalpin. Furthermore, the potential of phage therapy, as well as deep learning and artificial intelligence, offer a complementary approach that could be particularly useful in cases where traditional strategies fail. The fight against A. baumannii is not confined to the microcosm of microbiological research or hospital wards; instead, it is a broader public health dilemma that demands a coordinated, global response.
Collapse
Affiliation(s)
- Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Egle Augello
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Federica Cosentino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Science, Section of Pharmacology, University of Catania, 95123 Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, ARNAS Garibaldi Hospital, 95122 Catania, Italy
| |
Collapse
|
47
|
Oalđe Pavlović M, Kolarević S, Đorđević Aleksić J, Vuković-Gačić B. Exploring the Antibacterial Potential of Lamiaceae Plant Extracts: Inhibition of Bacterial Growth, Adhesion, Invasion, and Biofilm Formation and Degradation in Pseudomonas aeruginosa PAO1. PLANTS (BASEL, SWITZERLAND) 2024; 13:1616. [PMID: 38931048 PMCID: PMC11207635 DOI: 10.3390/plants13121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
In response to the global rise in antibiotic resistance and the prevalence of bacterial biofilm-related infections, the antibacterial efficacy of methanolic, ethanolic, and aqueous extracts of 18 Lamiaceae plants from Serbia was evaluated. The total coumarins and triterpenes were detected spectrophotometrically, while a microdilution assay measured their effects on bacterial growth. Additionally, the impact of these extracts was assessed on Pseudomonas aeruginosa PAO1 adhesion and invasion in human fibroblasts and biofilm formation and degradation. The alcoholic extracts had the highest phytochemical content, with Teucrium montanum and Lavandula angustifolia being the richest in coumarins and triterpenes, respectively. Gram-positive bacteria, particularly Bacillus subtilis, were more susceptible to the extracts. Hyssopus officinalis ethanolic and Sideritis scardica methanolic extracts inhibited bacterial growth the most efficiently. Although the extracts did not inhibit bacterial adhesion, most ethanolic extracts significantly reduced bacterial invasion. Origanum vulgare and H. officinalis ethanolic extracts significantly inhibited biofilm formation, while Teucrium chamaedrys extract was the most active in biofilm degradation. This study significantly contributes to the literature by examining the antibacterial activity of Lamiaceae extracts, addressing major literature gaps, and underscoring their antibacterial potential, particularly Satureja montana and O. vulgare ethanolic extracts, linking their efficacy to coumarins and triterpenes.
Collapse
Affiliation(s)
- Mariana Oalđe Pavlović
- University of Belgrade—Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Studentski Trg 16, 11000 Belgrade, Serbia;
| | - Stoimir Kolarević
- University of Belgrade—Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Jelena Đorđević Aleksić
- University of Belgrade—Institute for Multidisciplinary Research, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Branka Vuković-Gačić
- University of Belgrade—Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Studentski Trg 16, 11000 Belgrade, Serbia;
| |
Collapse
|
48
|
Fimbres-García JO, Flores-Sauceda M, Othón-Díaz ED, García-Galaz A, Tapia-Rodriguez MR, Silva-Espinoza BA, Alvarez-Armenta A, Ayala-Zavala JF. Lippia graveolens Essential Oil to Enhance the Effect of Imipenem against Axenic and Co-Cultures of Pseudomonas aeruginosa and Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:444. [PMID: 38786172 PMCID: PMC11117758 DOI: 10.3390/antibiotics13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Alfonso García-Galaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Melvin R. Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Sonora, Mexico;
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62250, Morelos, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico; (J.O.F.-G.); (A.G.-G.); (B.A.S.-E.)
| |
Collapse
|
49
|
Harfouche N, Marie P, Dragoe D, Le H, Thébault P, Bilot C, Fouchet A, Rouden J, Baudoux J, Lepoittevin B. Antibacterial Zirconia Surfaces from Organocatalyzed Atom-Transfer Radical Polymerization. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1775. [PMID: 38673132 PMCID: PMC11051261 DOI: 10.3390/ma17081775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Antibacterial coatings are becoming increasingly attractive for application in the field of biomaterials. In this framework, we developed polymer coating zirconia with antibacterial activity using the "grafting from" methodology. First, 1-(4-vinylbenzyl)-3-butylimidazolium chloride monomer was synthesized. Then, the surface modification of zirconia substrates was performed with this monomer via surface-initiated photo atom transfer radical polymerization for antibacterial activity. X-ray photoelectron spectroscopy, ellipsometry, static contact angle measurements, and an atomic force microscope were used to characterize the films for each step of the surface modification. The results revealed that cationic polymers could be successfully deposited on the zirconia surfaces, and the thickness of the grafted layer steadily increased with polymerization time. Finally, the antibacterial adhesion test was used to evaluate the antibacterial activity of the modified zirconia substrates, and we successfully showed the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa strains.
Collapse
Affiliation(s)
- Nesrine Harfouche
- LCMT, UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France (J.B.)
| | - Philippe Marie
- CIMAP, UMR 6252, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France
| | - Diana Dragoe
- ICMMO, UMR 8182, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Hung Le
- INSA Rouen Normandie, PBS UMR 6270, CNRS, Normandie Université, Université de Rouen Normandie, 76000 Rouen, France
| | - Pascal Thébault
- INSA Rouen Normandie, PBS UMR 6270, CNRS, Normandie Université, Université de Rouen Normandie, 76000 Rouen, France
| | - Christelle Bilot
- CRISMAT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France
| | - Arnaud Fouchet
- CRISMAT, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France
| | - Jacques Rouden
- LCMT, UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France (J.B.)
| | - Jérôme Baudoux
- LCMT, UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France (J.B.)
| | - Bénédicte Lepoittevin
- LCMT, UMR 6507, ENSICAEN, UNICAEN, CNRS, Normandie Université, 14000 Caen, France (J.B.)
| |
Collapse
|
50
|
Badawy MSEM, Riad OKM, Harras MF, Binsuwaidan R, Saleh A, Zaki SA. Chitosan-Aspirin Combination Inhibits Quorum-Sensing Synthases ( lasI and rhlI) in Pseudomonas aeruginosa. Life (Basel) 2024; 14:481. [PMID: 38672752 PMCID: PMC11051473 DOI: 10.3390/life14040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) controls the virulence of P. aeruginosa. This study aims to determine the anti-QS activity of aspirin alone and in combination with chitosan to reach maximum inhibition. We tested ten virulent Pseudomonas aeruginosa (P. aeruginosa) isolates and screened for N-acyl homoserine lactone (AHL) production using Agrobacterium tumefaciens as a biosensor. P. aeruginosa isolates were treated with sub-minimum inhibitory concentrations (MICs) of aspirin and chitosan-aspirin. We used broth microdilution and checkerboard titration methods to determine the MICs and the synergistic effect of these two compounds, respectively. Real-time polymerase chain reaction (PCR) was used to estimate the anti-QS activity of the aspirin-chitosan combination on the expression of lasI and rhlI genes. RESULTS Aspirin decreased the motility and production of AHLs, pyocyanin, and biofilm. Chitosan potentiated the inhibitory effect of aspirin. The chitosan-aspirin combination inhibited lasI and rhlI gene expression in PAO1 (ATCC 15692) by 7.12- and 0.92-fold, respectively. In clinical isolates, the expression of lasI and rhlI was decreased by 1.76 × 102- and 1.63 × 104-fold, respectively. Molecular docking analysis revealed that aspirin could fit into the active sites of the QS synthases lasI and rhlI with a high binding affinity, causing conformational changes that resulted in their inhibition. CONCLUSIONS The chitosan-aspirin combination provides new insights into treating virulent and resistant P. aeruginosa.
Collapse
Affiliation(s)
- Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Omnia Karem M. Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Marwa F. Harras
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.B.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (R.B.); (A.S.)
| | - Samar A. Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|