1
|
Li Y, Chen T, Cheang I, Liu P, Zhao L, He X, Jin Y, Tang M, Zhang Z, Sheng C, Zhang Z, Zuo X. Macrophage A2aR Alleviates LPS-Induced Vascular Endothelial Injury and Inflammation via Inhibiting M1 Polarisation and Oxidative Stress. J Cell Mol Med 2025; 29:e70458. [PMID: 40045158 PMCID: PMC11882390 DOI: 10.1111/jcmm.70458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Vascular inflammation and endothelial dysfunction secondary to unchecked activation of endothelium are key mechanisms underlying sepsis and organ failure. However, the intrinsic processes that mitigate excessive endothelial cell activation remain incompletely understood. To determine the central role of adenosine A2a receptor (A2aR) on macrophages in modulating lipopolysaccharide (LPS)-induced vascular endothelial dysfunction, we constructed macrophage A2aR-conditional knockout (Mac-A2aR KO) mice, and stimulated the mice and macrophages with LPS. A2aR agonist, CGS21680, was administered to these models to further explore its impact. Results showed that knockout of Macrophage A2aR exacerbated LPS-induced vascular permeability, oedema, inflammatory cardiac damage and upregulated expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin in cardiopulmonary vascular endothelium. Moreover, deletion of A2aR on macrophages also markedly aggravated LPS-induced increases in reactive oxygen species (ROS) and declines in antioxidant enzyme gene mRNA and protein expression levels related to oxidative stress (OS). Furthermore, deficiency of A2aR in bone marrow-derived macrophages (BMDMs) promotes LPS-induced macrophage M1 polarisation and secretion of inflammatory cytokines, especially tumour necrosis factor-alpha (TNF-α). Conversely, the pretreatment with CGS21680 in vivo and in vitro showed corresponding improvement in functions of vascular endothelial dysfunction. These data demonstrate that A2aR in macrophages represents a promising novel therapeutic target for LPS-induced uncontrolled vascular endothelial injury and inflammation potentially through reducing macrophage M1 polarisation and OS and inhibiting the production and release of TNF-α production.
Collapse
Affiliation(s)
- Yanxiu Li
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tingzhen Chen
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Iokfai Cheang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Peiben Liu
- Department of Critical Care MedicineThe Second Hospital of NanjingNanjingChina
| | - Lin Zhao
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Xiaoxin He
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Yuxi Jin
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Mingmin Tang
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhongqi Zhang
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Chengyu Sheng
- Jiangsu Province Key Laboratory of NeurodegenerationNanjing Medical UniversityNanjingChina
| | - Zhongwen Zhang
- Department of General SurgeryThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiangrong Zuo
- Department of Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Xie S, Zhu X, Han F, Wang S, Cui K, Xue J, Xi X, Shi C, Li S, Wang F, Tian J. Discussion on the comparison of Raman spectroscopy and cardiovascular disease-related imaging techniques and the future applications of Raman technology: a systematic review. Lasers Med Sci 2025; 40:116. [PMID: 39988624 PMCID: PMC11847755 DOI: 10.1007/s10103-025-04315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Cardiovascular disease (CVD) is a major cause of unnatural death worldwide, so timely diagnosis of CVD is crucial for improving patient outcomes. Although the traditional diagnostic tools can locate plaque and observe inner wall of blood vessel structure, they commonly have radioactivity and cannot detect the chemical composition of the plaque accurately. Recently emerging Raman techniques can detect the plaque composition precisely, and have the advantages of being fast, high-resolution and marker-free. This makes Raman have great potential for detecting blood samples, understanding disease conditions, and real-time monitoring. This review summarizes the origin and state-of-art of Raman techniques, including the following aspects: (a) the principle and technical classification of Raman techniques; (b) the applicability of Raman techniques and its comparison with traditional diagnostic tools at different diagnosis targets; (c) the applicability of Raman spectroscopy in advanced CVD. Lastly, we highlight the possible future applications of Raman techniques in CVD diagnosis.
Collapse
Affiliation(s)
- Songcai Xie
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhu
- Wuhan National Laboratory for Optoelectronics, Hua zhong Univeresity of Science and Technology, Wuhan, China
| | - Feiyuan Han
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengyuan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xue
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyu Shi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinwei Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Vergallo R, Park SJ, Stone GW, Erlinge D, Porto I, Waksman R, Mintz GS, D'Ascenzo F, Seitun S, Saba L, Vliegenthart R, Alfonso F, Arbab-Zadeh A, Libby P, Di Carli MF, Muller JE, Maurer G, Gropler RJ, Chandrashekhar YS, Braunwald E, Fuster V, Jang IK. Vulnerable or High-Risk Plaque: A JACC: Cardiovascular Imaging Position Statement. JACC Cardiovasc Imaging 2025:S1936-878X(25)00028-2. [PMID: 40019413 DOI: 10.1016/j.jcmg.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 03/01/2025]
Abstract
The concept of high-risk plaque emerged from pathologic and epidemiologic studies 3 decades ago that demonstrated plaque rupture with thrombosis as the predominant mechanism of acute coronary syndrome and sudden cardiac death. Thin-cap fibroatheroma, a plaque with a large lipidic core covered by a thin fibrous cap, is the prototype of the rupture-prone plaque and has been traditionally defined as "vulnerable plaque." Although knowledge on the pathophysiology of plaque instability continues to grow, the risk profile of our patients has shifted and the character of atherosclerotic disease has evolved, partly because of widespread use of lipid-lowering therapies and other preventive measures. In vivo intracoronary imaging studies indicate that superficial erosion causes up to 40% of acute coronary syndromes. This changing landscape calls for broader perspective, expanding the concept of high-risk plaque to the precursors of all major substrates of coronary thrombosis beyond plaque rupture. Other factors to take into consideration include dynamic changes in plaque composition, the importance of plaque burden, inflammatory activation (both local and systemic), healing mechanisms, regional hemodynamic pattern, properties of the fluid phase of blood, and the amount of myocardium at risk subtended by a lesion. Rather than the traditional focus limited to the thin-cap fibroatheroma, the authors advocate a more comprehensive approach that considers both morphologic features and biological activity of plaques and blood. This position paper highlights the challenges to the usual concept of high-risk plaque, proposes a broader definition, and analyzes its key morphologic features, the technological progress of plaque imaging (particularly using intracoronary imaging techniques), advances in pharmacologic therapies for plaque regression and stabilization, and the feasibility and efficacy of focal interventional treatments including preemptive plaque sealing.
Collapse
Affiliation(s)
- Rocco Vergallo
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Università di Genova, Genoa, Italy
| | | | - Gregg W Stone
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Italo Porto
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Università di Genova, Genoa, Italy
| | - Ron Waksman
- MedStar Washington Hospital Center, Washington, District of Columbia, USA
| | - Gary S Mintz
- Cardiovascular Research Foundation, New York, New York, USA
| | | | - Sara Seitun
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Saba
- University of Cagliari, Cagliari, Italy
| | | | - Fernando Alfonso
- Hospital Universitario La Princesa, CIBERCV, IIS-IP, Universidad Autónoma Madrid, Madrid, Spain
| | | | - Peter Libby
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - James E Muller
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Robert J Gropler
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Valentin Fuster
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ik-Kyung Jang
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Yap NAL, Khan Z, He X, Lee JG, Maung S, Morgan KR, Zhou T, Precht H, Serruys PW, Garcia-Garcia HM, Onuma Y, Hynes S, Kelle S, Mathur A, Baumbach A, Bourantas CV. What have we learnt from histology about the efficacy of coronary imaging modalities in assessing plaque composition? Front Cardiovasc Med 2025; 12:1507892. [PMID: 39925979 PMCID: PMC11802506 DOI: 10.3389/fcvm.2025.1507892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Accurate evaluation of coronary artery pathology is essential for risk stratification and tailoring appropriate treatment. Intravascular imaging was introduced for this purpose 40 years ago enabling for the first time in vivo plaque characterization. Since then, several studies have evaluated the efficacy of the existing intravascular imaging modalities in assessing plaque pathology and composition and their potential in guiding intervention and predicting vulnerable plaques. Today it is known that intravascular imaging is an indispensable tool in percutaneous coronary intervention planning, but the existing modalities have a limited efficacy in predicting lesion vulnerability; a fact that should be attributed to their advantages and limitations in accurately assessing morpho-pathological features that are common in advanced atherosclerotic plaques. This review aims to provide a comprehensive evaluation of the performance of intravascular imaging in characterizing plaque phenotypes using histology as a reference standard; it summarizes the studies comparing the available invasive imaging techniques against histology, discusses the findings and limitations of these studies and highlights the potential of novel intravascular imaging approaches that were introduced for a more complete and comprehensive evaluation of plaque pathobiology.
Collapse
Affiliation(s)
- Nathan Angelo Lecaros Yap
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Zahid Khan
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Medical Education, University of South Wales, Wales and University of Buckingham, Buckingham, United Kingdom
| | - Xingwei He
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Jae-Geun Lee
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Soe Maung
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Kimberley R. Morgan
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Tingquan Zhou
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
| | - Helle Precht
- Conrad Research Center, Radiography Education, University College Lillebælt, Odense, Denmark
| | - Patrick W. Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, United Kingdom
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Hector M. Garcia-Garcia
- Interventional Cardiology Department, MedStar Washington Hospital Center, Washington, DC, United States
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Sean Hynes
- Department of Pathology, National University of Ireland, Galway, Ireland
| | - Sebastian Kelle
- Department of Cardiology, Radiology and Intensive Care Medicine, Deutsches Herzzentrum Der Charite, Berlin, Germany
| | - Anthony Mathur
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Andreas Baumbach
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Christos V. Bourantas
- Device and Innovation Centre, William Harvey Research Institute Queen Mary University, London, United Kingdom
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
6
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
7
|
Chen M, Suwannaphoom K, Sanaiha Y, Luo Y, Benharash P, Fishbein MC, Sevag Packard RR. Electrochemical impedance spectroscopy unmasks high-risk atherosclerotic features in human coronary artery disease. FASEB J 2024; 38:e70069. [PMID: 39315853 PMCID: PMC11728480 DOI: 10.1096/fj.202401200r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Coronary plaque rupture remains the prominent mechanism of myocardial infarction. Accurate identification of rupture-prone plaque may improve clinical management. This study assessed the discriminatory performance of electrochemical impedance spectroscopy (EIS) in human cardiac explants to detect high-risk atherosclerotic features that portend rupture risk. In this single-center, prospective study, n = 26 cardiac explants were collected for EIS interrogation of the three major coronary arteries. Vessels in which advancement of the EIS catheter without iatrogenic plaque disruption was rendered impossible were not assessed. N = 61 vessels underwent EIS measurement and histological analyses. Plaques were dichotomized according to previously established high rupture-risk parameter thresholds. Diagnostic performance was determined via receiver operating characteristic areas-under-the-curve (AUC). Necrotic cores were identified in n = 19 vessels (median area 1.53 mm2) with a median fibrous cap thickness of 62 μm. Impedance was significantly greater in plaques with necrotic core area ≥1.75 mm2 versus <1.75 mm2 (19.8 ± 4.4 kΩ vs. 7.2 ± 1.0 kΩ, p = .019), fibrous cap thickness ≤65 μm versus >65 μm (19.1 ± 3.5 kΩ vs. 6.5 ± 0.9 kΩ, p = .004), and ≥20 macrophages per 0.3 mm-diameter high-power field (HPF) versus <20 macrophages per HPF (19.8 ± 4.1 kΩ vs. 10.2 ± 0.9 kΩ, p = .002). Impedance identified necrotic core area ≥1.75 mm2, fibrous cap thickness ≤65 μm, and ≥20 macrophages per HPF with AUCs of 0.889 (95% CI: 0.716-1.000) (p = .013), 0.852 (0.646-1.000) (p = .025), and 0.835 (0.577-1.000) (p = .028), respectively. Further, phase delay discriminated severe stenosis (≥70%) with an AUC of 0.767 (0.573-0.962) (p = .035). EIS discriminates high-risk atherosclerotic features that portend plaque rupture in human coronary artery disease and may serve as a complementary modality for angiography-guided atherosclerosis evaluation.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yas Sanaiha
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Peyman Benharash
- Cardiovascular Outcomes Research Laboratories, University of California, Los Angeles, CA, USA
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at University of California-Las Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Lv N, Zhai S, Xiong J, Hu N, Guo X, Liu Z, Zhang R. Enhanced-permeability delivery system for hydroxyl radical-responsive NIR-II fluorescence-monitored thrombolytic therapy. Colloids Surf B Biointerfaces 2024; 245:114193. [PMID: 39241635 DOI: 10.1016/j.colsurfb.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pathological thrombus can cause serious acute diseases that present a significant threat to human health, such as myocardial infarction and stroke. Challenges remain in achieving effective thrombolysis and real-time monitoring of therapeutic effects while minimizing side effects. Herein,a multifunctional nanoplatform (TG-OPDEA@UK/MnO2-H1080) with enhanced thrombus-permeability was developed to monitor the therapeutic effect of antioxidant-thrombolysis by hydroxyl radical-responsive NIR-II fluorescence imaging. The polyzwitterion poly (oxidized N,N-Diethylaminoethyl methacrylate-co-n-butyl methacrylate) (OPDEA) was prepared as the matrix of nanoparticles to simultaneously loading urokinase (UK) and MnO2 QDs, as well as NIR-II fluorescent molecule, H-1080. Subsequently, the fibrin targeted peptide CREKA was modified on the surface of the nanoparticles. OPDEA exhibits efficient loading capacity while endowing nanoparticles with the ability to effectively increased penetration depth of UK by 94.1 % into the thrombus, for extensive thrombolysis and fluorescence monitoring. The loaded UK exhibited good thrombolytic effect and greatly reduced the risk of bleeding by 82.6 %. TG-OPDEA@UK/MnO2-H1080 showed good thrombolytic efficacy and specific thrombus monitoring in the mouse carotid artery thrombosis model induced by ferric chloride (FeCl3). This work prepares a nanoplatform for thrombolytic therapy and real-time efficacy assessment based on an independent externally forced thrombus penetration delivery strategy.
Collapse
Affiliation(s)
- Nan Lv
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China.
| | - Jun Xiong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial Peoples Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
9
|
Rauschendorfer P, Lenz T, Nicol P, Wild L, Beele A, Sabic E, Klosterman G, Laugwitz KL, Jaffer FA, Gorpas D, Joner M, Ntziachristos V. Intravascular ICG-enhanced NIRF-IVUS imaging to assess progressive atherosclerotic lesions in excised human coronary arteries. NPJ CARDIOVASCULAR HEALTH 2024; 1:14. [PMID: 39246665 PMCID: PMC11378621 DOI: 10.1038/s44325-024-00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Indocyanine green (ICG)-enhanced intravascular near-infrared fluorescence (NIRF) imaging enhances the information obtained with intravascular ultrasound (IVUS) by visualizing pathobiological characteristics of atherosclerotic plaques. To advance our understanding of this hybrid method, we aimed to assess the potential of NIRF-IVUS to identify different stages of atheroma progression by characterizing ICG uptake in human pathological specimens. After excision, 15 human coronary specimens from 13 adult patients were ICG-perfused and imaged with NIRF-IVUS. All specimens were then histopathologically and immunohistochemically assessed. NIRF-IVUS imaging revealed colocalization of ICG-deposition to plaque areas of lipid accumulation, endothelial disruption, neovascularization and inflammation. Moreover, ICG concentrations were significantly higher in advanced coronary artery disease stages (p < 0.05) and correlated significantly to plaque macrophage burden (r = 0.67). Current intravascular methods fail to detect plaque biology. Thus, we demonstrate how human coronary atheroma stage can be assessed based on pathobiological characteristics uniquely captured by ICG-enhanced intravascular NIRF.
Collapse
Affiliation(s)
- Philipp Rauschendorfer
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Tobias Lenz
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Philipp Nicol
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Léa Wild
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Alicia Beele
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Emina Sabic
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Grace Klosterman
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Dimitris Gorpas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Joner
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching b, München Germany
| |
Collapse
|
10
|
Delwarde C, Aikawa M. Novel Mouse Model of Late-Stage Coronary Atherosclerosis With Features of Plaque Rupture and Stroke. Circulation 2024; 150:706-709. [PMID: 39186532 PMCID: PMC11540410 DOI: 10.1161/circulationaha.124.070464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Affiliation(s)
- Constance Delwarde
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Mitsis A, Eftychiou C, Kadoglou NPE, Theodoropoulos KC, Karagiannidis E, Nasoufidou A, Ziakas A, Tzikas S, Kassimis G. Innovations in Intracoronary Imaging: Present Clinical Practices and Future Outlooks. J Clin Med 2024; 13:4086. [PMID: 39064126 PMCID: PMC11277956 DOI: 10.3390/jcm13144086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Engaging intracoronary imaging (IC) techniques such as intravascular ultrasound or optical coherence tomography enables the precise description of vessel architecture. These imaging modalities have well-established roles in providing guidance and optimizing percutaneous coronary intervention (PCI) outcomes. Furthermore, IC is increasingly recognized for its diagnostic capabilities, as it has the unique capacity to reveal vessel wall characteristics that may not be apparent through angiography alone. This manuscript thoroughly reviews the contemporary landscape of IC in clinical practice. Focused on current methodologies, the review explores the utility and advancements in IC techniques. Emphasizing their role in clarifying coronary pathophysiology, guiding PCI, and optimizing patient outcomes, the manuscript critically evaluates the strengths and limitations of each modality. Additionally, the integration of IC into routine clinical workflows and its impact on decision-making processes are discussed. By synthesizing the latest evidence, this review provides valuable insights for clinicians, researchers, and healthcare professionals involved in the dynamic field of interventional cardiology.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, Nicosia 2029, Cyprus;
| | | | | | - Konstantinos C. Theodoropoulos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.C.T.); (A.Z.)
| | - Efstratios Karagiannidis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (G.K.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.C.T.); (A.Z.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.K.); (A.N.); (G.K.)
| |
Collapse
|
12
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Sevag Packard RR. Invasive electrochemical impedance spectroscopy with phase delay for experimental atherosclerosis phenotyping. FASEB J 2024; 38:e23700. [PMID: 38787606 PMCID: PMC11759406 DOI: 10.1096/fj.202302544rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalia Neverova
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gentian Lluri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sandra Duarte
- Division of Laboratory and Animal Medicine, University of California, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Perez KA, Deppe DW, Filas A, Singh SA, Aikawa E. Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:539-550. [PMID: 37517686 PMCID: PMC10988764 DOI: 10.1016/j.ajpath.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
This review focuses on technologies at the core of calcific aortic valve disease (CAVD) and drug target research advancement, including transcriptomics, proteomics, and molecular imaging. We examine how bulk RNA sequencing and single-cell RNA sequencing have engendered organismal genomes and transcriptomes, promoting the analysis of tissue gene expression profiles and cell subpopulations, respectively. We bring into focus how the field is also largely influenced by increasingly accessible proteome profiling techniques. In unison, global transcriptional and protein expression analyses allow for increased understanding of cellular behavior and pathogenic pathways under pathologic stimuli including stress, inflammation, low-density lipoprotein accumulation, increased calcium and phosphate levels, and vascular injury. We also look at how direct investigation of protein signatures paves the way for identification of targetable pathways for pharmacologic intervention. Here, we note that imaging techniques, once a clinical diagnostic tool for late-stage CAVD, have since been refined to address a clinical need to identify microcalcifications using positron emission tomography/computed tomography and even detect in vivo cellular events indicative of early stage CAVD and map the expression of identified proteins in animal models. Together, these techniques generate a holistic approach to CAVD investigation, with the potential to identify additional novel regulatory pathways.
Collapse
Affiliation(s)
- Katelyn A Perez
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel W Deppe
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aidan Filas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
14
|
Bec J, Zhou X, Villiger M, Southard JA, Bouma B, Marcu L. Dual modality intravascular catheter system combining pulse-sampling fluorescence lifetime imaging and polarization-sensitive optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2114-2132. [PMID: 38633060 PMCID: PMC11019710 DOI: 10.1364/boe.516515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
The clinical management of coronary artery disease and the prevention of acute coronary syndromes require knowledge of the underlying atherosclerotic plaque pathobiology. Hybrid imaging modalities capable of comprehensive assessment of biochemical and morphological plaques features can address this need. Here we report the first implementation of an intravascular catheter system combining fluorescence lifetime imaging (FLIm) with polarization-sensitive optical coherence tomography (PSOCT). This system provides multi-scale assessment of plaque structure and composition via high spatial resolution morphology from OCT, polarimetry-derived tissue microstructure, and biochemical composition from FLIm, without requiring any molecular contrast agent. This result was achieved with a low profile (2.7 Fr) double-clad fiber (DCF) catheter and high speed (100 fps B-scan rate, 40 mm/s pullback speed) console. Use of a DCF and broadband rotary junction required extensive optimization to mitigate the reduction in OCT performance originating from additional reflections and multipath artifacts. This challenge was addressed by the development of a broad-band (UV-visible-IR), high return loss (47 dB) rotary junction. We demonstrate in phantoms, ex vivo swine coronary specimens and in vivo swine heart (percutaneous coronary access) that the FLIm-PSOCT catheter system can simultaneously acquire co-registered FLIm data over four distinct spectral bands (380/20 nm, 400/20 nm, 452/45 nm, 540/45 nm) and PSOCT backscattered intensity, birefringence, and depolarization. The unique ability to collect complementary information from tissue (e.g., morphology, extracellular matrix composition, inflammation) with a device suitable for percutaneous coronary intervention offers new opportunities for cardiovascular research and clinical diagnosis.
Collapse
Affiliation(s)
- Julien Bec
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Xiangnan Zhou
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Southard
- Division of Cardiovascular Medicine, UC Davis Health System, University of California-Davis, Sacramento, CA 95817, USA
| | - Brett Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Laura Marcu
- Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Los J, Mensink FB, Mohammadnia N, Opstal TSJ, Damman P, Volleberg RHJA, Peeters DAM, van Royen N, Garcia-Garcia HM, Cornel JH, El Messaoudi S, van Geuns RJM. Invasive coronary imaging of inflammation to further characterize high-risk lesions: what options do we have? Front Cardiovasc Med 2024; 11:1352025. [PMID: 38370159 PMCID: PMC10871865 DOI: 10.3389/fcvm.2024.1352025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Coronary atherosclerosis remains a leading cause of morbidity and mortality worldwide. The underlying pathophysiology includes a complex interplay of endothelial dysfunction, lipid accumulation and inflammatory pathways. Multiple structural and inflammatory features of the atherosclerotic lesions have become targets to identify high-risk lesions. Various intracoronary imaging devices have been developed to assess the morphological, biocompositional and molecular profile of the intracoronary atheromata. These techniques guide interventional and therapeutical management and allow the identification and stratification of atherosclerotic lesions. We sought to provide an overview of the inflammatory pathobiology of atherosclerosis, distinct high-risk plaque features and the ability to visualize this process with contemporary intracoronary imaging techniques.
Collapse
Affiliation(s)
- Jonathan Los
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frans B. Mensink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Tjerk S. J. Opstal
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, Netherlands
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Denise A. M. Peeters
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jan H. Cornel
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, Netherlands
- Dutch Network for Cardiovascular Research (WCN), Utrecht, Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
16
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X, Zhang Z. Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques. Front Neurol 2023; 14:1159288. [PMID: 37900593 PMCID: PMC10603250 DOI: 10.3389/fneur.2023.1159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is an important cause of cerebrovascular and cardiovascular disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the critical mechanisms that cause atherosclerotic plaque formation. The hallmarks of the progression of atherosclerosis include plaque ulceration, rupture, neovascularization, and intraplaque hemorrhage, all of which are closely associated with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque vulnerability is crucial for the prevention and treatment of CVD. Integrating imaging techniques for evaluating the characteristics of atherosclerotic plaques with computer simulations yields insights into plaque inflammation levels, spatial morphology, and intravascular stress distribution, resulting in a more realistic and accurate estimation of plaque state. Here, we review the characteristics and advancing techniques used to analyze intracranial and extracranial atherosclerotic plaques to provide a comprehensive understanding of atheroma.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Packard RRS. Flexible 3-D Electrochemical Impedance Spectroscopy Sensors Incorporating Phase Delay for Comprehensive Characterization of Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558681. [PMID: 37786712 PMCID: PMC10541620 DOI: 10.1101/2023.09.20.558681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies.We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Methods Male New Zealand White rabbits (n=16) were placed on a high-fat diet for 4 or 8 weeks, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68 Ga-DOTATATE, 18 F-NaF, and 18 F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histological analyses. Analyses were performed blindly. Results Phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r=0.883 at 1 kHz, P =0.004) and %stenosis (r=0.901 at 0.25 kHz, P =0.002), similar to IVUS. Moreover, impedance was associated with markers of plaque activity including macrophage infiltration (r=0.813 at 10 kHz, P =0.008) and macrophage/smooth muscle cell (SMC) ratio (r=0.813 at 25 kHz, P =0.026). 68 Ga-DOTATATE correlated with intimal macrophage infiltration (r=0.861, P =0.003) and macrophage/SMC ratio (r=0.831, P =0.021), 18 F-NaF with SMC infiltration (r=-0.842, P =0.018), and 18 F-FDG correlated with macrophage/SMC ratio (r=0.787, P =0.036). Conclusions EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS as a comprehensive modality for evaluation of human coronary artery disease. GRAPHICAL ABSTRACT HIGHLIGHTS Electrochemical impedance spectroscopy (EIS) characterizes both anatomic features - via phase delay; and inflammatory activity - via impedance profiles, of underlying atherosclerosis.EIS can serve as an integrated, comprehensive metric for atherosclerosis evaluation by capturing morphological and compositional plaque characteristics that otherwise require multiple imaging modalities to obtain.Translation of these findings from animal models to human coronary artery disease may provide an additional strategy to help guide clinical management.
Collapse
|
18
|
Cahalane AM, Irani Z, Cui J. Beyond the Veins: Uncovering the History and Advancements of Vascular Access. KIDNEY360 2023; 4:1150-1154. [PMID: 37322593 PMCID: PMC10476679 DOI: 10.34067/kid.0000000000000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Alexis M. Cahalane
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Zubin Irani
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jie Cui
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
19
|
Rauschendorfer P, Wissmeyer G, Jaffer FA, Gorpas D, Ntziachristos V. Accounting for blood attenuation in intravascular near-infrared fluorescence-ultrasound imaging using a fluorophore-coated guidewire. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:046001. [PMID: 37035030 PMCID: PMC10073749 DOI: 10.1117/1.jbo.28.4.046001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 05/18/2023]
Abstract
Significance Intravascular near-infrared fluorescence (NIRF) imaging aims to improve the inspection of vascular pathology using fluorescent agents with specificity to vascular disease biomarkers. The method has been developed to operate in tandem with an anatomical modality, such as intravascular ultrasound (IVUS), and complements anatomical readings with pathophysiological contrast, enhancing the information obtained from the hybrid examination. Aim However, attenuation of NIRF signals by blood challenges NIRF quantification. We propose a new method for attenuation correction in NIRF intravascular imaging based on a fluorophore-coated guidewire that is used as a reference for the fluorescence measurement and provides a real-time measurement of blood attenuation during the NIRF examination. Approach We examine the performance of the method in a porcine coronary artery ex vivo and phantoms using a 3.2F NIRF-IVUS catheter. Results We demonstrate marked improvement over uncorrected signals of up to 4.5-fold and errors of < 11 % for target signals acquired at distances up to 1 mm from the catheter system employed. Conclusions The method offers a potential means of improving the accuracy of intravascular NIRF imaging under in vivo conditions.
Collapse
Affiliation(s)
- Philipp Rauschendorfer
- Technical University of Munich, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Georg Wissmeyer
- Massachusetts General Hospital, Cardiovascular Research Center, Cardiology Division, Boston, Massachusetts, United States
| | - Farouc A. Jaffer
- Massachusetts General Hospital, Cardiovascular Research Center, Cardiology Division, Boston, Massachusetts, United States
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Dimitris Gorpas
- Technical University of Munich, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Technical University of Munich, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Address all correspondence to Vasilis Ntziachristos,
| |
Collapse
|
20
|
Gaba P, Gersh BJ, Muller J, Narula J, Stone GW. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research. Nat Rev Cardiol 2023; 20:181-196. [PMID: 36151312 DOI: 10.1038/s41569-022-00769-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
Understanding the natural history of coronary artery atherosclerosis is necessary to determine prognosis and prescribe effective therapies. Traditional management of coronary artery disease has focused on the treatment of flow-limiting anatomical obstructions that lead to ischaemia. In most scenarios, revascularization of these atherosclerotic plaques has not substantially improved freedom from death or myocardial infarction, questioning the utility of contemporary revascularization strategies to improve prognosis. Advances in non-invasive and invasive imaging techniques have helped to identify the characteristics of obstructive and non-obstructive plaques that are precursors for plaque progression and future acute coronary syndromes as well as cardiac death. These 'vulnerable plaques' develop as a consequence of systemic inflammation and are prone to inducing thrombosis. Vulnerable plaques most commonly have a large plaque burden with a well-formed necrotic core and thin fibrous cap and are metabolically active. Perivascular adipose tissue might, in some patients, be used as a surrogate for coronary inflammation and predict future risk of adverse cardiac events. Vulnerable plaques can be identified in their quiescent state, offering the potential for therapeutic passivation. In this Review, we describe the biological and compositional features of vulnerable plaques, the non-invasive and invasive diagnostic modalities to characterize vulnerable plaques, the prognostic utility of identifying vulnerable plaques, and the future studies needed to explore the value of intensified pharmacological and focal treatments of vulnerable plaques.
Collapse
Affiliation(s)
- Prakriti Gaba
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - James Muller
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jagat Narula
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregg W Stone
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
21
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
22
|
Seguchi M, Aytekin A, Lenz T, Nicol P, Klosterman GR, Beele A, Sabic E, Utsch L, Alyaqoob A, Gorpas D, Ntziachristos V, Jaffer FA, Rauschendorfer P, Joner M. Intravascular molecular imaging: translating pathophysiology of atherosclerosis into human disease conditions. Eur Heart J Cardiovasc Imaging 2022; 24:e1-e16. [PMID: 36002376 DOI: 10.1093/ehjci/jeac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/31/2022] [Indexed: 12/25/2022] Open
Abstract
Progression of atherosclerotic plaque in coronary arteries is characterized by complex cellular and non-cellular molecular interactions. Within recent years, atherosclerosis has been recognized as inflammation-driven disease condition, where progressive stages are characterized by morphological changes in plaque composition but also relevant molecular processes resulting in increased plaque vulnerability. While existing intravascular imaging modalities are able to resolve key morphological features during plaque progression, they lack capability to characterize the molecular profile of advanced atherosclerotic plaque. Because hybrid imaging modalities may provide incremental information related to plaque biology, they are expected to provide synergistic effects in detecting high risk patients and lesions. The aim of this article is to review existing literature on intravascular molecular imaging approaches, and to provide clinically oriented proposals of their application. In addition, we assembled an overview of future developments in this field geared towards detection of patients at risk for cardiovascular events.
Collapse
Affiliation(s)
- Masaru Seguchi
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Alp Aytekin
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Tobias Lenz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Philipp Nicol
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Grace R Klosterman
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Alicia Beele
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Emina Sabic
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Léa Utsch
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Aseel Alyaqoob
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Farouc A Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Philipp Rauschendorfer
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Munich 80333, Germany.,Institute of Biological and Medical Imaging, Helmholtz Zentrum München GmbH, Neuherberg 85764, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technical University Munich, Munich 80636, Germany.,Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
23
|
Maino A, Jaffer FA. Outcomes Following Plaque Erosion-Based Acute Coronary Syndromes Treated Without Stenting: The Plaque Matters. J Am Heart Assoc 2022; 11:e028184. [PMID: 36533624 PMCID: PMC9798812 DOI: 10.1161/jaha.122.028184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alessandro Maino
- Department of Cardiovascular and Pneumological SciencesCatholic University of the Sacred HeartRomeItaly
| | - Farouc A. Jaffer
- Division of CardiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMA
| |
Collapse
|
24
|
Decano JL, Aikawa M, Singh SA. Promise of a Novel Bedside-to-Bench Paradigm: Can Percutaneous Coronary Intervention Proteomics Balloon Into Clinical Practice? Arterioscler Thromb Vasc Biol 2022; 42:865-867. [PMID: 35616034 DOI: 10.1161/atvbaha.122.317802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Julius L Decano
- From the Center for Interdisciplinary Cardiovascular Sciences (J.L.D., M.A., S.A.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (J.L.D., M.A., S.A.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Center for Excellence in Vascular Biology (M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Channing Division of Network Medicine (M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sasha A Singh
- From the Center for Interdisciplinary Cardiovascular Sciences (J.L.D., M.A., S.A.S.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Li C, Bec J, Zhou X, Marcu L. Dual-modality fluorescence lifetime imaging-optical coherence tomography intravascular catheter system with freeform catheter optics. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:076005. [PMID: 35864574 PMCID: PMC9300477 DOI: 10.1117/1.jbo.27.7.076005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Intravascular imaging is key to investigations into atherosclerotic plaque pathobiology and cardiovascular diagnostics overall. The development of multimodal imaging devices compatible with intracoronary applications has the potential to address limitations of currently available single-modality systems. AIM We designed and characterized a robust, high performance multimodal imaging system that combines optical coherence tomography (OCT) and multispectral fluorescence lifetime imaging (FLIm) for intraluminal simultaneous assessment of structural and biochemical properties of coronary arteries. APPROACH Several shortcomings of existing FLIm-OCT catheter systems are addressed by adopting key features, namely (1) a custom fiber optic rotary joint based on an air bearing, (2) a broadband catheter using a freeform reflective optics, and (3) integrated solid-state FLIm detectors. Improvements are quantified using a combination of experimental characterization and simulations. RESULTS Excellent UV and IR coupling efficiencies and stability (IR: 75.7 % ± 0.4 % , UV: 45.7 % ± 0.35 % ) are achieved; high FLIm optical performance is obtained (UV beam FWHM: 50 μm) contemporaneously with excellent OCT beam quality (IR beam FWHM: 17 μm). High-quality FLIm OCT image of a human coronary artery specimen was acquired. CONCLUSION The ability of this intravascular imaging system to provide comprehensive structural and biochemical properties will be valuable to further our understanding of plaque pathophysiology and improve cardiovascular diagnostics.
Collapse
Affiliation(s)
- Cai Li
- University of California, Department of Biomedical Engineering, Davis, California, United States
| | - Julien Bec
- University of California, Department of Biomedical Engineering, Davis, California, United States
| | - Xiangnan Zhou
- University of California, Department of Biomedical Engineering, Davis, California, United States
| | - Laura Marcu
- University of California, Department of Biomedical Engineering, Davis, California, United States
| |
Collapse
|
26
|
Jaffer FA, Bhowmik JP. Lighting Up Adherent LDL in Plaques via Near-Infrared Fluorescence Molecular Imaging. JACC: CARDIOVASCULAR IMAGING 2022; 15:1471-1472. [DOI: 10.1016/j.jcmg.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
|
27
|
Liu D, Wang T, Lu Y. Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Adv Healthc Mater 2022; 11:e2102253. [PMID: 34767306 DOI: 10.1002/adhm.202102253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Recent advances of untethered microrobots, which navigate the complex regions in vivo for therapeutics, have presented promising multiple applications on future healthcare. Microrobots used for active drug delivery system (DDS) have been demonstrated for advanced targeting distribution, improved delivery efficiency, and reduced systemic side effects. In this review, the therapeutic benefits of active DDS are presented compared to the traditional passive DDS, which illustrate the historical reasons for choosing active DDS. An integrated 5D radar chart analysis model containing the core capabilities of the active DDS is innovatively proposed. It would be a practical tool for measurement and mapping of the field of active delivery, followed by the evolutions and bottlenecks of each technical module. The comprehensive consideration of microrobots before clinical application is also discussed from the aspects of robot ethics, dosage, quality control and stability control in actual production. Gastrointestinal and blood administration, as two major clinical scenes of drug delivery, are discussed in detail as examples of the potential bedside applications of active DDS. Finally, combined with the reported analysis model, the current status and future outlook from the translation prospect to the clinical scenes of microrobots are provided.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Ting Wang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
28
|
Chowdhury MM, Piao Z, Albaghdadi MS, Coughlin PA, Rudd JHF, Tearney GJ, Jaffer FA. Intravascular Fluorescence Molecular Imaging of Atherosclerosis. Methods Mol Biol 2022; 2419:853-872. [PMID: 35238006 PMCID: PMC9052094 DOI: 10.1007/978-1-0716-1924-7_52] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical molecular imaging using near-infrared fluorescence (NIRF) light is an emerging high-resolution imaging approach to image a wide range of molecular and cellular species in vivo. Imaging using NIR wavelengths (650-900 nm) enables deeper photon penetration into tissue and reduced tissue autofluorescence, resulting in higher sensitivity to detect exogenously administered NIR fluorophores (injectable molecular imaging agents). Greater imaging depth of several centimeters is further achievable in the NIR window as blood absorption is as an order of magnitude lower than in the visible range. Furthermore, as optical imaging is routinely performed in the cardiac catheterization laboratory (e.g., optical coherence tomography), intravascular NIRF offers a promising translational approach for clinical coronary and peripheral arterial imaging. To this point, the first human intravascular NIRF imaging study recently demonstrated the ability to detect NIR autofluorescence in patients with coronary atherosclerosis. This study provides a foundation for targeted intravascular NIRF molecular imaging studies in coronary patients. In this chapter, we detail system engineering, imaging agents and translational applications of intravascular NIRF molecular imaging.
Collapse
Affiliation(s)
- Mohammed M Chowdhury
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Vascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Zhonglie Piao
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Mazen S Albaghdadi
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick A Coughlin
- Division of Vascular Surgery, Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Farouc A Jaffer
- Cardiovascular Research Center, Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
29
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
30
|
Li Z, Tang H, Tu Y. Molecular and Nonmolecular Imaging of Macrophages in Atherosclerosis. Front Cardiovasc Med 2021; 8:670639. [PMID: 34095259 PMCID: PMC8169961 DOI: 10.3389/fcvm.2021.670639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis is a major cause of ischemic heart disease, and the increasing medical burden associated with atherosclerotic cardiovascular disease has become a major public health concern worldwide. Macrophages play an important role in all stages of the dynamic progress of atherosclerosis, from its initiation and lesion expansion increasing the vulnerability of plaques, to the formation of unstable plaques and clinical manifestations. Early imaging can identify patients at risk of coronary atherosclerotic disease and its complications, enabling preventive measures to be initiated. Recent advances in molecular imaging have involved the noninvasive and semi-quantitative targeted imaging of macrophages and their related molecules in vivo, which can detect atheroma earlier and more accurately than conventional imaging. Multimodal imaging integrates vascular structure, function, and molecular imaging technology to achieve multi-dimensional imaging, which can be used to comprehensively evaluate blood vessels and obtain clinical information based on anatomical structure and molecular level. At the same time, the rapid development of nonmolecular imaging technologies, such as intravascular imaging, which have the unique advantages of having intuitive accuracy and providing rich information to identify macrophage inflammation and inform targeted personalized treatment, has also been seen. In this review, we highlight recent methods and research hotspots in molecular and nonmolecular imaging of macrophages in atherosclerosis that have enormous potential for rapid clinical application.
Collapse
Affiliation(s)
- Zhaoyue Li
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Tang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingfeng Tu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|