1
|
Dedman S, Moxley JH, Papastamatiou YP, Braccini M, Caselle JE, Chapman DD, Cinner JE, Dillon EM, Dulvy NK, Dunn RE, Espinoza M, Harborne AR, Harvey ES, Heupel MR, Huveneers C, Graham NAJ, Ketchum JT, Klinard NV, Kock AA, Lowe CG, MacNeil MA, Madin EMP, McCauley DJ, Meekan MG, Meier AC, Simpfendorfer CA, Tinker MT, Winton M, Wirsing AJ, Heithaus MR. Ecological roles and importance of sharks in the Anthropocene Ocean. Science 2024; 385:adl2362. [PMID: 39088608 DOI: 10.1126/science.adl2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/17/2024] [Indexed: 08/03/2024]
Abstract
In ecosystems, sharks can be predators, competitors, facilitators, nutrient transporters, and food. However, overfishing and other threats have greatly reduced shark populations, altering their roles and effects on ecosystems. We review these changes and implications for ecosystem function and management. Macropredatory sharks are often disproportionately affected by humans but can influence prey and coastal ecosystems, including facilitating carbon sequestration. Like terrestrial predators, sharks may be crucial to ecosystem functioning under climate change. However, large ecosystem effects of sharks are not ubiquitous. Increasing human uses of oceans are changing shark roles, necessitating management consideration. Rebuilding key populations and incorporating shark ecological roles, including less obvious ones, into management efforts are critical for retaining sharks' functional value. Coupled social-ecological frameworks can facilitate these efforts.
Collapse
Affiliation(s)
- Simon Dedman
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Jerry H Moxley
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Yannis P Papastamatiou
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Matias Braccini
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, North Beach, WA 6920, Australia
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Demian D Chapman
- Sharks and Rays Conservation Research Program, Mote Marine Laboratory, Sarasota, FL 34236, USA
| | - Joshua Eli Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erin M Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ruth Elizabeth Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4BA, UK
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060-11501, Costa Rica
- MigraMar, Bodega Bay, CA 94923, USA
| | - Alastair R Harborne
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, WA, Australia
| | - Michelle R Heupel
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, TAS, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - James T Ketchum
- MigraMar, Bodega Bay, CA 94923, USA
- Pelagios Kakunjá, La Paz, Baja California Sur, Mexico
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | - Natalie V Klinard
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Alison A Kock
- Cape Research Centre, South African National Parks, Cape Town, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda (Grahamstown), South Africa
| | - Christopher G Lowe
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - M Aaron MacNeil
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, NS B3H 4R2, Canada
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Douglas J McCauley
- Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Amelia C Meier
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Colin A Simpfendorfer
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7000, Australia
- College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, QLD 4811, Australia
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Megan Winton
- Atlantic White Shark Conservancy, North Chatham, MA 02650, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael R Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
2
|
Patrick PG, Singkam AR. Biodiversity conservation, human-animal interactions, and zootherapy in ecological knowledge of Indonesian Healers. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14278. [PMID: 38682639 DOI: 10.1111/cobi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 05/01/2024]
Abstract
We examined the entanglement of biodiversity conservation, human-animal interactions, zootherapy, and local beliefs among Sumatran Healers and their local community by completing an ethnography of 43 Indigenous Healers across 8 tribes in Bengkulu Province, Sumatra, Indonesia. Data collection tools were interviews, observations, videos, photographs, and a researcher journal. Of the 43 Healers, 30 used animals and mentioned 62 species. Of the animals identified, the International Union for Conservation of Nature Red List lists 34% (n = 21) as endangered, decreasing, or vulnerable, including Sumatran tiger (Panthera tigris sumatrae), Sumatran elephant (Elephas maximus sumatranus), and Sumatran rhinoceros (Dicerorhinus sumatrensis). Of the 30 Healers using animals, 50% (n = 15) practiced healing with at least one endangered, decreasing, or vulnerable animal. We defined 3 personas: Healer self-persona, Healer-imposed persona, and community-imposed persona. A persona represented a group's opinions and sentiments related to Healers killing animals for medicinal purposes. Using an iterative data analysis process, we grouped the data across the 3 personas into 5 themes: ease of killing and preparing animals, emotions related to killing animals, animal value, relationship to religion, and Healers are tricksters. The complexity of merging the identities of Healers and the community within an actor-network embodies the relationality of actions, interactions, and feelings among Healers, between Healers and animals, and between Healers and the community. Conservationists should be cognizant of Healers' medicinal use of animals, views of human-animal interactions, and zootherapy from all social and emotional perspectives. The data led to defining Indigenous Healer ecological knowledge components of zootherapy, human-animal interactions, and biodiversity conservation.
Collapse
Affiliation(s)
- Patricia G Patrick
- College of Education and Health Professions, Columbus State University, Columbus, Georgia, USA
| | | |
Collapse
|
3
|
Mouquet N, Langlois J, Casajus N, Auber A, Flandrin U, Guilhaumon F, Loiseau N, McLean M, Receveur A, Stuart Smith RD, Mouillot D. Low human interest for the most at-risk reef fishes worldwide. SCIENCE ADVANCES 2024; 10:eadj9510. [PMID: 39018399 PMCID: PMC466977 DOI: 10.1126/sciadv.adj9510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
Human interest in biodiversity is essential for effective conservation action but remains poorly quantified at large scales. Here, we investigated human interest for 2408 marine reef fishes using data obtained from online public databases and social media, summarized in two synthetic dimensions, research effort and public attention. Both dimensions are mainly related to geographic range size. Research effort is also linked to fishery importance, while public attention is more related to fish aesthetic value and aquarium trade importance. We also found a strong phylogenetic bias, with certain fish families receiving disproportional research effort and public attention. Most concerningly, species at the highest risk of extinction and those most vulnerable to future climate change tend to receive less research effort and public attention. Our results provide a lens through which examining the societal attention that species garner, with the ultimate goals to improve conservation strategies, research programs, and communication plans.
Collapse
Affiliation(s)
- Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- FRB-CESAB, 34000 Montpellier, France
| | | | | | - Arnaud Auber
- IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France
| | - Ulysse Flandrin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Matthew McLean
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403. USA
| | | | - Rick D. Stuart Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| |
Collapse
|
4
|
Mitchell JD, Drymon JM, Vardon J, Coulson PG, Simpfendorfer CA, Scyphers SB, Kajiura SM, Hoel K, Williams S, Ryan KL, Barnett A, Heupel MR, Chin A, Navarro M, Langlois T, Ajemian MJ, Gilman E, Prasky E, Jackson G. Shark depredation: future directions in research and management. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:475-499. [PMID: 36404946 PMCID: PMC9664043 DOI: 10.1007/s11160-022-09732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/28/2022] [Indexed: 05/19/2023]
Abstract
Shark depredation is a complex social-ecological issue that affects a range of fisheries worldwide. Increasing concern about the impacts of shark depredation, and how it intersects with the broader context of fisheries management, has driven recent research in this area, especially in Australia and the United States. This review synthesises these recent advances and provides strategic guidance for researchers aiming to characterise the occurrence of depredation, identify the shark species responsible, and test deterrent and management approaches to reduce its impacts. Specifically, the review covers the application of social science approaches, as well as advances in video camera and genetic methods for identifying depredating species. The practicalities and considerations for testing magnetic, electrical, and acoustic deterrent devices are discussed in light of recent research. Key concepts for the management of shark depredation are reviewed, with recommendations made to guide future research and policy development. Specific management responses to address shark depredation are lacking, and this review emphasizes that a "silver bullet" approach for mitigating depredation does not yet exist. Rather, future efforts to manage shark depredation must rely on a diverse range of integrated approaches involving those in the fishery (fishers, scientists and fishery managers), social scientists, educators, and other stakeholders.
Collapse
Affiliation(s)
- J. D. Mitchell
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
| | - J. M. Drymon
- Mississippi State University, Coastal Research and Extension Center, 1815 Popps Ferry Road, Biloxi, MS 39532 USA
- Mississippi-Alabama Sea Grant Consortium, 703 East Beach Drive, Ocean Springs, MS 39564 USA
| | - J. Vardon
- Southern Cross University, Lismore, NSW Australia
| | - P. G. Coulson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - C. A. Simpfendorfer
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - S. B. Scyphers
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - S. M. Kajiura
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - K. Hoel
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - S. Williams
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072 Australia
| | - K. L. Ryan
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - A. Barnett
- Biopixel Oceans Foundation, Cairns, QLD Australia
- Marine Data Technology Hub, James Cook University, Townsville, QLD 4811 Australia
| | - M. R. Heupel
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - A. Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - M. Navarro
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - T. Langlois
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - M. J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - E. Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI USA
- Heriot-Watt University, Edinburgh, UK
| | - E. Prasky
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - G. Jackson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| |
Collapse
|
5
|
Marchini S, Ferraz KMPMB, Foster V, Reginato T, Kotz A, Barros Y, Zimmermann A, Macdonald DW. Planning for Human-Wildlife Coexistence: Conceptual Framework, Workshop Process, and a Model for Transdisciplinary Collaboration. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.752953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coexistence, as a concept and as a management goal and practice, has attracted increasing attention from researchers, managers and decision-makers dedicated to understanding and improving human-wildlife interactions. Although it still lacks a universally agreed definition, coexistence has increasingly been associated with a broad spectrum of human-wildlife interactions, including positive interactions, transcending a conservation focus on endangered wildlife, and involving explicitly considerations of power, equity and justice. In a growingly complex and interconnected human-dominated world, the key to turning human-wildlife interactions into large-scale coexistence is thorough planning. We present an approach for evidence-based, structured, and participatory decision-making in planning for human-wildlife coexistence. More specifically, we propose (i) a conceptual framework for describing the situation and setting the goals, (ii) a process for examining the causes of the situation and creating a theory of change, and (iii) a model for transdisciplinary research and collaboration integrating researchers, decision-makers and residents along with the interests of wildlife. To illustrate the approach, we report on the workshop considering the Jaguars of Iguaçu, a conservation project whose strategy includes the improvement of the relationship between ranchers and jaguars outside Iguaçu National Park, Brazil.
Collapse
|