1
|
Qi X, Wang H, Wang Y, Wu X, Zhu B. Racial/ethnic disparities in all-cause and cause-specific death among patients with colorectal cancer in the United States from 1992 to 2021: a registry-based cohort retrospective analysis. Soc Sci Med 2025; 377:118135. [PMID: 40334382 DOI: 10.1016/j.socscimed.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Inequality in mortality among patients with colorectal cancer in the United States has been documented, but the trends over time and the factors contributing to racial/ethnic disparities in all-cause and cause-specific death are unknown. METHODS This cohort study used the Surveillance, Epidemiology, and End Results (SEER) registry to analyze patients diagnosed with colorectal cancer from 1992 to 2021. We calculated the cumulative incidence of death for all racial/ethnic groups (Black, White, Hispanic, Asian or Pacific Islander [API], and American Indian or Alaska Native [AI/AN]) by diagnostic period and cause of death. We quantified absolute disparities using rate change in 5-year cumulative incidence of death and used discrete-time models to estimate relative racial/ethnic disparities and the contribution of factors to disparities in death. RESULTS The 5-year cumulative incidence of colorectal cancer and all-cause death among Black patients decreased. AI/AN and Black patients consistently had the highest risk of death between 1992 and 2021. Between Black and White, the adjusted HR for all-cause death difference increased from 1.14 (1.10-1.17) in 1992-1996 to 1.29 (1.23-1.35) in 2017-2021. Adjustment for stage at diagnosis, first course of therapy and socioeconomic status explained 46.5 % of the Black-White disparities and 38.4 % of the AI/AN-White all-cause death disparities. CONCLUSION Persistent racial/ethnic disparities in patients with colorectal cancer, especially in AI/AN and Black, call for new interventions to eliminate health disparities. Our study provides vital evidence to address racial/ethnic inequality.
Collapse
Affiliation(s)
- Xiangyuan Qi
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Hongying Wang
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Yutong Wang
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China
| | - Xiaomei Wu
- Department of Clinical Epidemiology and Centre of Evidence Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Bo Zhu
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Buehning F, Lerchner T, Vogel J, Hendgen-Cotta UB, Totzeck M, Rassaf T, Michel L. Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. Basic Res Cardiol 2025; 120:171-185. [PMID: 39039301 PMCID: PMC11790694 DOI: 10.1007/s00395-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
3
|
Gao S, Zhu H, Chang X, Cao X, Wang Z, Chu X, Zhang L, Wang X, Lu J. Cardiovascular death risk in patients with solid tumors: a population-based study in the United States. Eur J Cancer Prev 2025; 34:11-23. [PMID: 39230031 DOI: 10.1097/cej.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Previous studies have focused on the risk of cardiovascular disease (CVD)-specific death in hematological cancers and in some single anatomical tumor sites, there remains a paucity of data on systematic analyses in solid tumors. OBJECTIVE The objective of this study is to evaluate the distribution, risk, and trends of CVD-specific death in patients with solid tumors. METHODS A total of 2 679 293 patients with solid tumors diagnosed between 1975 and 2019 were screened from the Surveillance, Epidemiology and End Results (SEER) program across 15 anatomical sites. Standardized mortality ratios (SMRs) and absolute excess risks (AERs) were used to describe the intensity of CVD-specific death, competing risk regression models were used to assess the risk of CVD-specific death, and restricted cubic spline analyses were employed to investigate the potential linear or nonlinear relationship between age and CVD death. RESULTS CVD-specific death in patients with solid tumors accounted for 48.95% of non-cancer deaths. Compared with the general population, patients with solid tumors had higher SMR and AER of CVD death (SMR: 1.15; AER: 21.12), heart disease-related death (SMR: 1.13; AER: 13.96), and cerebrovascular disease-related death (SMR: 1.20; AER: 4.85). Additionally, the SMR exhibited a decreasing trend with increasing time to diagnosis. Furthermore, a nonlinear relationship was observed between age and CVD-specific death in patients with solid tumors of different systems. CONCLUSION CVD-specific death accounted for a large proportion of the cause of non-cancer deaths. Patients with solid tumors exhibit an elevated risk of CVD-specific death. Screening for CVD death and optimizing risk management in patients with solid tumors throughout anticancer treatment may be beneficial in preventing CVD death.
Collapse
Affiliation(s)
- Shuaijie Gao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Hao Zhu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Xinyu Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Xiting Cao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Zhenwei Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Xiaoxuan Chu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Lu Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| | - Xinhua Wang
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University
| |
Collapse
|
4
|
Tamaki N, Manabe O, Hirata K. Cardiovascular imaging in cardio-oncology. Jpn J Radiol 2024; 42:1372-1380. [PMID: 39207643 PMCID: PMC11588866 DOI: 10.1007/s11604-024-01636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Advances in cancer treatment have improved in patient survival rate. On the other hand, management of cardiovascular complications has been increasingly required in cancer patients. Thus, cardio-oncology has attracted the attention by both oncologists and cardiologists. Cardiovascular imaging has played a key role for non-invasive assessment of cardiovascular alterations complimentary to biomarkers and clinical assessment. Suitable imaging selection and interpretation may allow early diagnosis of cardiovascular injury with potential implications for therapeutic management and improved outcomes after cancer therapy. Echocardiography has been commonly used to evaluate cardiac dysfunction in cardio-oncology area. Cardiac CT is valuable for assessing structural abnormalities of the myocardium, coronary arteries, and aorta. Molecular imaging has an important role in the assessment of the pathophysiology and future treatment strategy of cardiovascular dysfunction. Cardiac MRI is valuable for characterization of myocardial tissue. PET and SPECT molecular imaging has potential roles for quantitative assessment of cardiovascular disorders. Particularly, FDG-PET is considered as an elegant approach for simultaneous assessment of tumor response to cancer therapy and early detection of possible cardiovascular involvement as well. This review describes the promising potential of these non-invasive cardiovascular imaging modalities in cardio-oncology.
Collapse
Affiliation(s)
- Nagara Tamaki
- Kyoto College of Medical Science, Sonobe, Kyoto, Japan.
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Osamu Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Omidi A, Weiss E, Rosu-Bubulac M, Thomas G, Wilson JS. Quantitative Analysis of Radiation Therapy-Induced Cardiac and Aortic Sequelae in Patients With Lung Cancer via Magnetic Resonance Imaging: A Pilot Study. Int J Radiat Oncol Biol Phys 2024; 119:281-291. [PMID: 37951549 DOI: 10.1016/j.ijrobp.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The objective of this study was to quantify early radiation therapy (RT)-induced cardiac and aortic changes in patients with lung cancer using cardiac magnetic resonance imaging (MRI). METHODS AND MATERIALS Nine patients with lung cancer treated with RT completed MR scans at baseline (before RT) and at 3 and 6 months after RT completion. Cine, T1/T2, late gadolinium enhancement (LGE), and 4-dimensional flow MRIs were acquired to assess biological and mechanical cardiovascular changes globally (ie, over the entire left ventricle (LV) or aorta) and regionally (according to an American Heart Association model). RESULTS Regional metrics demonstrated multiple significant changes and dose-dependent responses. Notably, LGE showed changes at 3 and 6 months over septal and high-dose regions (P < .0458). Longitudinal strain changes were notable at septal and high-dose regions at 3 months and at septal regions at 6 months (P < .0469). Elevated T1/T2 signals (P < .0391) and changes in radial/circumferential strain at the septum (P < .0391) were observed at 3 months. Both T1/T2 signal and LGE were correlated with dose at 6 months (T1 signal also at 3 months), with significantly greater changes in regions receiving >50 Gy (P < .0331). LV dose was not correlated with LV strain changes (P > .1), but ascending aortic dose was correlated with strain changes at segments 1 and 2 of the LV (P < .0362). Global metrics identified only 2 significant responses: increase in LGE volume at 6 months and a reduction in ascending aortic circumferential strain at 3 months (P < .0356). CONCLUSIONS Early MR-based changes after RT occurred primarily in high-dose regions and the LV septal wall. Although several early signals resolved by 6 months, LGE and longitudinal strain changes persisted for at least 6 months. Dose-dependent responses/correlations were observed for T1/T2/LGE changes at 6 months, with the greatest effect in regions exposed to >50 Gy. Further investigations with larger cohorts and longer follow-up are warranted to confirm regional dose dependence and the association between aortic dose and LV strain observed in this pilot study.
Collapse
Affiliation(s)
- Alireza Omidi
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Mihaela Rosu-Bubulac
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Georgia Thomas
- Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia
| | - John S Wilson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia; Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| |
Collapse
|
7
|
Łysek-Gładysińska M, Wieczorek A, Walaszczyk A, Jelonek K, Pietrowska M, Widłak P, Kulik R, Gabryś D. Late Effects of Ionizing Radiation on the Ultrastructure of Hepatocytes and Activity of Lysosomal Enzymes in Mouse Liver Irradiated In Vivo. Metabolites 2024; 14:212. [PMID: 38668340 PMCID: PMC11051989 DOI: 10.3390/metabo14040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The study aimed to investigate late radiation-induced changes in the histology, ultrastructure, and activity of lysosomal enzymes in mouse liver exposed to ionizing radiation. The experiment was conducted on C57BL/6J male mice whose distal part of the liver was exposed occasionally to single doses of radiation (6 MV photons) during targeted heart irradiation; estimated doses delivered to analyzed tissue were 0.025 Gy, 0.25 Gy, 1 Gy, and 2 Gy. Tissues were collected 40 weeks after irradiation. We have observed that late effects of radiation have an adaptive nature and their intensity was dose-dependent. Morphological changes in hepatocytes included an increased number of primary lysosomes and autophagic vacuoles, which were visible in tissues irradiated with 0.25 Gy and higher doses. On the other hand, a significant increase in the activity of lysosomal hydrolases was observed only in tissues exposed to 2 Gy. The etiology of these changes may be multifactorial and result, among others, from unintentional irradiation of the distal part of the liver and/or functional interaction of the liver with an irradiated heart. In conclusion, we confirmed the presence of late dose-dependent ultrastructural and biochemical changes in mouse hepatocytes after liver irradiation in vivo.
Collapse
Affiliation(s)
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland;
| | - Anna Walaszczyk
- Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Karol Jelonek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (K.J.); (M.P.)
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland; (K.J.); (M.P.)
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Roland Kulik
- Department of Radiotherapy Planning, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland;
| | - Dorota Gabryś
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102 Gliwice, Poland;
| |
Collapse
|
8
|
Michel L, Rassaf T. [Update cardio-oncology : Immune checkpoint inhibitor therapy]. Herz 2024; 49:81-90. [PMID: 38175285 DOI: 10.1007/s00059-023-05228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Cardiovascular diseases and cancer are the most common causes of death in Germany. Cancer treatment can lead to significant cardiovascular side effects and thus form a link between the two disease groups. The focus of cardio-oncology is on the best possible prevention, diagnostics and treatment of cardiovascular complications caused by cancer treatment. It is crucial for cardio-oncology to adapt to the continuous development of new forms of oncological treatment with previously unknown cardiovascular side effects. One such new form of treatment is immune checkpoint inhibitor (ICI) therapy, which is regarded as the most important oncological milestone of the last decade due to its excellent oncological efficacy; however, the growing use has revealed a high risk of diverse cardiovascular side effects with high morbidity and mortality, so that cardio-oncological care of affected patients is of particular importance. This review summarizes the current scientific and clinical state of the pathophysiology, incidence, diagnosis and treatment of cardiovascular side effects of ICI therapy.
Collapse
Affiliation(s)
- Lars Michel
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland
| | - Tienush Rassaf
- Klinik für Kardiologie und Angiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| |
Collapse
|
9
|
Toma RV, Anca Z, Trifănescu OG, Galeş LN, Folea AR, Stanca L, Bîlteanu L, Anghel RM. Early Echocardiography and ECG Changes Following Radiotherapy in Patients with Stage II-III HER2-Positive Breast Cancer Treated with Anthracycline-Based Chemotherapy with or without Trastuzumab-Based Therapy. Med Sci Monit 2023; 29:e941754. [PMID: 37772333 PMCID: PMC10521333 DOI: 10.12659/msm.941754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Cardiotoxicity from radiotherapy and anti-cancer therapies have been reported in patients with breast cancer. This study aimed to investigate the early echocardiography and ECG changes following radiotherapy in 68 patients ages 30-78 years with stages II-III HER2-positive breast cancer treated with anthracycline-based chemotherapy with or without trastuzumab-based therapy from 2015 to 2021. MATERIAL AND METHODS We analyzed data of 68 breast cancer patients aged 30-78 years, predominantly in AJCC stages II-III (61) and HER2-positive (58), treated and monitored from 2015 to 2021. Cardiac function was assessed using echo- and electrocardiography. We employed univariate logistic models to gauge associations between pre-existing cardiac conditions, treatment modalities, and changes in cardiac function. RESULTS A decrease in the left ventricle ejection fraction (EF) by >5% was associated with heart doses >49.3 Gy and with maximum and average doses to the left anterior descending artery (LAD) exceeding 46.9 Gy and 32.7 Gy, respectively. An EF drop of ≥10% was correlated with anti-HER2 therapy, pre-existing ECG changes, and the onset of conditions in the left ventricle, major vessels, and valves. Conditions were exacerbated in patients with prior echocardiographic abnormalities, while some emerged concurrent with the EF decline. CONCLUSIONS This research emphasizes the importance of personalized heart monitoring and care for breast cancer patients undergoing multimodal therapies. Significant and potentially irreversible EF declines can result from radiation and anti-HER2 treatments.
Collapse
Affiliation(s)
- Radu Valeriu Toma
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Oncological Institute „Alexandru Trestioreanu”, Bucharest, Romania
| | - Zgura Anca
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Gabriela Trifănescu
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Oncological Institute „Alexandru Trestioreanu”, Bucharest, Romania
| | - Laurenţia Nicoleta Galeş
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Oncological Institute „Alexandru Trestioreanu”, Bucharest, Romania
| | | | - Loredana Stanca
- Department of Preclinical Science, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Liviu Bîlteanu
- Oncological Institute „Alexandru Trestioreanu”, Bucharest, Romania
- Department of Preclinical Science, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
- Laboratory of Molecular Nanotechnologies, National Institute for Research and Development in Microtechnologies, Voluntary, Romania
| | - Rodica M. Anghel
- Department of Oncology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
10
|
Liu G, Zhang B. Age-specific cardiovascular disease-related mortality among patients with major gastrointestinal cancers: A SEER population-based study. Cancer Med 2023; 12:17253-17265. [PMID: 37387603 PMCID: PMC10501270 DOI: 10.1002/cam4.6305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Studies have reported age as a risk factor for cardiovascular disease (CVD)-related mortality; however, only a few studies have focused on the relationship between age and CVD-related mortality, especially among major gastrointestinal cancers. METHOD The present retrospective cohort enrolled patients with colorectal, pancreatic, hepatocellular, gastric, and esophageal cancer between 2000 to 2015 from the Surveillance, Epidemiology and End Results Registry (SEER). Standardized mortality ratio (SMR), competing risk regression, and restricted cubic spline (RCS) analyses were used in our study. RESULTS We analyzed 576,713 patients with major gastrointestinal cancers (327,800 patients with colorectal cancer, 93,310 with pancreatic cancer, 69,757 with hepatocellular cancer, 52,024 with gastric cancer, and 33,822 with esophageal cancer). Overall, CVD-related mortality gradually decreased every year, and the majority were older patients. All cancer patients had a higher CVD-related mortality rate than the general U.S. POPULATION The adjusted sub-hazard ratios for middle-aged with colorectal cancer, pancreatic cancer, hepatocellular cancer, gastric cancer, and esophageal cancer were 2.55 (95% CI: 2.15-3.03), 1.77 (95% CI: 1.06-2.97), 2.64 (95% CI: 1.60-4.36), 2.15 (95% CI: 1.32-3.51), and 2.28 (95% CI: 1.17-4.44), respectively. The adjusted sub-hazard ratios for older patients with colorectal cancer, pancreatic cancer, hepatocellular cancer, gastric cancer, and esophageal cancer were 11.23 (95% CI: 9.50-13.27), 4.05 (95% CI: 2.46-6.66), 4.47 (95% CI: 2.72-7.35), 7.16 (95% CI: 4.49-11.41), and 4.40 (95% CI: 2.28-8.48), respectively. A non-linear relationship between age at diagnosis and CVD-related mortality was found in colorectal cancer, pancreatic cancer, and esophageal cancer; their reference ages were 67, 69, and 66 years old, respectively. CONCLUSION This study demonstrated that age was a risk factor for CVD-related mortality among major gastrointestinal cancers.
Collapse
Affiliation(s)
- Gen Liu
- Department of CardiologyRenmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of CardiologyWuhanChina
| | - Bo‐fang Zhang
- Department of CardiologyRenmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
11
|
Melam A, Pedersen LN, Klaas A, Xu Z, Bergom C. Methods to assess radiation-induced cardiotoxicity in rodent models. Methods Cell Biol 2023; 180:127-146. [PMID: 37890926 DOI: 10.1016/bs.mcb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cancer survivors who have received thoracic radiation as part of their primary treatment are at risk for developing radiation-induced cardiotoxicity (RICT) due to incidental radiation delivered to the heart. In recent decades, advancements in radiation delivery have dramatically improved the therapeutic ratio of radiation therapy (RT)-efficiently targeting malignancies while sparing the heart; yet, in many patients, incidental radiation to the heart cannot be fully avoided. Cardiac radiation exposure can cause long-term morbidity and contribute to poorer survival in cancer patients. Severe cardiac effects can occur within 2years of treatment. Currently, there is no way to predict who is at higher or lower risk of developing cardiotoxicity from radiation, and the critical factors that alter RICT have not yet been clearly identified. Thus, pre-clinical investigations are an important step towards better prevention, detection, and management of RICT in cancer survivors. The overarching aim of this chapter is to provide researchers with foundational and technical knowledge in the use of mice and rats for RICT investigations. After a brief overview of RICT pathophysiology and clinical manifestations, we discuss important considerations of RICT study design, including animal selection and radiation planning. We then provide example protocols for murine tissue harvesting and processing that can support use in downstream applications of the reader's choosing.
Collapse
Affiliation(s)
- Anupama Melam
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Lauren N Pedersen
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Amanda Klaas
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Zhiqiang Xu
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
12
|
Peix A, Perez A, Barreda AM. Cancer and Postradiotherapy Cardiotoxicity: How to Face Damage in Women’s Hearts? Eur Cardiol 2023. [DOI: 10.15420/ecr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Cancer and cardiovascular disease are the two main causes of death worldwide in both men and women. In the past decades, survival rate in cancer patients has substantially improved due to new treatments and developments in radiation therapy (RT). In women, breast cancer (BC) is the leading cause of cancer death and thoracic RT is a main component of the treatment in many cases. Nevertheless, despite new techniques that limit the area receiving RT, cardiac damage is still an important concern in BC patients. In this review, the following aspects will be addressed: pathophysiology of postradiotherapy heart damage in women with BC; mechanisms, diagnosis and prevention/management of heart damage; and future areas of potential research for radiotherapy injury in women.
Collapse
|
13
|
Siaravas KC, Katsouras CS, Sioka C. Radiation Treatment Mechanisms of Cardiotoxicity: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076272. [PMID: 37047245 PMCID: PMC10094086 DOI: 10.3390/ijms24076272] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Radiotherapy may be used alone or in combination with chemotherapy for cancer treatment. There are many mechanisms of radiation treatment exposure to toxicities. Our aim was to summarize the literature about known mechanisms of radiation-induced cardiac toxicities. We performed a systematic review of the literature on the PubMed database until October 2022 about cardiovascular toxicities and radiation therapy exposure. Only systematic reviews, meta-analyses, and reviews were selected. Out of 1429 publications screened, 43 papers met inclusion criteria and were selected for the umbrella review process. Microvascular and macrovascular complications could lead to adverse cardiac effects. Many radiotherapy-associated risk factors were responsible, such as the site of radiation treatment, beam proximity to heart tissues, total dosage, the number of radiotherapy sessions, adjuvant chemotherapeutic agents used, and patient traditional cardiovascular risk factors, patient age, and gender. Moreover, important dosage cutoff values could increase the incidence of cardiac toxicities. Finally, the time from radiation exposure to cardiac side effects was assessed. Our report highlighted mechanisms, radiation dosage values, and the timeline of cardiovascular toxicities after radiation therapy. All of the above may be used for the assessment of cardiovascular risk factors and the development of screening programs for cancer patients.
Collapse
|
14
|
Maroney SA, Siebert AE, Martinez ND, Rasmussen M, Peterson JA, Weiler H, Lincoln J, Mast AE. Platelet tissue factor pathway inhibitor-α dampens cardiac thrombosis and associated fibrosis in mice. J Thromb Haemost 2023; 21:639-651. [PMID: 36696221 PMCID: PMC10200073 DOI: 10.1016/j.jtha.2022.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is the primary inhibitor of events initiating the blood coagulation pathway. Tfpi-/- mice die during embryonic development. The absence of protease-activated receptor (PAR) 4, the major thrombin receptor on mouse platelets, rescues Tfpi-/-mice to adulthood. Among the 3 TFPI isoforms in mice, TFPIα is the only isoform within platelets (pltTFPIα) and the only isoform that inhibits prothrombinase, the enzymatic complex that converts prothrombin to thrombin. OBJECTIVES To determine biological functions of pltTFPIα. METHODS Tfpi-/-/Par4-/- mice were irradiated and transplanted with bone marrow from mice lacking or containing pltTFPIα. Thus, PAR4 expression was restored in the recipient mice, which differed selectively by the presence or absence of pltTFPIα and lacked other forms of TFPI. RESULTS Recipient mice lacking pltTFPIα had reduced survival over the 200-day posttransplant period. Necropsy revealed radiation injury associated with large intraventricular platelet-rich thrombi, whereas other organs were not affected. Thrombi were associated with fibrotic presentations, including increased collagen deposition, periostin-positive activated fibroblasts, myofibroblasts, and macrophage infiltrates. Recipient mice containing pltTFPIα showed evidence of radiation injury but lacked heart pathology. CONCLUSIONS Tfpi-/-/Par4-/- mice develop severe cardiac fibrosis following irradiation and transplantation with bone marrow lacking pltTFPIα. This pathology is markedly reduced when the mice are transplanted with bone marrow containing pltTFPIα. Thus, in this model system pltTFPIα has an important physiological role in dampening pathological responses mediated by activated platelets within the heart tissue.
Collapse
Affiliation(s)
- Susan A Maroney
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Amy E Siebert
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Nicholas D Martinez
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Mark Rasmussen
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Julie A Peterson
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Hartmut Weiler
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Division of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, USA
| | - Alan E Mast
- Thrombosis and Hemostasis Program, Versiti Blood Research Institute, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev 2023; 103:649-716. [PMID: 36049115 PMCID: PMC9639777 DOI: 10.1152/physrev.00004.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022] Open
Abstract
Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.
Collapse
Affiliation(s)
- Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
16
|
Totzeck M, Aide N, Bauersachs J, Bucerius J, Georgoulias P, Herrmann K, Hyafil F, Kunikowska J, Lubberink M, Nappi C, Rassaf T, Saraste A, Sciagra R, Slart RHJA, Verberne H, Rischpler C. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: prospects and proposal of use by the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 2023; 50:792-812. [PMID: 36334105 PMCID: PMC9852191 DOI: 10.1007/s00259-022-05991-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Cardiotoxicity may present as (pulmonary) hypertension, acute and chronic coronary syndromes, venous thromboembolism, cardiomyopathies/heart failure, arrhythmia, valvular heart disease, peripheral arterial disease, and myocarditis. Many of these disease entities can be diagnosed by established cardiovascular diagnostic pathways. Nuclear medicine, however, has proven promising in the diagnosis of cardiomyopathies/heart failure, and peri- and myocarditis as well as arterial inflammation. This article first outlines the spectrum of cardiotoxic cancer therapies and the potential side effects. This will be complemented by the definition of cardiotoxicity using non-nuclear cardiovascular imaging (echocardiography, CMR) and biomarkers. Available nuclear imaging techniques are then presented and specific suggestions are made for their application and potential role in the diagnosis of cardiotoxicity.
Collapse
Affiliation(s)
- Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nicolas Aide
- Nuclear Medicine Department, University Hospital, Caen, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jan Bucerius
- Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Ken Herrmann
- Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabien Hyafil
- Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, Assistance-Publique – Hôpitaux de Paris, University of Paris, Paris, France
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Antti Saraste
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Roberto Sciagra
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Riemer H. J. A. Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,Department of Biomedical Photonic Imaging, Faculty of Science and Technology, Enschede, The Netherlands
| | - Hein Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christoph Rischpler
- Clinic for Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
Bansal N, Hazim CF, Badillo S, Shyam S, Wolfe D, Bortnick AE, Garcia MJ, Rodriguez CJ, Zhang L. Maternal Cardiovascular Outcomes of Pregnancy in Childhood, Adolescent, and Young Adult Cancer Survivors. J Cardiovasc Dev Dis 2022; 9:373. [PMID: 36354772 PMCID: PMC9695103 DOI: 10.3390/jcdd9110373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/12/2025] Open
Abstract
This review focuses on the maternal cardiovascular risk and outcomes of pregnancy in childhood, adolescent, and young adult cancer survivors who are achieving survival to their prime reproductive years. Childhood, adolescent, and young adult cancer survivors are a growing population and have increasing needs for reproductive care over decades of life. Female cancer survivors have an overall higher risk of maternal cardiovascular events compared to those without a history of cancer. In female cancer survivors with normal cardiac function before pregnancy, the incidence of new heart failure during pregnancy is low. In survivors with cardiotoxicity prior to pregnancy, the risk of heart failure during and immediately after pregnancy is much higher. We recommend cardiomyopathy surveillance with echocardiography before pregnancy for all female survivors treated with anthracyclines and chest radiation. Survivors with cardiotoxicity prior to pregnancy should be cared for by an expert multidisciplinary team, including obstetrics, cardiology, anesthesia, and specialized nursing, among others.
Collapse
Affiliation(s)
- Neha Bansal
- The Children’s Heart Center, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Sergio Badillo
- Cardiology, CEDIMAT Cardiovascular Center, Santo Domingo 10514, Dominican Republic
| | - Sharvari Shyam
- Department of Pediatrics, St. Barnabas Hospital, Bronx, New York, NY 10457, USA
| | - Diana Wolfe
- Department of Obstetrics & Gynecology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Women’s Health, MFM-Cardiology Joint Program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Anna E. Bortnick
- Department of Medicine, Division of Geriatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, New York, NY 10467, USA
| | - Mario J. Garcia
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, New York, NY 10467, USA
| | - Carols J. Rodriguez
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, New York, NY 10467, USA
| | - Lili Zhang
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, New York, NY 10467, USA
| |
Collapse
|
18
|
Zheng X, Zhang A, Xiao Y, Guo K, Sun L, Ruan S, Fang F. What Causes Death in Esophageal Cancer Patients Other Than the Cancer Itself: A Large Population-Based Analysis. J Cancer 2022; 13:3485-3494. [PMID: 36313035 PMCID: PMC9608205 DOI: 10.7150/jca.78004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Researches on noncancer causes of death in patients with esophageal cancer (EC) are not in-depth. The objective of this paper is to broadly and deeply explore the causes of death in patients with EC, especially noncancer causes. Methods: Information about the demographics, tumor-related characteristics, and causes of death of patients with EC who met the inclusion criteria were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Calculated standardized mortality ratio (SMR) for all causes of death at different follow-up times and performed subgroup analyses. Results: In total, 63,560 patients with EC were retrieved from the public database. And 52,503 died during the follow-up period. Most deaths were due to EC itself within 5 years after diagnosis, but over 10 years, 59% EC patients died from noncancer causes. Cardiovascular disease was the major noncancer cause of death in patients with EC, accounting for 43%. Suicide and self-injury (2%) of EC patients should not be ignored. During the 1-year follow-up period, patients with EC had statistically highest risk of death from septicemia (SMR: 7.61; 95% CI: 6.38-9.00). Within more than 10 years after EC diagnosis, more and more patients died from chronic obstructive pulmonary disease (SMR: 2.38; 95% CI: 1.79-3.10). Conclusions: Although most patients with EC still died from the cancer itself, the role of noncancer causes of death should not be underestimated. These prompt clinicians to pay more attention to the risk of death caused by these noncancer causes, which can provide relevant measures in advance to intervene.
Collapse
Affiliation(s)
- Xueer Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Anlai Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Yao Xiao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Kaibo Guo
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Leitao Sun
- Department of medical oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P. R. China
| | - Shanming Ruan
- Department of medical oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P. R. China
| | - Fang Fang
- Department of Science and Education, Quzhou Hospital of Traditional Chinese Medicine, Quzhou, Zhejiang, P. R. China.,Department of Science and Education, Quzhou TCM Hospital at the Junction of Four Provinces Affiliated to Zhejiang Chinese Medical University, Quzhou, Zhejiang, P. R. China.,✉ Corresponding author: Fang Fang, E-mail:
| |
Collapse
|
19
|
Oncological Benefit versus Cardiovascular Risk in Breast Cancer Patients Treated with Modern Radiotherapy. J Clin Med 2022; 11:jcm11133889. [PMID: 35807180 PMCID: PMC9267636 DOI: 10.3390/jcm11133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
Radiotherapy (RT) is an essential part of breast cancer (BC) treatments. Unfortunately, heart exposure to radiation can also impair the long-term survival of patients. Our study aimed to quantify the oncological benefit and the cardiovascular (CV) risk associated with modern RT in a real-world cohort of BC patients. Our descriptive study enrolled BC patients who received adjuvant RT. Ten-year overall survival (OS) was estimated using Predict® version 2.1 (National Health Service, London, UK). The basal risk of CV events was estimated using the American Heart Association (ACC/AHA) CV score. Treatment volumes and mean cardiac doses were obtained from RT treatment plan records. The increased risk of CV events due to RT was estimated using a model proposed by Darby. The risk of acute myocardial infarction or stroke mortality was estimated using HeartScore® (European Society of Cardiology, Brussels, Belgium). A total of 256 BC patients were included in the study. The average age of patients was 57 years old (range: 25–91); 49.6% had left BC. The mean cardiac dose was 166 cGy (interquartile range (IQR) 94–273); the estimated hazard ratio (HR) for CV disease was HR 1.12 (confidence interval (CI) 1.04–1.24). The estimated baseline 10-year CV risk was 5.6% (0.2 to 51.2); CV risk increased by 0.9% (range 0.02–35.47%) after RT. The absolute risk of 10-year mortality from CV disease was 2.5% (0.1–9); RT was associated with an estimated 4.9% survival benefit (3.73–6.07) against BC death and a 0.23% (0.17–0.29) estimated increase in CV mortality. Modern RT decreased 10-year BC mortality by 4% but increased CV mortality by 0.2% in this cohort. Our findings encourage the implementation of personalized adjuvant RT treatments that balance risks and benefits to improve long-term BC patient survival.
Collapse
|
20
|
Tranchita E, Murri A, Grazioli E, Cerulli C, Emerenziani GP, Ceci R, Caporossi D, Dimauro I, Parisi A. The Beneficial Role of Physical Exercise on Anthracyclines Induced Cardiotoxicity in Breast Cancer Patients. Cancers (Basel) 2022; 14:cancers14092288. [PMID: 35565417 PMCID: PMC9104319 DOI: 10.3390/cancers14092288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.
Collapse
Affiliation(s)
- Eliana Tranchita
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Arianna Murri
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Elisa Grazioli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-06-3673-3532
| | - Claudia Cerulli
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| | - Gian Pietro Emerenziani
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Roberta Ceci
- Laboratory of Biochemistry and Molecular Biology, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Attilio Parisi
- Laboratory of Physical Exercise and Sport Science, Department of Exercise, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135 Rome, Italy; (E.T.); (A.M.); (C.C.); (A.P.)
| |
Collapse
|
21
|
Polomski EAS, Antoni ML, Jukema JW, Kroep JR, Dibbets-Schneider P, Sattler MGA, de Geus-Oei LF. Nuclear medicine imaging methods of radiation-induced cardiotoxicity. Semin Nucl Med 2022; 52:597-610. [PMID: 35246310 DOI: 10.1053/j.semnuclmed.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022]
Abstract
Breast cancer survival is significantly improved over the past decades due to major improvements in anti-tumor therapies and the implementation of regular screening, which leads to early detection of breast cancer. Therefore, it is of utmost importance to prevent patients from long-term side effects, including radiotherapy-induced cardiotoxicity. Radiotherapy may contribute to damage of myocardial structures on the cellular level, which eventually could result in various types of cardiovascular problems, including coronary artery disease and (non-)ischemic cardiomyopathy, leading to heart failure. These cardiac complications of radiotherapy are preceded by alterations in myocardial perfusion and blood flow. Therefore, early detection of these alterations is important to prevent the progression of these pathophysiological processes. Several radionuclide imaging techniques may contribute to the early detection of these changes. Single-Photon Emission Computed Tomography (SPECT) cameras can be used to create Multigated Acquisition scans in order to assess the left ventricular systolic and diastolic function. Furthermore, SPECT cameras are used for myocardial perfusion imaging with radiopharmaceuticals such as 99mTc-sestamibi and 99mTc-tetrofosmin. Accurate quantitative measurement of myocardial blood flow (MBF), can be performed by Positron Emission Tomography (PET), as the uptake of some of the tracers used for PET-based MBF measurement almost creates a linear relationship with MBF, resulting in very accurate blood flow quantification. Furthermore, there are PET and SPECT tracers that can assess inflammation and denervation of the cardiac sympathetic nervous system. Research over the past decades has mainly focused on the long-term development of left ventricular impairment and perfusion defects. Considering laterality of the breast cancer, some early studies have shown that women irradiated for left-sided breast cancer are more prone to cardiotoxic side effects than women irradiated for right-sided breast cancer. The left-sided radiation field in these trials, which predominantly used older radiotherapy techniques without heart-sparing techniques, included a larger volume of the heart and left ventricle, leading to increased unavoidable radiation exposure to the heart due to the close proximity of the radiation treatment volume. Although radiotherapy for breast cancer exposes the heart to incidental radiation, several improvements and technical developments over the last decades resulted in continuous reduction of radiation dose and volume exposure to the heart. In addition, radiotherapy reduces loco-regional tumor recurrences and death from breast cancer and improves survival. Therefore, in the majority of patients, the benefits of radiotherapy outweigh the potential very low risk of cardiovascular adverse events after radiotherapy. This review addresses existing nuclear imaging techniques, which can be used to evaluate (long-term) effects of radiotherapy-induced mechanical cardiac dysfunction and discusses the potential use of more novel nuclear imaging techniques, which are promising in the assessment of early signs of cardiac dysfunction in selected irradiated breast cancer patients.
Collapse
Affiliation(s)
| | - Maria Louisa Antoni
- Department of Cardiology, Heart and Lung Centre, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan Wouter Jukema
- Department of Cardiology, Heart and Lung Centre, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Rian Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Petra Dibbets-Schneider
- Department of Radiology, section Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Margriet G A Sattler
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, section Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands; Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| |
Collapse
|
22
|
Michel L, Rassaf T. [Cardiovascular complications from cancer therapy]. MMW Fortschr Med 2022; 164:48-56. [PMID: 35088334 DOI: 10.1007/s15006-021-0589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Lars Michel
- - UKE\/Universitätsklinikum Essen -, Westdt. Herz- u. Gefäßzentrum\/Klinik f. Kardiologie, Hufelandstraße 55, 45147, Essen, Germany.
| | - Tienush Rassaf
- - UKE\/Universitätsklinikum Essen -, Westdt. Herz- u. Gefäßzentrum\/Klinik f. Kardiologie, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
23
|
Melam A, Pedersen LN, Klaas A, Xu Z, Bergom C. Methods to assess radiation-induced cardiotoxicity in rodent models. Methods Cell Biol 2022. [DOI: 10.1016/bs.mcb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708:108952. [PMID: 34097901 DOI: 10.1016/j.abb.2021.108952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer patients undergoing radiotherapy, chemotherapy, or targeted cancer therapy are exposed to the risk of several side effects because of the heavy production of ROS by ionizing radiation or some chemotherapy drugs. Damages to DNA, mitochondria, membrane and other organelles within normal tissue cells such as cardiomyocytes and endothelial cells lead to the release of some toxins which are associated with triggering inflammatory cells to release several types of cytokines, chemokines, ROS, and RNS. The release of some molecules following radiotherapy or chemotherapy stimulates reduction/oxidation (redox) reactions. Redox reactions cause remarkable changes in the level of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive production of ROS and RNS or suppression of antioxidant defense enzymes leads to damage to critical macromolecules, which may continue for long times. Increased levels of some cytokines and oxidative injury are hallmarks of heart injury following cancer therapy. Redox reactions may be involved in several heart disorders such as fibrosis, cardiomyopathy, and endothelium injury. In the current review, we explain the cellular and molecular mechanisms of redox interactions following radiotherapy, chemotherapy, and targeted cancer therapy. Afterward, we explain the evidence of the involvement of redox reactions in heart diseases.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Juan Tang
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Ping Wen
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Bisceglia I, Gabrielli D, Canale ML, Gallucci G, Parrini I, Turazza FM, Russo G, Maurea N, Quagliariello V, Lestuzzi C, Oliva S, Di Fusco SA, Lucà F, Tarantini L, Trambaiolo P, Gulizia MM, Colivicchi F. ANMCO POSITION PAPER: cardio-oncology in the COVID era (CO and CO). Eur Heart J Suppl 2021; 23:C128-C153. [PMID: 34456641 PMCID: PMC8388610 DOI: 10.1093/eurheartj/suab067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic and its impact on patients with cancer and cardiovascular disease have confirmed the particular vulnerability of these populations. Indeed, not only a higher risk of contracting the infection has been reported but also an increased occurrence of a more severe course and unfavourable outcome. Beyond the direct consequences of COVID-19 infection, the pandemic has an enormous impact on global health systems. Screening programmes and non-urgent tests have been postponed; clinical trials have suffered a setback. Similarly, in the area of cardiology care, a significant decline in STEMI accesses and an increase in cases of late presenting heart attacks with increased mortality and complication rates have been reported. Health care systems must therefore get ready to tackle the 'rebound effect' that will likely show a relative increase in the short- and medium-term incidence of diseases such as heart failure, myocardial infarction, arrhythmias, and cardio- and cerebrovascular complications. Scientific societies are taking action to provide general guidance and recommendations aimed at mitigating the unfavourable outcomes of this pandemic emergency. Cardio-oncology, as an emerging discipline, is more flexible in modulating care pathways and represents a beacon of innovation in the development of multi-specialty patient management. In the era of the COVID-19 pandemic, cardio-oncology has rapidly modified its clinical care pathways and implemented flexible monitoring protocols that include targeted use of cardiac imaging, increased use of biomarkers, and telemedicine systems. The goal of these strategic adjustments is to minimize the risk of infection for providers and patients while maintaining standards of care for the treatment of oncologic and cardiovascular diseases. The aim of this document is to evaluate the impact of the pandemic on the management of cardio-oncologic patients with the-state-of-the-art knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19) in order to optimize medical strategies during and after the pandemic.
Collapse
Affiliation(s)
- Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | - Domenico Gabrielli
- Cardiology Unit, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, Roma, Italy
| | - Maria Laura Canale
- Cardiology Department, Nuovo Ospedale Versilia Lido Di Camaiore, LU, Italy
| | | | - Iris Parrini
- Cardiology Department, Ospedale Mauriziano Umberto I, Torino, Italy
| | | | - Giulia Russo
- Cardiovascular and Sports Medicine Department, ASUGI Trieste, Trieste, Italy
| | - Nicola Maurea
- Cardiology Department, Fondazione Pascale, Napoli, Italy
| | | | - Chiara Lestuzzi
- Cardiology Department, Centro di Riferimento Oncologico (CRO), Aviano, PN, Italy
| | - Stefano Oliva
- Cardio-Oncology Department, Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, Roma, Italy
| | - Fabiana Lucà
- Cardiology Department, Grande Osp. Metropol-Bianchi Melacrino-Morelli, Reggio Calabria, Italy
| | - Luigi Tarantini
- Cardiology Department, Presidio Ospedaliero. Santa Maria Nuova—AUSL RE IRCCS, Reggio Emilia, Italy
| | | | - Michele Massimo Gulizia
- Cardiology Department, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, Catania, Italy
- Fondazione per il Tuo cuore—Heart Care Foundation, Firenze, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, Roma, Italy
| |
Collapse
|
26
|
Ramai D, Heaton J, Ghidini M, Chandan S, Barakat M, Dhindsa B, Dhaliwal A, Facciorusso A. Population-Based Long-term Cardiac-Specific Mortality Among Patients With Major Gastrointestinal Cancers. JAMA Netw Open 2021; 4:e2112049. [PMID: 34137831 DOI: 10.1001/jamanetworkopen.2021.12049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Patients with major gastrointestinal (GI) cancers are at long-term risk for cardiac disease and mortality. OBJECTIVE To investigate the cardiac-specific mortality rate among individuals with major GI cancers and the association of radiation and chemotherapy with survival outcomes in the United States. DESIGN, SETTING, AND PARTICIPANTS This US cohort study included individual patient-level data of men and women older than 18 years with 5 major gastrointestinal cancers, including colorectal, esophageal, gastric, pancreatic, and hepatocellular cancer from 1990 to 2016. Data was extracted from the Surveillance, Epidemiology, and End Results (SEER) national cancer database. Data cleaning and analyses were conducted between November 2020 and March 2021. EXPOSURES Patients received chemotherapy, radiotherapy, or a combination of adjuvant therapy for major GI cancers. MAIN OUTCOMES AND MEASURES The primary outcome was cardiac-specific mortality. Examined factors associated with cardiac mortality included age, sex, race, tumor location, tumor grade, SEER stage, TNM (seventh edition) staging criteria, cancer treatment (ie, the use of radiation, chemotherapy, or surgery), survival months, and cause of death. RESULTS A total of 359 032 patients (mean [SD] age at baseline, 65.1 [12.9] years; 186 921 [52.1%] men) with GI cancers were analyzed, including 313 940 patients (87.4%) with colorectal cancer, 7613 patients (2.1%) with esophageal cancer, 21 048 patients (5.9%) with gastric cancer, 7227 patients (2.0%) with pancreatic cancer, and 9204 patients (2.6%) with hepatocellular cancer. Most cancers were localized except pancreatic cancer, which presented with regional and distant involvement (3680 cancers [50.9%]). Overall, all major gastrointestinal tumors were associated with increased risk of cardiac mortality compared with noncardiac mortality (median survival time: 121 [95% CI, 120-122] months vs 287 [95% CI, 284.44-290] months). Patients with hepatocellular cancer had the lowest cardiac-specific median survival time (98 [95% CI, 90-106] months), followed by pancreatic cancer (105 [95% CI, 98-112] months), esophageal cancer (113 [95% CI, 107-119] months), gastric cancer (113 [95% CI, 110-116] months), and colorectal cancer (122 [95% CI, 121-123] months). At 15 years of follow up, the use of only chemotherapy, only radiation, or radiation and chemotherapy combined was associated with poor survival rates from cardiac causes of death (eg, colorectal: chemotherapy, 0 patients; radiation, 1 patient [1.9%]; radiation and chemotherapy, 3 patients [2.7%]). CONCLUSIONS AND RELEVANCE These findings suggest that among patients with major gastrointestinal cancers, cardiac disease is a significant cause of mortality. The use of only chemotherapy, only radiation, or both was associated with higher cardiac mortality.
Collapse
Affiliation(s)
- Daryl Ramai
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York
| | - Joseph Heaton
- Department of Internal Medicine, Brooklyn Hospital Center, Brooklyn, New York
| | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Saurabh Chandan
- Division of Gastroenterology & Hepatology, CHI Health Creighton University Medical Center, Omaha, Nebraska
| | - Mohamed Barakat
- Division of Gastroenterology, The Brooklyn Hospital Center, Brooklyn, New York
| | - Banreet Dhindsa
- Gastroenterology & Hepatology, University of Nebraska Medical Center, Omaha
| | - Amaninder Dhaliwal
- Division of Gastroenterology, Moffitt Cancer Center, University of South Florida, Tampa
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
27
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
28
|
Sinha A, Gupta DK, Yancy CW, Shah SJ, Rasmussen-Torvik LJ, McNally EM, Greenland P, Lloyd-Jones DM, Khan SS. Risk-Based Approach for the Prediction and Prevention of Heart Failure. Circ Heart Fail 2021; 14:e007761. [PMID: 33535771 DOI: 10.1161/circheartfailure.120.007761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted prevention of heart failure (HF) remains a critical need given the high prevalence of HF morbidity and mortality. Similar to risk-based prevention of atherosclerotic cardiovascular disease, optimal HF prevention strategies should include quantification of risk in the individual patient. In this review, we discuss incorporation of a quantitative risk-based approach into the existing HF staging landscape and the clinical opportunity that exists to translate available data on risk estimation to help guide personalized decision making. We first summarize the recent development of key HF risk prediction tools that can be applied broadly at a population level to estimate risk of incident HF. Next, we provide an in-depth description of the clinical utility of biomarkers to personalize risk estimation in select patients at the highest risk of developing HF. We also discuss integration of genomics-enhanced approaches (eg, Titin [TTN]) and other risk-enhancing features to reclassify risk with a precision medicine approach to HF prevention. Although sequential testing is very likely to identify low and high-risk individuals with excellent accuracy, whether or not interventions based on these risk models prevent HF in clinical practice requires prompt attention including randomized placebo-controlled trials of candidate therapies in risk-enriched populations. We conclude with a summary of unanswered questions and gaps in evidence that must be addressed to move the field of HF risk assessment forward.
Collapse
Affiliation(s)
- Arjun Sinha
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (D.K.G.)
| | - Clyde W Yancy
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Elizabeth M McNally
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Philip Greenland
- Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Sadiya S Khan
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| |
Collapse
|
29
|
Frankart AJ, Nagarajan R, Pater L. The impact of proton therapy on cardiotoxicity following radiation treatment. J Thromb Thrombolysis 2020; 51:877-883. [PMID: 33033980 DOI: 10.1007/s11239-020-02303-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
Abstract
Cardiac disease following radiation therapy represents a major consideration in the treatment of a variety of malignancies. Damage to the heart can manifest in a variety of pathologies including ischemic cardiac disease, cardiomyopathy, valvular dysfunction, arrhythmias, and pericarditis. This damage has been shown to directly relate to cardiac radiation dose and to stem from a range of cellular pathways that are often related to fibrosis. The importance of minimizing radiation dose to the heart is especially critical in the pediatric population and when treating disease sites adjacent to the heart. Proton therapy represents a promising approach to minimize dose to normal tissues such as the heart. The cardiac dosimetry reductions due to proton therapy have been demonstrated in multiple cancers and further long-term follow-up will determine the clinical significance of these reductions to cardiac structures. Future approaches using advanced techniques such as FLASH therapy could provide even further benefit by reducing post-radiation fibrosis.
Collapse
Affiliation(s)
- Andrew J Frankart
- Department of Radiation Oncology, University of Cincinnati, 234 Goodman Street, ML 0757, Cincinnati, OH, 45267, USA.
| | - Rajaram Nagarajan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Luke Pater
- Department of Radiation Oncology, University of Cincinnati, 234 Goodman Street, ML 0757, Cincinnati, OH, 45267, USA
| |
Collapse
|