1
|
Krzesińska A, Marlęga-Linert J, Chyła-Danił G, Marcinkowska M, Rogowska P, Stumska K, Fijałkowski M, Gruchała M, Jankowski M, Mickiewicz A, Kuchta A. Reduced Oxidative Susceptibility of Lp(a) and LDL Fractions as a Pleiotropic Effect of Lipoprotein Apheresis in Patients with Elevated Lp(a) and ASCVDs. Int J Mol Sci 2024; 25:13597. [PMID: 39769362 PMCID: PMC11676408 DOI: 10.3390/ijms252413597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Oxidative modifications of lipoproteins play a crucial role in the initiation of atherosclerotic cardiovascular diseases (ASCVDs). Nowadays, the one effective strategy for the treatment of patients with hyperlipoproteinemia(a) is lipoprotein apheresis (LA), which has a pleiotropic effect on reducing the risk of ASCVDs. The significance of oxidative susceptibility of the LDL fraction in ASCVDs has been extensively studied. Whether LA alters the susceptibility of lipoprotein(a) to oxidative modifications remains an unresolved issue. In this study, we isolated lipoprotein fractions by ultracentrifugation in patients with hyperlipoproteinemia(a) undergoing apheresis (LA group) at three time points and patients who were qualified for LA but did not consent to the procedure (non-LA group). We performed copper-mediated oxidation of Lp(a) and LDL fractions and determined autotaxin activity. After apheresis, we observed a lower susceptibility to oxidation of the Lp(a) and LDL fractions as expressed by the extended value of oxidation lag time, decreased slope of the oxidation curve, and decreased final concentration of conjugated dienes. No significant differences were found between these parameters before and 7 days after LA. Additionally, both patients undergoing and not undergoing LA had a significant correlation between autotaxin activity and all parameters characterizing susceptibility to oxidation in the Lp(a) fraction. Our results demonstrate that the pleiotropic effect of apheresis may be related to the reduced oxidative susceptibility of Lp(a) and LDL particles, which may influence the reduction in ASCVD risk in patients undergoing apheresis. The results of the rebound effect 7 days after LA will contribute to a better definition of apheresis frequency guidelines.
Collapse
Affiliation(s)
- Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| | - Joanna Marlęga-Linert
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.M.-L.); (M.M.); (M.F.); (M.G.); (A.M.)
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| | - Marta Marcinkowska
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.M.-L.); (M.M.); (M.F.); (M.G.); (A.M.)
| | - Paulina Rogowska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| | - Katarzyna Stumska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| | - Marcin Fijałkowski
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.M.-L.); (M.M.); (M.F.); (M.G.); (A.M.)
| | - Marcin Gruchała
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.M.-L.); (M.M.); (M.F.); (M.G.); (A.M.)
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.M.-L.); (M.M.); (M.F.); (M.G.); (A.M.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (G.C.-D.); (P.R.); (K.S.); (M.J.)
| |
Collapse
|
2
|
Tang X, Qian H, Lu S, Huang H, Wang J, Li F, Bian A, Ye X, Yang G, Ma K, Xing C, Xu Y, Zeng M, Wang N. Predictive nomogram model for severe coronary artery calcification in end-stage kidney disease patients. Ren Fail 2024; 46:2365393. [PMID: 38874139 PMCID: PMC11232636 DOI: 10.1080/0886022x.2024.2365393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION The Agatston coronary artery calcification score (CACS) is an assessment index for coronary artery calcification (CAC). This study aims to explore the characteristics of CAC in end-stage kidney disease (ESKD) patients and establish a predictive model to assess the risk of severe CAC in patients. METHODS CACS of ESKD patients was assessed using an electrocardiogram-gated coronary computed tomography (CT) scan with the Agatston scoring method. A predictive nomogram model was established based on stepwise regression. An independent validation cohort comprised of patients with ESKD from multicentres. RESULTS 369 ESKD patients were enrolled in the training set, and 127 patients were included in the validation set. In the training set, the patients were divided into three subgroups: no calcification (CACS = 0, n = 98), mild calcification (0 < CACS ≤ 400, n = 141) and severe calcification (CACS > 400, n = 130). Among the four coronary branches, the left anterior descending branch (LAD) accounted for the highest proportion of calcification. Stepwise regression analysis showed that age, dialysis vintage, β-receptor blocker, calcium-phosphorus product (Ca × P), and alkaline phosphatase (ALP) level were independent risk factors for severe CAC. A nomogram that predicts the risk of severe CAC in ESKD patients has been internally and externally validated, demonstrating high sensitivity and specificity. CONCLUSION CAC is both prevalent and severe in ESKD patients. In the four branches of the coronary arteries, LAD calcification is the most common. Our validated nomogram model, based on clinical risk factors, can help predict the risk of severe coronary calcification in ESKD patients who cannot undergo coronary CT analysis.
Collapse
Affiliation(s)
- Xinfang Tang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, the Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Hanyang Qian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, Nanjing Tongren Hospital, Nanjing, China
| | - Shijiu Lu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hui Huang
- Center for Medical Big Data, Nanjing Drum Tower Hospital, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fan Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Nephrology, Nanjing BenQ Medical Center, Nanjing, China
| | - Anning Bian
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
- Department of Critical Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxue Ye
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Guang Yang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Kefan Ma
- Department of Imaging, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yi Xu
- Department of Imaging, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ningning Wang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
3
|
Jose A, Fernando JJ, Kienesberger PC. Lysophosphatidic acid metabolism and signaling in heart disease. Can J Physiol Pharmacol 2024; 102:685-696. [PMID: 38968609 DOI: 10.1139/cjpp-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that is mainly produced by the secreted lysophospholipase D, autotaxin (ATX), and signals through at least six G protein-coupled receptors (LPA1-6). Extracellular LPA is degraded through lipid phosphate phosphatases (LPP1, LPP2, and LPP3) at the plasmamembrane, terminating LPA receptor signaling. The ATX-LPA-LPP3 pathway is critically involved in a wide range of physiological processes, including cell survival, migration, proliferation, angiogenesis, and organismal development. Similarly, dysregulation of this pathway has been linked to many pathological processes, including cardiovascular disease. This review summarizes and interprets current literature examining the regulation and role of the ATX-LPA-LPP3 axis in heart disease. Specifically, the contribution of altered LPA metabolism via ATX and LPP3 and resulting changes to LPA receptor signaling in obesity cardiomyopathy, cardiac mitochondrial dysfunction, myocardial infarction/ischemia-reperfusion injury, hypertrophic cardiomyopathy, and aortic valve stenosis is discussed.
Collapse
Affiliation(s)
- Anu Jose
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeffy J Fernando
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
4
|
Jayaraman S, Narula N, Narula J, Gursky O. Amyloid and collagen templates in aortic valve calcification. Trends Mol Med 2024; 30:1010-1019. [PMID: 38845326 PMCID: PMC11563925 DOI: 10.1016/j.molmed.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 11/16/2024]
Abstract
Calcific aortic valve disease (CAVD) is a widely prevalent heart disorder in need of pharmacological interventions. Calcified areas in aortic valves often contain amyloid fibrils that promote calcification in vitro. This opinion paper suggests that amyloid contributes to CAVD development; amyloid-assisted nucleation can accelerate hydroxyapatite deposition onto collagen matrix. Notably, acidic arrays in amyloid match calcium-calcium spacing in the amorphous hydroxyapatite precursor, while oscillating hemodynamic perturbations promote amyloid deposition in the valve. Lipoprotein(a), a genetic risk factor for CAVD, augments calcification via several mechanisms, wherein hydrolysis of oxidized phospholipids (oxPLs) by Lp(a)-associated enzymes helps generate orthophosphate, and apolipoprotein(a) blocks plasmin-induced fibril degradation. Current studies of amyloid-calcium-collagen interactions in solution and in fibrillar complexes allow deeper insight into the role of amyloid in calcification.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Navneet Narula
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Jagat Narula
- University of Texas Health Sciences Center, Houston, TX, USA
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Chen SY, Kong XQ, Zhang JJ. Pathological Mechanism and Treatment of Calcified Aortic Stenosis. Cardiol Rev 2024; 32:320-327. [PMID: 38848535 DOI: 10.1097/crd.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Calcified aortic stenosis (AS) is one of the most common valvular heart diseases worldwide, characterized by progressive fibrocalcific remodeling and thickening of the leaflets, which ultimately leads to obstruction of blood flow. Its pathobiology is an active and complicated process, involving endothelial cell dysfunction, lipoprotein deposition and oxidation, chronic inflammation, phenotypic transformation of valve interstitial cells, neovascularization, and intravalvular hemorrhage. To date, no targeted drug has been proven to slow down or prevent disease progression. Aortic valve replacement is still the optimal treatment of AS. This article reviews the etiology, diagnosis, and management of calcified aortic stenosis and proposes novel potential therapeutic targets.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
| | - Xiang-Quan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing 210006, China
- Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
6
|
Mohammadyari P, Vieceli Dalla Sega F, Fortini F, Minghini G, Rizzo P, Cimaglia P, Mikus E, Tremoli E, Campo G, Calore E, Schifano SF, Zambelli C. Deep-learning survival analysis for patients with calcific aortic valve disease undergoing valve replacement. Sci Rep 2024; 14:10902. [PMID: 38740898 DOI: 10.1038/s41598-024-61685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Calcification of the aortic valve (CAVDS) is a major cause of aortic stenosis (AS) leading to loss of valve function which requires the substitution by surgical aortic valve replacement (SAVR) or transcatheter aortic valve intervention (TAVI). These procedures are associated with high post-intervention mortality, then the corresponding risk assessment is relevant from a clinical standpoint. This study compares the traditional Cox Proportional Hazard (CPH) against Machine Learning (ML) based methods, such as Deep Learning Survival (DeepSurv) and Random Survival Forest (RSF), to identify variables able to estimate the risk of death one year after the intervention, in patients undergoing either to SAVR or TAVI. We found that with all three approaches the combination of six variables, named albumin, age, BMI, glucose, hypertension, and clonal hemopoiesis of indeterminate potential (CHIP), allows for predicting mortality with a c-index of approximately 80 % . Importantly, we found that the ML models have a better prediction capability, making them as effective for statistical analysis in medicine as most state-of-the-art approaches, with the additional advantage that they may expose non-linear relationships. This study aims to improve the early identification of patients at higher risk of death, who could then benefit from a more appropriate therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Giada Minghini
- Department of Environmental and Prevention Sciences, Università di Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy.
- Department of Translational Medicine, Università di Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), Ferrara, Italy.
| | - Paolo Cimaglia
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Elisa Mikus
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Gianluca Campo
- Department of Translational Medicine, Università di Ferrara, Ferrara, Italy
- Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Enrico Calore
- Istituto Nazionale di Fisica Nucleare (INFN), Ferrara, Italy
| | - Sebastiano Fabio Schifano
- Istituto Nazionale di Fisica Nucleare (INFN), Ferrara, Italy.
- Department of Environmental and Prevention Sciences, Università di Ferrara, Ferrara, Italy.
| | | |
Collapse
|
7
|
Lai QC, Zheng J, Mou J, Cui CY, Wu QC, M Musa Rizvi S, Zhang Y, Li TM, Ren YB, Liu Q, Li Q, Zhang C. Identification of hub genes in calcific aortic valve disease. Comput Biol Med 2024; 172:108214. [PMID: 38508057 DOI: 10.1016/j.compbiomed.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.
Collapse
Affiliation(s)
- Qian-Cheng Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Mou
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian-Mei Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Feistner L, Penk A, Böttner J, Büttner P, Thiele H, Huster D, Schlotter F. Nuclear magnetic resonance spectroscopy to quantify major extracellular matrix components in fibro-calcific aortic valve disease. Sci Rep 2023; 13:18823. [PMID: 37914797 PMCID: PMC10620231 DOI: 10.1038/s41598-023-46143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Fibro-calcific aortic valve disease (FCAVD) is a pathological condition marked by overt fibrous and calcific extracellular matrix (ECM) accumulation that leads to valvular dysfunction and left ventricular outflow obstruction. Costly valve implantation is the only approved therapy. Multiple pharmacological interventions are under clinical investigation, however, none has proven clinically beneficial. This failure of translational approaches indicates incomplete understanding of the underlying pathomechanisms and may result from a limited toolbox of scientific methods to assess the cornerstones of FCAVD: lipid deposition, fibrous and calcific ECM accumulation. In this study, we evaluated magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy to both, qualitatively and quantitatively assess these key elements of FCAVD pathogenesis. NMR spectra showed collagen, elastin, triacylglycerols, and phospholipids in human control and FCAVD tissue samples (n = 5). Calcification, measured by the hydroxyapatite content, was detectable in FCAVD tissues and in valve interstitial cells under procalcifying media conditions. Hydroxyapatite was significantly higher in FCAVD tissues than in controls (p < 0.05) as measured by 31P MAS NMR. The relative collagen content was lower in FCAVD tissues vs. controls (p < 0.05). Overall, we demonstrate the versatility of NMR spectroscopy as a diagnostic tool in preclinical FCAVD assessment.
Collapse
Affiliation(s)
- Lukas Feistner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Anja Penk
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Julia Böttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Florian Schlotter
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
9
|
Krzesińska A, Nowak M, Mickiewicz A, Chyła-Danił G, Ćwiklińska A, Koper-Lenkiewicz OM, Kamińska J, Matowicka-Karna J, Gruchała M, Jankowski M, Fijałkowski M, Kuchta A. Lipoprotein(a) As a Potential Predictive Factor for Earlier Aortic Valve Replacement in Patients with Bicuspid Aortic Valve. Biomedicines 2023; 11:1823. [PMID: 37509461 PMCID: PMC10376971 DOI: 10.3390/biomedicines11071823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Bicuspid aortic valve (BAV) affects 0.5-2% of the general population and constitutes the major cause of severe aortic valve stenosis (AVS) in individuals ≤70 years. The aim of the present study was to evaluate the parameters that may provide information about the risk of AVS developing in BAV patients, with particular emphasis on lipoprotein(a) (Lp(a)), which is a well-recognized risk factor for stenosis in the general population. We also analyzed the impact of autotaxin (ATX) and interleukin-6 (IL-6) as parameters potentially related to the pathomechanism of Lp(a) action. We found that high Lp(a) levels (>50 mg/dL) occurred significantly more frequently in patients with AVS than in patients without AVS, both in the group below and above 45 years of age (p = 0.036 and p = 0.033, respectively). Elevated Lp(a) levels were also strictly associated with the need for aortic valve replacement (AVR) at a younger age (p = 0.016). However, the Lp(a) concentration did not differ significantly between patients with and without AVS. Similarly, we observed no differences in ATX between the analyzed patient groups, and both ATX activity and concentration correlated significantly with Lp(a) level (R = 0.465, p < 0.001 and R = 0.599, p < 0.001, respectively). We revealed a significantly higher concentration of IL-6 in young patients with AVS. However, this observation was not confirmed in the group of patients over 45 years of age. We also did not observe a significant correlation between IL-6 and Lp(a) or between CRP and Lp(a) in any of the analyzed groups of BAV patients. Our results demonstrate that a high level of Lp(a), greater than 50 mg/dL, may be a significant predictive factor for earlier AVR. Lp(a)-related parameters, such as ATX and IL-6, may be valuable in providing information about the additional cardiovascular risks associated with developing AVS.
Collapse
Affiliation(s)
- Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Maria Nowak
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Agnieszka Ćwiklińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Olga M Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
| | - Marcin Gruchała
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Marcin Fijałkowski
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
10
|
Tsamoulis D, Siountri I, Rallidis LS. Lipoprotein(a): Its Association with Calcific Aortic Valve Stenosis, the Emerging RNA-Related Treatments and the Hope for a New Era in “Treating” Aortic Valve Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10030096. [PMID: 36975859 PMCID: PMC10056331 DOI: 10.3390/jcdd10030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The treatment of patients with aortic valve calcification (AVC) and calcific aortic valve stenosis (CAVS) remains challenging as, until today, all non-invasive interventions have proven fruitless in preventing the disease’s onset and progression. Despite the similarities in the pathogenesis of AVC and atherosclerosis, statins failed to show a favorable effect in preventing AVC progression. The recognition of lipoprotein(a) [Lp(a)] as a strong and potentially modifiable risk factor for the development and, perhaps, the progression of AVC and CAVS and the evolution of novel agents leading in a robust Lp(a) reduction, have rekindled hope for a promising future in the treatment of those patients. Lp(a) seems to promote AVC via a ‘three hit’ mechanism including lipid deposition, inflammation and autotaxin transportation. All of these lead to valve interstitial cells transition into osteoblast-like cells and, thus, to parenchymal calcification. Currently available lipid-lowering therapies have shown a neutral or mild effect on Lp(a), which was proven insufficient to contribute to clinical benefits. The short-term safety and the efficacy of the emerging agents in reducing Lp(a) have been proven; nevertheless, their effect on cardiovascular risk is currently under investigation in phase 3 clinical trials. A positive result of these trials will probably be the spark to test the hypothesis of the modification of AVC’s natural history with the novel Lp(a)-lowering agents.
Collapse
Affiliation(s)
- Donatos Tsamoulis
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 192 00 Athens, Greece
- Society of Junior Doctors, 5 Menalou Str., 151 23 Athens, Greece
| | - Iliana Siountri
- 1st Department of Internal Medicine, General Hospital of Nikaia “Agios Panteleimon”, 184 54 Nikaia, Greece
| | - Loukianos S. Rallidis
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, 124 62 Athens, Greece
- Correspondence:
| |
Collapse
|
11
|
Fu B, Wang J, Wang L, Wang Q, Guo Z, Xu M, Jiang N. Integrated proteomic and metabolomic profile analyses of cardiac valves revealed molecular mechanisms and targets in calcific aortic valve disease. Front Cardiovasc Med 2022; 9:944521. [PMID: 36312243 PMCID: PMC9606238 DOI: 10.3389/fcvm.2022.944521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background This study aimed to define changes in the metabolic and protein profiles of patients with calcific aortic valve disease (CAVD). Methods and results We analyzed cardiac valve samples of patients with and without (control) CAVD (n = 24 per group) using untargeted metabolomics and tandem mass tag-based quantitative proteomics. Significantly different metabolites and proteins between the CAVD and control groups were screened; then, functional enrichment was analyzed. We analyzed co-expressed differential metabolites and proteins, and constructed a metabolite-protein-pathway network. The expression of key proteins was validated using western blotting. Differential analysis identified 229 metabolites in CAVD among which, 2-aminophenol, hydroxykynurenine, erythritol, carnosine, and choline were the top five. Proteomic analysis identified 549 differentially expressed proteins in CAVD, most of which were localized in the nuclear, cytoplasmic, extracellular, and plasma membranes. Levels of selenium binding protein 1 (SELENBP1) positively correlated with multiple metabolites. Adenosine triphosphate-binding cassette transporters, starch and sucrose metabolism, hypoxia-inducible factor 1 (HIF-1) signaling, and purine metabolism were key pathways in the network. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), calcium2+/calmodulin-dependent protein kinase II delta (CAMK2D), and ATP binding cassette subfamily a member 8 (ABCA8) were identified as hub proteins in the metabolite-protein-pathway network as they interacted with ADP, glucose 6-phosphate, choline, and other proteins. Western blotting confirmed that ENPP1 was upregulated, whereas ABCA8 and CAMK2D were downregulated in CAVD samples. Conclusion The metabolic and protein profiles of cardiac valves from patients with CAVD significantly changed. The present findings provide a holistic view of the molecular mechanisms underlying CAVD that may lead to the development of novel diagnostic biomarkers and therapeutic targets to treat CAVD.
Collapse
Affiliation(s)
- Bo Fu
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Postdoctoral Mobile Station, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Lianqun Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,Zhigang Guo,
| | - Meilin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin, China
| | - Nan Jiang
- Department of Cardiovascular Surgery, Tianjin Chest Hospital, Tianjin, China,*Correspondence: Nan Jiang,
| |
Collapse
|
12
|
Plunde O, Svenungsson E, Ferrannini G, Franco-Cereceda A, Bäck M. Antiphospholipid antibodies in patients with calcific aortic valve stenosis. Rheumatology (Oxford) 2022; 62:1187-1196. [PMID: 35961031 PMCID: PMC9977117 DOI: 10.1093/rheumatology/keac466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The antiphospholipid syndrome is defined by antiphospholipid antibodies (aPL) together with arterial and/or venous thromboembolism and/or obstetric morbidities. aPL are overrepresented in SLE and acute myocardial infarction, but it is unknown whether aPL are associated with calcific aortic valve stenosis (CAVS) in the general population. The prevalence of aPL and other SLE-associated autoantibodies and their impact on aortic valve transcriptomics were therefore determined. METHODS A total of 233 tricuspid CAVS cases (median age 74, 69% male) and an age- and sex-matched control population were included. aPL were measured as anti-cardiolipin and anti-β2Glycoprotein-I of IgG/M/A isotypes. Resilient, thickened and calcified aortic valve (AV) tissue derived from five aPL positive and five matched aPL negative CAVS patients undergoing surgical aortic valve replacement were analysed by microarrays. RESULTS The prevalence of positivity for any aPL (IgG/M/A) in patients with CAVS was 6.4% (95% CI 3.6% - 10.4%: n = 233). aPL IgG was significantly more prevalent in CAVS cases vs controls (4.6% vs 0.6%, P = 0.04). AV tissue from aPL IgG/IgM-positive patients was negatively enriched in pathways related to interferon signalling. One hundred differentially expressed genes could predict local AV CAVS progression with supervised machine learning algorithms. CONCLUSIONS aPL IgG was more common in CAVS patients compared with matched controls and aPL positivity was associated with altered AV transcriptomics related to local disease progression and interferon pathways. Further studies should aim to establish aPL as a possible risk marker and/or causal factor for CAVS and could offer new precision therapeutic targets.
Collapse
Affiliation(s)
- Oscar Plunde
- Correspondence to: Oscar Plunde, Department of Medicine, Karolinska Institutet, Translational Cardiology, Neo Research Building, Blickagången 16, 14157 Stockholm, Sweden. E-mail:
| | - Elisabet Svenungsson
- Department of Medicine Solna, Karolinska Institutet,Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital
| | - Giulia Ferrannini
- Department of Medicine Solna, Karolinska Institutet,Theme Heart and Vessels
| | | | | |
Collapse
|
13
|
Xu S, Guo Y, Luo T, Jiang P, Yan Z, He Y, Fu L, Liu H, Gao Z, Wang D, Sun Z, Yang X, Pan W, Sun F. Transcriptomic Profiles of Splenic CD19 + B Cells in Mice Chronically Infected With the Larval Echinococcus granulosus. Front Vet Sci 2022; 9:848458. [PMID: 35548052 PMCID: PMC9082817 DOI: 10.3389/fvets.2022.848458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background We previously reported that the larval Echinococcus granulosus (E. granulosus) infection can expand the population of regulatory B cells in mice, thereby inhibiting the anti-infective immunity. However, the underlying mechanism is still largely unknown. This study further investigated the holistic transcriptomic profiles of total splenic B cells following the chronic infection of the parasite. Methods The infection model of larval E. granulosus was established by intraperitoneal inoculation with 2000 protoscolexes. Magnetic-Activated Cell Separation (MACS) was used to isolate the total splenic B cells. RNA sequencing was performed to screen the differentially expressed genes (DEGs) after infection. The expression of selected DEGs was verified using qRT-PCR. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Co-expression network analysis were applied to predict these DEGs' underlying biological processes, pathways, and interactions respectively. Results A total of 413 DEGs were identified in larval E. granulosus infected B cells, including 303 up- and 110 down-regulated genes. Notably, most DEGs related to inflammation and chemotaxis were significantly upregulated after infection. In line with these changes, significant expression upregulation of DEGs associated with fatty acid oxidation, lipid synthesis, lipolysis, lipid transport, and cholesterol biosynthesis, were observed in infected B cells. Co-expression network analysis showed an intimate interaction between these DEGs associated with immune and metabolism. Conclusions The present study revealed that the larval E. granulosus infection induces metabolic reprogramming of B cells, which provides a novel clue to clarify the immunoregulatory mechanism of B cells in parasitic infection.
Collapse
Affiliation(s)
- Shiping Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Yuxin Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Tiancheng Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Linlin Fu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Zixuan Gao
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Dingmin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Zhengxiu Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, China
| |
Collapse
|
14
|
Sellers SL, Gulsin GS, Zaminski D, Bing R, Latib A, Sathananthan J, Pibarot P, Bouchareb R. Platelets: Implications in Aortic Valve Stenosis and Bioprosthetic Valve Dysfunction From Pathophysiology to Clinical Care. JACC Basic Transl Sci 2021; 6:1007-1020. [PMID: 35024507 PMCID: PMC8733745 DOI: 10.1016/j.jacbts.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/31/2022]
Abstract
Aortic stenosis (AS) is the most common heart valve disease requiring surgery in developed countries, with a rising global burden associated with aging populations. The predominant cause of AS is believed to be driven by calcific degeneration of the aortic valve and a growing body of evidence suggests that platelets play a major role in this disease pathophysiology. Furthermore, platelets are a player in bioprosthetic valve dysfunction caused by their role in leaflet thrombosis and thickening. This review presents the molecular function of platelets in the context of recent and rapidly evolving understanding the role of platelets in AS, both of the native aortic valve and bioprosthetic valves, where there remain concerns about the effects of subclinical leaflet thrombosis on long-term prosthesis durability. This review also presents the role of antiplatelet and anticoagulation therapies on modulating the impact of platelets on native and bioprosthetic aortic valves, highlighting the need for further studies to determine whether these therapies are protective and may increase the life span of surgical and transcatheter aortic valve implants. By linking molecular mechanisms through which platelets drive disease of native and bioprosthetic aortic valves with studies evaluating the clinical impact of antiplatelet and antithrombotic therapies, we aim to bridge the gaps between our basic science understanding of platelet biology and their role in patients with AS and ensuing preventive and therapeutic implications.
Collapse
Key Words
- AS, aortic stenosis
- AV, aortic valve
- AVR, aortic valve replacements
- COX, cyclooxygenase
- ECM, extracellular matrix protein
- HALT, hypoattenuating leaflet thickening
- HMW, high molecular weight
- MK, megakaryocyte
- SAVR, surgical aortic valve replacement
- TAVR
- TAVR, transcatheter aortic valve replacements
- TGF, transforming growth factor
- VEC, vascular endothelial cell
- VHD, valvular heart disease
- VIC, valve interstitial cell
- WSS, wall shear stress
- aortic stenosis
- calcified aortic valves
- platelets
- thrombosis
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Stephanie L. Sellers
- Department of Radiology, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gaurav S. Gulsin
- Department of Radiology, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Devyn Zaminski
- Cardiovascular Research Institute, Department of Medicine, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Azeem Latib
- Department of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| | - Janarthanan Sathananthan
- Centre for Heart Lung Innovation and Cardiovascular Translational Laboratory, St Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philippe Pibarot
- Institut de Cardiologie et de Pneumologie de Québec, Laval University, Québec City, Québec, Canada
| | - Rihab Bouchareb
- Cardiovascular Research Institute, Department of Medicine, and Graduate School of Biological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Bäck M, Michel JB. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc Res 2021; 117:2016-2029. [PMID: 33576771 PMCID: PMC8318101 DOI: 10.1093/cvr/cvab038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.
Collapse
Affiliation(s)
- Magnus Bäck
- Division of Valvular and Coronary Disease, Department of Cardiology, Karolinska University Hospital, 141 86 Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,University of Lorraine, Nancy University Hospital, INSERM U1116, Nancy, France
| | | |
Collapse
|
16
|
Metabolomic Signature of Human Aortic Valve Stenosis. JACC Basic Transl Sci 2020; 5:1163-1177. [PMID: 33426374 PMCID: PMC7775961 DOI: 10.1016/j.jacbts.2020.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
This study is the first step towards the creation of a metabolomic map of calcified human aortic valves. The study highlights an independent association of LysoPA with CAVS severity. The study demonstrates that LysoPA levels are associated with faster CAVS progression rate.
This study outlines the first step toward creating the metabolite atlas of human calcified aortic valves by identifying the expression of metabolites and metabolic pathways involved at various stages of calcific aortic valve stenosis progression. Untargeted analysis identified 72 metabolites and lipids that were significantly altered (p < 0.01) across different stages of disease progression. Of these metabolites and lipids, the levels of lysophosphatidic acid were shown to correlate with faster hemodynamic progression and could select patients at risk for faster progression rate.
Collapse
Key Words
- AS, aortic stenosis
- ATX, autotaxin
- AV, aortic valve
- AVA, aortic valve area
- BAV, bicuspid aortic valve
- CAVS, calcific aortic valve stenosis
- CV, correlation of variation
- Lp(a), lipoprotein(a)
- LysoPA, lysophosphatidic acid
- LysoPC, lysophosphatidylcholine
- LysoPE, lysophosphatidylethanolamine
- MG, monoglyceride
- MPG, mean pressure gradient
- PC, phosphatidylcholine
- QC, quality control
- TAV, tricuspid aortic valve
- Vmax, peak aortic jet velocity
- aortic stenosis
- calcific aortic valve stenosis
- lysophosphatidic acids
- nontargeted metabolomics
- targeted lipidomics
- valvular calcification
Collapse
|
17
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
18
|
Nienaber CA, Yuan X. Lipid levels linked to symptomatic aortic valve stenosis: evidence from Mendelian randomization? Eur Heart J 2020; 41:3921-3924. [PMID: 32350526 DOI: 10.1093/eurheartj/ehaa225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Christoph A Nienaber
- Cardiology and Aortic Centre, Royal Brompton and Harefield Hospital NHS Foundation Trust, London, UK
| | - Xun Yuan
- Department of Cardiology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
19
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Xiong TY, Liu C, Liao YB, Zheng W, Li YJ, Li X, Ou Y, Wang ZJ, Wang X, Li CM, Zhao ZG, Feng Y, Liu XJ, Chen M. Differences in metabolic profiles between bicuspid and tricuspid aortic stenosis in the setting of transcatheter aortic valve replacement. BMC Cardiovasc Disord 2020; 20:229. [PMID: 32423380 PMCID: PMC7236099 DOI: 10.1186/s12872-020-01491-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background To explore why bicuspid aortic stenosis has certain clinical differences from the tricuspid morphology, we evaluated the metabolomics profile involved in bicuspid aortic valve (BAV) aortic stenosis prior to and after transcatheter aortic valve replacement (TAVR) in comparison with tricuspid aortic valve (TAV). Methods In this TAVR cohort with prospectively collected data, blood samples were obtained before TAVR valve deployment and at the 7th day after TAVR, which were then sent for liquid and gas chromatography-mass spectrometry detection. Besides comparisons between BAV and TAV, BAV patients were also divided in subgroups according to baseline hemodynamics (i.e. maximal transaortic velocity, Vmax) and post-procedural reverse left ventricular (LV) remodeling (i.e. the change in LV mass index from baseline, ∆LVMI) for further analysis. Metabolic differences between groups were identified by integrating univariate test, multivariate analysis and weighted correlation network analysis algorithm. Results A total of 57 patients were enrolled including 33 BAV patients. The BAV group showed lower arginine and proline metabolism both before and post TAVR than TAV represented by decreased expression of L-Glutamine. In BAV subgroup analysis, patients with baseline Vmax > 5 m/s (n = 11) or the 4th quartile of change in ∆LVMI at one-year follow-up (i.e. poorly-recovered LV, n = 8) showed elevated arachidonic acid metabolism compared with Vmax < 4.5 m/s (n = 12) or the 1st quartile of ∆LVMI (i.e. well-recovered LV, n = 8) respectively. Conclusions Difference in arginine and proline metabolism was identified between BAV and TAV in TAVR recipients. Elevated arachidonic acid metabolism may reflect more severe baseline hemodynamics and worse LV reserve remodeling after TAVR in BAV.
Collapse
Affiliation(s)
- Tian-Yuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang Liu
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yan-Biao Liao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Wen Zheng
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi-Jian Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuanweixiang Ou
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zi-Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Wang
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Chang-Ming Li
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Zhen-Gang Zhao
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Yuan Feng
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China
| | - Xiao-Jing Liu
- Laboratory of Mitochondrial Biology, West China-Washington Mitochondria and Metabolism Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guo Xue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
21
|
Lee SJ, Lee IK, Jeon JH. Vascular Calcification-New Insights Into Its Mechanism. Int J Mol Sci 2020; 21:ijms21082685. [PMID: 32294899 PMCID: PMC7216228 DOI: 10.3390/ijms21082685] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification (VC), which is categorized by intimal and medial calcification, depending on the site(s) involved within the vessel, is closely related to cardiovascular disease. Specifically, medial calcification is prevalent in certain medical situations, including chronic kidney disease and diabetes. The past few decades have seen extensive research into VC, revealing that the mechanism of VC is not merely a consequence of a high-phosphorous and -calcium milieu, but also occurs via delicate and well-organized biologic processes, including an imbalance between osteochondrogenic signaling and anticalcific events. In addition to traditionally established osteogenic signaling, dysfunctional calcium homeostasis is prerequisite in the development of VC. Moreover, loss of defensive mechanisms, by microorganelle dysfunction, including hyper-fragmented mitochondria, mitochondrial oxidative stress, defective autophagy or mitophagy, and endoplasmic reticulum (ER) stress, may all contribute to VC. To facilitate the understanding of vascular calcification, across any number of bioscientific disciplines, we provide this review of a detailed updated molecular mechanism of VC. This encompasses a vascular smooth muscle phenotypic of osteogenic differentiation, and multiple signaling pathways of VC induction, including the roles of inflammation and cellular microorganelle genesis.
Collapse
Affiliation(s)
- Sun Joo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea;
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
22
|
Fauvel C, Capoulade R, Durand E, Béziau DM, Schott JJ, Le Tourneau T, Eltchaninoff H. Durability of transcatheter aortic valve implantation: A translational review. Arch Cardiovasc Dis 2020; 113:209-221. [PMID: 32113816 DOI: 10.1016/j.acvd.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 10/24/2022]
Abstract
Until recently, transcatheter aortic valve implantation was restricted to high-risk and inoperable patients. The updated 2017 European Society of Cardiology Guidelines has widened the indication to include intermediate-risk patients, based on two recently published trials (PARTNER 2 and SURTAVI). Moreover, two other recent trials (PARTNER 3 and EVOLUT LOW RISK) have demonstrated similar results with transcatheter aortic valve implantation in low-risk patients. Thus, extension of transcatheter aortic valve implantation to younger patients, who are currently treated by surgical aortic valve replacement, raises the crucial question of bioprosthesis durability. In this translational review, we propose to produce a state-of-the-art overview of the durability of transcatheter aortic valve implantation by integrating knowledge of the basic science of bioprosthesis degeneration (pathophysiology and biomarkers). After summarising the new definition of structural valve deterioration, we will present what is known about the pathophysiology of aortic stenosis and bioprosthesis degeneration. Next, we will consider how to identify a population at risk of early degeneration, and how basic science with the help of biomarkers could identify and predict structural valve deterioration. Finally, we will present data on the differences in durability of transcatheter aortic valve implantation compared with surgical aortic valve replacement.
Collapse
Affiliation(s)
- Charles Fauvel
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France
| | - Romain Capoulade
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Eric Durand
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France; Normandie université, UNIROUEN, INSERM U1096, 76000 Rouen, France
| | - Delphine M Béziau
- Normandie Université, UNIROUEN, INSERM U1096, Rouen University Hospital, Department of Cardiology, FHU REMOD-VHF, 76000 Rouen, France
| | - Jean-Jacques Schott
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Thierry Le Tourneau
- L'institut du Thorax, INSERM 1087, CNRS, CHU de Nantes, Université de Nantes, 44007 Nantes, France
| | - Hélène Eltchaninoff
- Department of Cardiology, Rouen University Hospital, FHU REMOD-VHF, 76000 Rouen, France; Normandie université, UNIROUEN, INSERM U1096, 76000 Rouen, France.
| |
Collapse
|
23
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|