1
|
Sun Q, Xie L, An H, Chen W, Yang Q, Wang P, Tang Y, Peng C. Characterizing hub biomarkers for metabolic-induced endothelial dysfunction and unveiling their regulatory roles in EndMT through RNA sequencing and machine learning approaches. Front Cardiovasc Med 2025; 12:1585030. [PMID: 40443971 PMCID: PMC12119472 DOI: 10.3389/fcvm.2025.1585030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Background Metabolic disorder and endothelial dysfunction (ED) are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of Cardiovascular disease (CVD). The pathophysiology remains incompletely understood. Methods Leftover serum samples were collected and stored at -20 °C until study. Serum specimens were mixed to obtain pooled high glucose serum (GLU group) (11.97 ± 2.09 mmol/L); pooled elevated low-density lipoprotein serum (LDL group) [3.465 (3.3275, 3.6425 mmol/L)]; pooled high triglycerides serum (1.15 ± 0.35 mmol/L) (TG group); Subsequently, Human umbilical vein endothelial cells (HUVECs) were exposed to culture media supplemented with these pooled serum or control serum for 72 h. Whole transcriptome sequencing was performed to characterize gene expression profiles and data were analyzed using GSEA, GO, KEGG. qPCR was used to validate the gene expression. Results A total of 306 mRNAs and 523 lncRNAs were identified as differentially expressed in the GLU group, 335 mRNAs and 471 lncRNAs in the LDL group, and 364 mRNAs and 562 lncRNAs in the TG group, compared to the control group. These genes are primarily involved in inflammation, lipid metabolism, and EndMT pathways. By integrating differentially expressed mRNA and curated EndMT-related gene sets from the KEGG, GO, and dbEMT2.0 databases, we identified 52 differentially expressed genes associated with EndMT under metabolic stress conditions. Utilizing machine learning techniques, we established an EndMT-associated gene diagnostic signature comprising CD36, ISG15, HSPB2, and IRS2 for the diagnosis of AS, which achieved an AUC of 0.997. The model was subsequently validated across three independent external cohorts (GSE43292, GSE28829, GSE163154), in which it consistently demonstrated strong diagnostic performance, with AUC values of 0.958, 0.808, and 0.884, respectively. The ceRNA networks associated with EndMT are constructed and related lncRNAs including LINC002381, VIM-AS1, and ELF-AS1 were significantly upregulated in peripheral blood samples. Conclusions This study identified novel biomarkers for ED. These findings may provide both a potential biomarker and therapeutic target for the prevention and treatment of atherosclerosis and CAD.
Collapse
Affiliation(s)
- Qi Sun
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Longchuan Xie
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - He An
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wei Chen
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qirong Yang
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peng Wang
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yijun Tang
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chunyan Peng
- Clinical Molecular Diagnostic Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
2
|
Chen Q, Tu S. The diagnostic value investigation of programmed cell death genes in heart failure. BMC Cardiovasc Disord 2024; 24:662. [PMID: 39574022 PMCID: PMC11583386 DOI: 10.1186/s12872-024-04343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND We aimed to identify the potential diagnostic markers and associated molecular mechanisms based on programmed cell death (PCD)-related genes in patients with heart failure (HF). METHODS Three HF gene expression data were extracted from the GEO database, including GSE57345 (training data), GSE141910 and GSE76701 (validation data), followed by differentially PCD related genes (DPCDs) was shown between HF and control samples. Enrichment and protein-protein interaction (PPI) network analyses were performed based on the DPCDs. Subsequently, a diagnostic model was constructed and validated after exploring the diagnostic markers using machine learning. A nomogram was used to determine the clinical diagnostic value. Diagnostic marker-based immune, transcription network, and gene set enrichment (GSE) analyses were performed. Finally, the drug-target network was investigated. RESULTS Twenty DPCDs were revealed between the two groups. These genes, such as Serpin Family E Member 1 (SERPINE1), are mainly enriched in pathways such as the regulation of the inflammatory response. A PPI network was constructed using 14 DPCDs. Eight diagnostic markers, such as SERPINE1, CD38 molecule (CD38), and S100 calcium-binding protein A9 (S100A9), were explored using machine learning algorithms, followed by diagnostic model construction. A nomogram and immune-associated analysis was used to validate the diagnostic value of these genes and the model. Moreover, the transcription regulation network and drug-target interactions were further investigated. Finally, qRT-PCR confirmed that the expression levels of eight signature genes (CD14, CD38, CTSK, LAPTM5, S100A9, SERPINE1, SLC11A1, and STAT3) were significantly elevated in the observation group, consistent with the results of bioinformatics analysis. CONCLUSIONS This study constructed a valuable diagnostic model for HF using the eight identified DPCDs as diagnostic markers.
Collapse
Affiliation(s)
- Qiuyue Chen
- Department of Emergency, Jiangnan University Medical Center, JUMC, No.68 Zhongshan Road, Wuxi, Jiangsu Province, 214002, China
| | - Su Tu
- Department of Emergency, Jiangnan University Medical Center, JUMC, No.68 Zhongshan Road, Wuxi, Jiangsu Province, 214002, China.
| |
Collapse
|
3
|
Liu Y, Yang P, Wang J, Peng W, Zhao J, Wang Z. MiRNA Regulates Ferroptosis in Cardiovascular and Cerebrovascular Diseases. DNA Cell Biol 2024; 43:492-509. [PMID: 39417991 DOI: 10.1089/dna.2024.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) significantly contribute to global mortality and morbidity due to their complex pathogenesis involving multiple biological processes. Ferroptosis is an important physiological process in CCVDs, manifested by an abnormal increase in intracellular iron concentration. MiRNAs, a key class of noncoding RNA molecules, are crucial in regulating CCVDs through pathways like glutathione-glutathione peroxidase 4, glutamate/cystine transport, iron metabolism, lipid metabolism, and other oxidative stress pathways. This article summarizes the progress of miRNAs' regulation on CCVDs, aiming to provide insights for the diagnosis and treatment of CCVDs.
Collapse
Affiliation(s)
- Yiman Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Peijuan Yang
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jingjing Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Wu Peng
- Hengyang Maternal and Child Health Hospital, Hengyang, China
| | - Jinli Zhao
- Emergency Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Zhang Q, Yang G, Chang R, Wang F, Han T, Tian J, Wang W. Time series analysis combined with transcriptome sequencing to explore characteristic genes and potential molecular mechanisms associated with ultrasound-guided microwave ablation of glioma. Int J Hyperthermia 2024; 41:2406889. [PMID: 39317933 DOI: 10.1080/02656736.2024.2406889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE This study aimed to explore marker genes and their potential molecular mechanisms involved in US-guided MWA for glioma in mice. METHOD The differentially expressed genes (DEGs1 and DEGs2) and lncRNAs (DELs1 and DELs2) were obtained between Non (glioma tissues without MWA) and T0 groups (0h after MWA), as well as between Non and T24 groups (24h after MWA). The down-regulation cluster genes (CONDOWNDEGs) and upregulation cluster genes (CONUPDEGs) were identified by time series analysis. Candidate genes were obtained by overlapping CONDOWNDEGs with downregulation DEGs (DOWNDEGs)1 and DOWNDEGs2, as well as CONUPDEGs with up-regulation DEGs (UPDEGs)1 and UPDEGs2. The expressions of immune checkpoints and inflammatory factors, gene set enrichment analysis (GSEA), and protein subcellular localization were performed. The eXpression2Kinases (X2K), GeneMANIA, transcription factor (TF), and competing endogenous (ce) RNA regulatory networks were conducted. The expression of marker genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Five marker genes (IL32, VCAM1, IL34, NFKB1 and CXCL13) were identified, which were connected with immune-related functions. Two immune checkpoints (CD96 and TIGIT) and six inflammatory factors played key roles in US-guided MWA for glioma. ceRNA regulatory networks revealed that miR-625-5p, miR-625-3p, miR-31-5p and miR-671-5p were associated with target genes. qRT-PCR indicated both IL32, VCAM1, and NFKB1 were potential markers under US-guided MWA-related time series analysis. CONCLUSION The use of US-guided MWA might be a practical method for influencing the function of target genes, regulating time frames to decrease inflammation, and stimulating immune responses in glioma therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Guangfei Yang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ruijiao Chang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Fuxia Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| | - Tao Han
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jin Tian
- Department of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wen Wang
- Department of Ultrasound, General Hospital of Ningxia Medical University, Cardiovascular and Cerebrovascular Disease Hospital, Yinchuan, China
| |
Collapse
|
5
|
Fu W, Cao Y, Liu J, Huang C, Shu K, Zhu N. Xinfeng Capsule Inhibits Pyroptosis and Ameliorates Myocardial Injury in Rats with Adjuvant Arthritis via the GAS5/miR-21/TLR4 Axis. Drug Des Devel Ther 2024; 18:2421-2433. [PMID: 38915862 PMCID: PMC11195676 DOI: 10.2147/dddt.s456783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose This study probed the mechanism of action of Xinfeng Capsule (XFC) in myocardial injury in rats with adjuvant arthritis (AA) via the growth arrest-specific transcript 5 (GAS5)/microRNA-21 (miR-21)/Toll-like receptor 4 (TLR4) axis. Methods Rats were injected with Freund's complete adjuvant to establish a rat model of AA. Then, some modeled rats were given normal saline or drugs only, and some modeled rats were injected with adeno-associated viruses or necrosulfonamide (NSA; a pyroptosis inhibitor) before drug administration. Toe swelling and arthritis index (AI) were calculated. Pathological and morphological changes in synovial and myocardial tissues were analyzed with hematoxylin-eosin staining, and pyroptotic vesicles and the ultrastructural changes of myocardial tissues were observed with transmission electron microscopy. The serum levels of interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor (TNF)-α were detected, and lactate dehydrogenase (LDH) release was measured in myocardial tissues, accompanied by the examination of GAS5, miR-21, TLR4, nuclear factor-kB (NF-κB) p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), Caspase-1, and Gasdermin D (GSDMD) expression in myocardial tissues. Results After AA modeling, rats presented with significantly increased toe swelling and AI scores, synovial and myocardial tissue damage, elevated pyroptotic vesicles, and markedly enhanced serum levels of IL-1β, IL-18, IL-6, and TNF-α, accompanied by significantly diminished GAS5 expression, substantially augmented miR-21, TLR4, NF-κB p65, NLRP3, Caspase-1, and GSDMD expression, greatly increased LDH release in myocardial tissues. XFC treatment significantly declined toe swelling, AI scores, synovial and myocardial tissue damage, and the serum levels of IL-1β, IL-18, IL-6, and TNF-α in AA rats. Additionally, XFC treatment markedly elevated GAS5 expression and substantially lowered LDH release and miR-21, TLR4, NF-κB p65, NLRP3, Caspase-1, and GSDMD expression in myocardial tissues of AA rats. Moreover, the above effects of XFC in AA rats were further promoted by GAS5 overexpression or NSA treatment. Conclusion XFC alleviated myocardial injury in AA rats by regulating the GAS5/miR-21/TLR4 axis and inhibiting pyroptosis and pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Wanlan Fu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| | - Yunxiang Cao
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Chuanbing Huang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Kaiyan Shu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| | - Nanfei Zhu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| |
Collapse
|
6
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
7
|
Zhang Y, Liu H, Niu M, Wang Y, Xu R, Guo Y, Zhang C. Roles of long noncoding RNAs in human inflammatory diseases. Cell Death Discov 2024; 10:235. [PMID: 38750059 PMCID: PMC11096177 DOI: 10.1038/s41420-024-02002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Chemokines, cytokines, and inflammatory cells mediate the onset and progression of many diseases through the induction of an inflammatory response. LncRNAs have emerged as important regulators of gene expression and signaling pathways. Increasing evidence suggests that lncRNAs are key players in the inflammatory response, making it a potential therapeutic target for various diseases. From the perspective of lncRNAs and inflammatory factors, we summarized the expression level and regulatory mechanisms of lncRNAs in human inflammatory diseases, such as cardiovascular disease, osteoarthritis, sepsis, chronic obstructive pulmonary disease, asthma, acute lung injury, diabetic retinopathy, and Parkinson's disease. We also summarized the functions of lncRNAs in the macrophages polarization and discussed the potential applications of lncRNAs in human inflammatory diseases. Although our understanding of lncRNAs is still in its infancy, these data will provide a theoretical basis for the clinical application of lncRNAs.
Collapse
Affiliation(s)
- Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ying Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rong Xu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
8
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
9
|
Xiong Y, Liu X, Jiang L, Hao T, Wang Y, Li T. Inhibition of ferroptosis reverses heart failure with preserved ejection fraction in mice. J Transl Med 2024; 22:199. [PMID: 38402404 PMCID: PMC10894491 DOI: 10.1186/s12967-023-04734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/13/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of heart failure cases. The molecular mechanisms by which HFpEF leads to impaired diastolic function of the heart have not been clarified, nor have the drugs that target the clinical symptoms of HFpEF patients. METHODS HFpEF chip data (GSE180065) was downloaded from the National Center for Biotechnology Information (NCBI) database. Differentially expressed genes (DEGs) were filtered by the limma package in R and processed for GO and KEGG pathway analyses. Then, ferroptosis-related genes in HFpEF were identified by taking the intersection between DEGs and ferroptosis-related genes. CytoHubba and MCODE were used to screen ferroptosis-related hub DEGs in the protein-protein interaction (PPI) network. Establishment of a mouse HFpEF model to validate the transcript levels of ferroptosis-related hub DEGs and ferroptosis-related phenotypes. Transcript levels of ferroptosis-related hub DEGs and HFpEF phenotypic changes in the hearts of HFpEF mice were further examined after the use of ferroptosis inhibitors. RESULTS GO and KEGG enrichment analyses suggested that the DEGs in HFpEF were significantly enriched in ferroptosis-related pathways. A total of 24 ferroptosis-related DEGs were identified between the ferroptosis gene dataset and the DEGs. The established PPI network was further analyzed by CytoHubba and MCODE modules, and 11 ferroptosis-related hub DEGs in HFpEF were obtained. In animal experiments, HFpEF mice showed significant abnormal activation of ferroptosis. The expression trends of the 11 hub DEGs associated with ferroptosis, except for Cdh1, were consistent with the results of the bioinformatics analysis. Inhibition of ferroptosis alters the transcript levels of 11 ferroptosis-related hub DEGs and ameliorates HFpEF phenotypes. CONCLUSIONS The present study contributes to a deeper understanding of the specific mechanisms by which ferroptosis is involved in the development of HFpEF and suggests that inhibition of ferroptosis may mitigate the progression of HFpEF. In addition, eleven hub genes were recognized as potential drug binding targets.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xin Liu
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Ling Jiang
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Hao
- Department of Gastroenterology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Chengdu, 611130, Sichuan, China
| | - Yanyan Wang
- Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, Sichuan, China.
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, No 37 Wainan Guoxue Road, Sichuan, 610041, China.
- Laboratory of Mitochondria and Metabolism, West China Hospital, Sichuan University, Sichuan, 610041, China.
| |
Collapse
|
10
|
Pu W, Chu X, Xu S, Dai X, Xiao L, Cui T, Huang B, Hu G, Zhang C. Molybdenum exposure induces inflammatory response via the regulatory effects of lncRNA-00072124/miR-308/OSMR crosstalk on JAK/STAT axis in duck kidneys. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169374. [PMID: 38104808 DOI: 10.1016/j.scitotenv.2023.169374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Molybdenum (Mo) is an essential nutrient in living organisms. Although numerous researchers have noticed the health damage caused by excessive Mo, the underlying mechanism of excessive Mo-induced nephrotoxicity remains poorly understood. A gene crosstalk called competitive endogenous RNAs (ceRNAs) can interpret many regulatory mechanisms molecularly. But there are few researches have tried to explain the damage mechanism of excess Mo to organisms through ceRNAs network. To clarify this, the study explored the changes in lncRNAs and miRNAs expression profiles in the kidney of ducks exposed to excess Mo for 16 weeks. The sequencing results showed that Mo exposure caused differential expression of 144 lncRNAs and 14 miRNAs. The occurrence of inflammation through the JAK/STAT axis was observed and the lncRNA-00072124/miR-308/OSMR axis was verified by a double luciferase reporter assay. Overexpression of miR-308 and RNA interference of OSMR reduced Mo-induced inflammatory factors, while miR-308 knockdown showed the opposite effect. Simultaneously, lncRNA-00072124 affected OSMR function as a ceRNA. Taken together, these results concluded that Mo exposure activated the JAK/STAT axis and induced inflammation mediated by the lncRNA-00072124/miR-308/OSMR crosstalk. The results might provide new views for revealing the toxic effects of excess Mo in duck kidneys.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Li Xiao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
11
|
Liu P, Gao H, Wang Y, Li Y, Zhao L. LncRNA H19 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting miR-181/PDCD4 Axis. COPD 2023; 20:119-125. [PMID: 36943093 DOI: 10.1080/15412555.2023.2165906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) kills more than 3 million people worldwide every year. Despite progress in the treatment of symptoms and prevention of acute exacerbations, few advances have been made to ameliorate disease progression or affect mortality. Exercise plays a positive role in the prevention and treatment of diaphragm dysfunction in COPD, and the changes in diaphragm structure and function induced by exercise are closely related to the regulation of oxidative stress. But the mechanism remains unclear. So the aim of this study was to reveal the therapeutic mechanism of exercise to COPD using both in vivo and in vitro experiments. In this study, cigarette smoke (CS) induced COPD mice model, treadmill aerobic training for COPD mice were constructed and cigarette smoke extract (CSE) induced bronchial epithelial cells (BECs) model were used for COPD study. Bioinformatics analysis, luciferase reporting analysis, and RT-qPCR detection were used to clarify the interacted relationship among lncRNA, miRNA, and mRNA. ROS, inflammatory cytokines expression, and EMT relative protein α-SMA were detected using immunofluorescence and ELISA detection. The result shows that exercise ameliorates COPD induced lung injury by inhibit ROS, inflammation, and epithelial-mesenchymal transition (EMT) relative protein α-SMA expression. RT-qPCR detection shows that lnc-H19 expression was increased in lung tissues of COPD mice. Exercise decreased COPD induced lnc-H19 expression. Downregulation lnc-H19 inhibits COPD mediated lung injury. Bioinformatics analysis and luciferase reporting analysis confirmed that miR-181 and PDCD4 were downstream targets of lnc-H19. Upregulation of PDCD4 or downregulation of miR-181 reversed the protective effect of si-lnc-H19 to BECs after exposure to CSE. In conclusion, lncRNA H19 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-181/PDCD4 Axis.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Yumeng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Yujuan Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Lei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| |
Collapse
|
12
|
Chen X, Shi C, Gao J, Jumbo JCC, Wang Y, Li X, Zhao C, Yu H, Li P, Aung LHH. Evaluation of lncRNA Expression Pattern and Potential Role in Heart Failure Pathology. DISEASE MARKERS 2023; 2023:2369352. [PMID: 37476628 PMCID: PMC10356452 DOI: 10.1155/2023/2369352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 07/22/2023]
Abstract
During the last few decades, the morbidity and mortality of heart failure (HF) have remained on an upward trend. Despite the advances in therapeutic and diagnostic measures, there are still many aspects requiring further research. This study is aimed at finding potential long noncoding RNAs (lncRNAs) that could aid with the diagnosis and treatment of HF. We performed RNA sequencing on the peripheral blood of healthy controls as well as HF patients. The expression of lncRNAs was validated by RT-qPCR. Bioinformatic analysis was performed to investigate the possible mechanism of differentially expressed lncRNAs and mRNAs. The diagnostic value of lncRNAs was analysed by ROC analysis. Finally, a total of 207 mRNAs and 422 lncRNAs were identified. GO and KEGG pathway analyses revealed that biological pathways such as immune response, regulation of cell membrane, and transcriptional regulatory process were associated with the pathological progress of HF. The lncRNA-mRNA coexpression network was conducted, and several mRNAs were identified as key potential pathological targets, while lncRNA CHST11, MIR29B2CHG, CR381653.1, and FP236383.2 presented a potential diagnostic value for HF. These findings provide novel insights for the underlying mechanisms and possible therapeutic targets for HF.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning, China
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cheng Zhao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Singh DD, Kim Y, Choi SA, Han I, Yadav DK. Clinical Significance of MicroRNAs, Long Non-Coding RNAs, and CircRNAs in Cardiovascular Diseases. Cells 2023; 12:1629. [PMID: 37371099 DOI: 10.3390/cells12121629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation. Cases of CVDs are rising due to limitations in the current therapeutic approach; most of the treatment options are based on the coding transcripts that encode proteins. Recently, various investigations have shown the role of nc-RNA in the early diagnosis and treatment of CVDs. Furthermore, the development of novel diagnoses and treatments based on miRNAs, lncRNAs, and circRNAs could be more helpful in the clinical management of patients with CVDs. CVDs are classified into various types of heart diseases, including cardiac hypertrophy (CH), heart failure (HF), rheumatic heart disease (RHD), acute coronary syndrome (ACS), myocardial infarction (MI), atherosclerosis (AS), myocardial fibrosis (MF), arrhythmia (ARR), and pulmonary arterial hypertension (PAH). Here, we discuss the biological and clinical importance of miRNAs, lncRNAs, and circRNAs and their expression profiles and manipulation of non-coding transcripts in CVDs, which will deliver an in-depth knowledge of the role of ncRNAs in CVDs for progressing new clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul 08826, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Biodisplay, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Pharmacy, Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Incheon 21924, Republic of Korea
| |
Collapse
|
14
|
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNA-mediated modulation of ferroptosis in cardiovascular diseases. Biomed Pharmacother 2023; 164:114993. [PMID: 37302320 DOI: 10.1016/j.biopha.2023.114993] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiovascular disease (CVD) is a major contributor to increasing morbidity and mortality worldwide and seriously threatens human health and life. Cardiomyocyte death is considered the pathological basis of various CVDs, including myocardial infarction, heart failure, and aortic dissection. Multiple mechanisms, such as ferroptosis, necrosis, and apoptosis, contribute to cardiomyocyte death. Among them, ferroptosis is an iron-dependent form of programmed cell death that plays a vital role in various physiological and pathological processes, from development and aging to immunity and CVD. The dysregulation of ferroptosis has been shown to be closely associated with CVD progression, yet its underlying mechanisms are still not fully understood. In recent years, a growing amount of evidence suggests that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are involved in the regulation of ferroptosis, thus affecting CVD progression. Some ncRNAs also exhibit potential value as biomarker and/or therapeutic target for patients with CVD. In this review, we systematically summarize recent findings on the underlying mechanisms of ncRNAs involved in ferroptosis regulation and their role in CVD progression. We also focus on their clinical applications as diagnostic and prognostic biomarkers as well as therapeutic targets in CVD treatment. DATA AVAILABILITY: No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Collapse
Affiliation(s)
- Ying Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiang Ao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Junqiang Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, China; Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
15
|
Tan L, Xiong D, Zhang H, Xiao S, Yi R, Wu J. ETS2 promotes cardiomyocyte apoptosis and autophagy in heart failure by regulating lncRNA TUG1/miR-129-5p/ATG7 axis. FASEB J 2023; 37:e22937. [PMID: 37171262 DOI: 10.1096/fj.202202148rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Heart failure (HF) is a chronic disease in which the heart is unable to provide enough blood and oxygen to the peripheral tissues. Cardiomyocyte apoptosis and autophagy have been linked to HF progression. However, the underlying mechanism of HF is unknown. In this study, H2 O2 -treated AC16 cells were used as a cell model of HF. The mRNA and protein levels of related genes were examined using RT-qPCR and western blot. Cell viability and apoptosis were assessed using CCK-8 and flow cytometry, respectively. The interactions between ETS2, TUG1, miR-129-5p, and ATG7 were validated by luciferase activity, ChIP, and RNA-Binding protein Immunoprecipitation assays. According to our findings, H2 O2 stimulation increased the expression of ETS2, TUG1, and ATG7 while decreasing the expression of miR-129-5p in AC16 cells. Furthermore, H2 O2 stimulation induced cardiomyocyte apoptosis and autophagy, which were reversed by ETS2 depletion, TUG1 silencing, or miR-129-5p upregulation. Mechanistically, ETS2 promoted TUG1 expression by binding to the TUG1 promoter, and TUG1 sponged miR-129-5p to increase ATG7 expression. Furthermore, TUG1 overexpression reversed ETS2 knockdown-mediated inhibition of cardiomyocyte apoptosis and autophagy and miR-129-5p inhibition abolished TUG1 depletion-mediated suppression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. As presumed, ATG7 overexpression reversed miR-129-5p mimics-mediated repression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. Finally, ETS2 silencing reduced cardiomyocyte apoptosis and autophagy to slow HF progression by targeting the ETS2/TUG1/miR-129-5p/ATG7 axis, which may provide new therapeutic targets for HF treatment.
Collapse
Affiliation(s)
- Li Tan
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Di Xiong
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Hui Zhang
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Sirou Xiao
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Ruilan Yi
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Jian Wu
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| |
Collapse
|
16
|
Wang Y, Chen B, Fan J, Wang Z. A simple and efficient strategy for trace detection of ferroptosis-related miRNAs based on novel hydrophobic paper-based plasmonic substrate and "inverse molecular sentinel (iMS)" nanoprobes. Front Bioeng Biotechnol 2023; 11:1146111. [PMID: 36937763 PMCID: PMC10017978 DOI: 10.3389/fbioe.2023.1146111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Monitoring ferroptosis-related miRNAs is crucial for the treatment and prognosis of patients with intracerebral hemorrhage. In this work, a novel hydrophobic paper (h-paper)-based plasmonic substrate was produced by dropping DS Au nanorods with a narrow range of sizes and morphologies onto h-paper. Raman reporter molecules were adsorbed to the array surface, and surface-enhanced Raman scattering spectra at randomly selected points reveal uniform and significant SERS enhancement. Hairpin DNAs labelled with Raman reporters and hybridized with placeholder DNAs were decorated on SERS substrate to fabricate SERS biosensor. Target miRNAs initiated the "inverse Molecular Sentinel" process. During the process, PHs were removed and the conformation of HPs changed toward the hairpin structure, thus eliciting the proximity of Raman reporter to substrate and a stronger SERS signal. The proposed SERS biosensor performs well in terms of stability, reproducibility, and selectivity. The limits of detection of miR-122-5p and miR-140-5p in serum were 4.17 aM and 4.49 aM, respectively. Finally, the fabricated SERS biosensor was applied to detect miR-122-5p and miR-140-5p in ICH patients and healthy subjects, and the results obtained by SERS were consistent with the results from quantitative real-time polymerase chain reaction, revealing the accuracy of the method. This simple, rapid approach offers great potential for the simultaneous detection of miRNAs in practical clinical applications.
Collapse
Affiliation(s)
- Youwei Wang
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Bing Chen
- Department of neurosurgery, The Affiliated hospital of Qingdao University, Qingdao, China
| | - Jiang Fan
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhong Wang,
| |
Collapse
|
17
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
18
|
Sweef O, Yang C, Wang Z. The Oncogenic and Tumor Suppressive Long Non-Coding RNA-microRNA-Messenger RNA Regulatory Axes Identified by Analyzing Multiple Platform Omics Data from Cr(VI)-Transformed Cells and Their Implications in Lung Cancer. Biomedicines 2022; 10:2334. [PMID: 36289596 PMCID: PMC9598927 DOI: 10.3390/biomedicines10102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure to hexavalent chromium (Cr(VI)) causes lung cancer in humans, however, the underlying mechanism has not been well understood. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are commonly studied non-coding RNAs. miRNAs function mainly through interaction with the 3'-untranslated regions of messenger RNAs (mRNAs) to down-regulate gene expression. LncRNAs have been shown to function as competing endogenous RNAs (ceRNAs) to sponge miRNAs and regulate gene expression. It is now well accepted that lncRNAs and miRNAs could function as oncogenes or tumor suppressors. Dysregulations of lncRNAs and miRNAs have been shown to play important roles in cancer initiation, progression, and prognosis. To explore the mechanism of Cr(VI) lung carcinogenesis, we performed lncRNA, mRNA, and miRNA microarray analysis using total RNAs from our previously established chronic Cr(VI) exposure malignantly transformed and passage-matched control human bronchial epithelial BEAS-2B cells. Based on the differentially expressed lncRNAs, miRNAs, and mRNAs between the control (BEAS-2B-Control) and Cr(VI)-transformed (BEAS-Cr(VI)) cells and by using the lncRNA-miRNA interaction and miRNA target prediction algorithms, we identified three oncogenic (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and three tumor suppressive (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) lncRNA-miRNA-mRNA regulatory axes. Moreover, the relevance of these three oncogenic and three tumor suppressive lncRNA-miRNA-mRNA regulatory axes in lung cancer was explored by analyzing publicly available human lung cancer omics datasets. It was found that the identified three oncogenic lncRNA-miRNA-mRNA regulatory axes (HOTAIRM1/miR-182-5p/ERO1A, GOLGA8B/miR-30d-5p/RUNX2, and PDCD6IPP2/miR-23a-3p/HOXA1) and the three tumor suppressive lncRNA-miRNA-mRNA regulatory axes (ANXA2P1/miR-20b-5p/FAM241A (C4orf32), MIR99AHG/miR-218-5p/GPM6A, and SH3RF3-AS1/miR-34a-5p/HECW2) have significant diagnostic and prognosis prediction values in human lung cancer. In addition, our recent studies showed that Cr(VI)-transformed cells display cancer stem cell (CSC)-like properties. Further bioinformatics analysis identified the oncogenic lncRNA-miRNA-mRNA regulatory axes as the potential regulators of cancer stemness. In summary, our comprehensive analysis of multiple platform omics datasets obtained from Cr(VI)-transformed human bronchial epithelial cells identified several oncogenic and tumor suppressive lncRNA-miRNA-mRNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis and lung cancer in general.
Collapse
Affiliation(s)
| | | | - Zhishan Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
19
|
Construction of a ferroptosis-associated circRNA-miRNA-mRNA network in age-related macular degeneration. Exp Eye Res 2022; 224:109234. [PMID: 36044964 DOI: 10.1016/j.exer.2022.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe vision impairment in the aging population. However, the underlying molecular mechanism remains unclear. Ferroptosis is a novel non-apoptotic programmed cell death pathway, that contributes to AMD. In addition, non-coding RNA-led epigenetic profile was identified in the regulation of AMD progression. Considering that non-coding RNAs are vital regulators of ferroptosis-related genes in various pathological events, we explored and constructed a ferroptosis-associated circRNA-miRNA-mRNA network in AMD. Differential expression of fourteen ferroptosis-associated genes were identified based on our microarray analysis and the FerrDb tool at the threshold of P < 0.05 and log2|fold change| ≥ 1, which were subsequently validated by the public datasets. We further screened eight miRNAs via public datasets and the miRNet database. Based on these eight miRNAs, 23 circRNAs were mined using the Starbase tool. Taking all these together, we obtained a ferroptosis-related network with 414 pairs of circRNA-miRNA-mRNA, which are potential targets in future AMD treatments.
Collapse
|
20
|
Ma S, He LL, Zhang GR, Zuo QJ, Wang ZL, Zhai JL, Zhang TT, Wang Y, Ma HJ, Guo YF. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:945-962. [PMID: 35476142 PMCID: PMC9276585 DOI: 10.1007/s00210-022-02243-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Recently, hypoglycemic drugs belonging to sodium-glucose cotransporter 2 inhibitors (SGLT2i) have generated significant interest due to their clear cardiovascular benefits for heart failure with preserved ejection fraction (HFpEF) since there are no effective drugs that may improve clinical outcomes for these patients over a prolonged period. But, the underlying mechanisms remain unclear, particularly its effects on ferroptosis, a newly defined mechanism of iron-dependent non-apoptotic cell death during heart failure (HF). Here, with proteomics, we demonstrated that ferroptosis might be a key mechanism in a rat model of high-salt diet-induced HFpEF, characterized by iron overloading and lipid peroxidation, which was blocked following treatment with canagliflozin. Data are available via ProteomeXchange with identifier PXD029031. The ferroptosis was evaluated with the levels of acyl-CoA synthetase long-chain family member 4, glutathione peroxidase 4, ferritin heavy chain 1, transferrin receptor, Ferroportin 1, iron, glutathione, malondialdehyde, and 4-hydroxy-trans-2-nonenal. These findings highlight the fact that targeting ferroptosis may serve as a cardioprotective strategy for HFpEF prevention and suggest that canagliflozin may exert its cardiovascular benefits partly via its mitigation of ferroptosis.
Collapse
Affiliation(s)
- Sai Ma
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Li-Li He
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guo-Rui Zhang
- Department of Cardiology, The Third Hospital of Shijiazhuang City Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing-Juan Zuo
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Zhong-Li Wang
- Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jian-Long Zhai
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ting-Ting Zhang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Hui-Juan Ma
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yi-Fang Guo
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.
- Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|