1
|
Yang Z, Sheehan AM, Papadaki M, Messer AE, Blagg BSJ, Gould IR, Marston SB. 5,7-Dimethoxychroman-3-yl 4-methoxybenzoate Has a Unique Effect upon the Modulation of Mutant Cardiac Muscle Thin Filament Function and Dynamics due to Phosphorylation of Troponin I. ACS Pharmacol Transl Sci 2025; 8:1251-1259. [PMID: 40370989 PMCID: PMC12070315 DOI: 10.1021/acsptsci.5c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Mutations in thin filament proteins that cause cardiomyopathy commonly cause an uncoupling of the relationship between the phosphorylation of troponin I and reduced Ca2+ sensitivity. Previously we showed that small molecules related to EGCG were able to restore the native response to mutant thin filaments in vitro and in MD simulations. However, 5,7-dimethoxychroman-3-yl 4-methoxybenzoate (compound 7) has an opposite effect-it causes mutant thin filament Ca2+ sensitivity to increase when cTroponin I is phosphorylated. In MD simulations of troponin with the TNNC1 G159D DCM mutation, we observed that compound 7 has unique effects upon troponin dynamics. Global parameters, such as interdomain hinge angle and Troponin C helix A/B angle distributions tend to be independent of phosphorylation unlike the phosphorylation-dependent changes observed with G159D alone or G159D plus recouplers such as silybin B. CCPTraj and Cluster Analysis suggest a novel preferred binding region between the extreme N terminus of cTroponin C and the switch peptide of cTroponin I.
Collapse
Affiliation(s)
- Zeyu Yang
- Institute
of Chemical Biology, Molecular Sciences Research Hub and Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
| | | | - Mary Papadaki
- NHLI, Imperial College London, London W12 ONN, United Kingdom
| | | | - Brian S. J. Blagg
- The
University of Notre Dame, 305 McCourtney, Notre Dame, Indiana 46556, United States
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub and Institute of Chemical
Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
| | | |
Collapse
|
2
|
Gomes AV, Pinto JR, Szczesna-Cordary D. Editorial: Physiology of human myopathies. Front Physiol 2025; 16:1597211. [PMID: 40260204 PMCID: PMC12010082 DOI: 10.3389/fphys.2025.1597211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Affiliation(s)
- Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL, United States
| |
Collapse
|
3
|
Melnikov VN, Komlyagina TG, Gultyaeva VV, Uryumtsev DY, Zinchenko MI, Bryzgalova EA, Karmakulova IV, Krivoschekov SG. Time course of cardiovascular responses to acute sustained handgrip exercise in young physically active men. Physiol Rep 2025; 13:e70286. [PMID: 40176454 PMCID: PMC11965698 DOI: 10.14814/phy2.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
We aimed to assess currently unexplained effects of isometric exercise on central hemodynamic, arterial, and cardiac cycle parameters. Twenty-three young physically active males performed 5-min forearm sustained exercise at 20% of maximum voluntary contraction. The pulse wave analysis (SphygmoCor) was conducted at baseline (BL) and at 1, 5, 10, 15, and 20 min of post-load recovery. The General Linear Model repeated measures analysis with post hoc test was used to compare the BL values, 1-min, and 15-min recovery states. Exercise immediately elevated central and peripheral systolic blood pressure (BP), augmentation index, left ventricular contractility, and its relative relaxation time. These prompt reactions were followed by a hypotensive response and positive lusitropic effect with shortening relaxation in 15 min after the contraction ceased. The diastolic BP decrement was inversely correlated with the amount of body lean mass and body muscle but not fat mass measured by the bioelectrical impedance method. It is hypothesized that (1) the body lean mass-dependent BP-lowering effect of exercise is due to the arterial distending influence of metabolites accumulated in the muscle during exercise-induced occlusion and then washed out into general circulation, and (2) muscle arteries are more sensitive to these effects than vessels of fat tissue.
Collapse
|
4
|
Yang Z, Sheehan AM, Messer AE, Tsui S, Sparrow A, Redwood C, Kren V, Gould IR, Marston SB. Nutraceuticals silybin B, resveratrol, and epigallocatechin-3 gallate-bind to cardiac muscle troponin to restore the loss of lusitropy caused by cardiomyopathy mutations in vitro, in vivo, and in silico. Front Physiol 2024; 15:1489439. [PMID: 39735723 PMCID: PMC11672104 DOI: 10.3389/fphys.2024.1489439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca2+ associated with a higher rate of Ca2+ dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy). Cardiomyopathy-linked mutations primarily affect Ca2+ regulation or the PKA-dependent modulatory system, such that Ca2+-sensitivity becomes independent of phosphorylation level (uncoupling) and this could be sufficient to induce cardiomyopathy. A drug that could restore the phosphorylation-dependent modulation of Ca2+-sensitivity could have potential for treatment of these pathologies. We have found that a number of small molecules, including silybin B, resveratrol and EGCG, can restore coupling in single filament assays. Methods We did molecular dynamics simulations (5x1500ns for each condition) of the unphosphorylated and phosphorylated cardiac troponin core with the G159D DCM mutation in the presence of the 5 ligands and analysed the effects on several dynamic parameters. We also studied the effect of the ligands on the contractility of cardiac muscle myocytes with ACTC E99K and TNNT2 R92Q mutations in response to dobutamine. Results Silybin B, EGCG and resveratrol restored the phosphorylation-induced change in molecular dynamics to wild-type values, whilst silybin A, an inactive isomer of silybin B, and Epicatechin gallate, an EGCG analogue that does not recouple, did not. We analysed the atomic-level changes induced by ligand binding to explain recoupling. Mutations ACTC E99K and TNNT2 R92Q blunt the increased relaxation speed response to β1 adrenergic stimulation of cardiac myocytes and we found that resveratrol, EGCG and silybin B could restore the β1 adrenergic response, whereas silybin A did not. Discussion The uncoupling phenomenon caused by cardiomyopathy-related mutations and the ability of small molecules to restore coupling in vitro and lusitropy in myocytes is observed at the cellular, molecular and atomistic levels therefore, restoring lusitropy is a suitable target for treatment. Further research on compounds that restore lusitropy is thus indicated as treatments for genetic cardiomyopathies. Further molecular dynamics simulations could define the specific properties needed for recoupling and allow for the prediction and design of potential new drugs.
Collapse
Affiliation(s)
- Zeyu Yang
- Institute of Chemical Biology, Molecular Sciences Research Hub and Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Alice M Sheehan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sharmane Tsui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Vladimir Kren
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ian R Gould
- Institute of Chemical Biology, Molecular Sciences Research Hub and Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom
| | - Steven B Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
6
|
Joyce W, He K, Zhang M, Ogunsola S, Wu X, Joseph KT, Bogomolny D, Yu W, Springer MS, Xie J, Signore AV, Campbell KL. Genetic excision of the regulatory cardiac troponin I extension in high-heart rate mammal clades. Science 2024; 385:1466-1471. [PMID: 39325895 DOI: 10.1126/science.adi8146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/18/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024]
Abstract
Mammalian cardiac troponin I (cTnI) contains a highly conserved amino-terminal extension harboring protein kinase A targets [serine-23 and -24 (Ser23/24)] that are phosphorylated during β-adrenergic stimulation to defend diastolic filling by means of an increased cardiomyocyte relaxation rate. In this work, we show that the Ser23/24-encoding exon 3 of TNNI3 was pseudoexonized multiple times in shrews and moles to mimic Ser23/24 phosphorylation without adrenergic stimulation, facilitating the evolution of exceptionally high resting heart rates (~1000 beats per minute). We further reveal alternative exon 3 splicing in distantly related bat families and confirm that both cTnI splice variants are incorporated into cardiac myofibrils. Because exon 3 of human TNNI3 exhibits a relatively low splice strength score, our findings offer an evolutionarily informed strategy to excise this exon to improve diastolic function during heart failure.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Kai He
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mengdie Zhang
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Samuel Ogunsola
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xini Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Kelvin T Joseph
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Bogomolny
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wenhua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
8
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
10
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
11
|
Vafiadaki E, Glijnis PC, Doevendans PA, Kranias EG, Sanoudou D. Phospholamban R14del disease: The past, the present and the future. Front Cardiovasc Med 2023; 10:1162205. [PMID: 37144056 PMCID: PMC10151546 DOI: 10.3389/fcvm.2023.1162205] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Arrhythmogenic cardiomyopathy affects significant number of patients worldwide and is characterized by life-threatening ventricular arrhythmias and sudden cardiac death. Mutations in multiple genes with diverse functions have been reported to date including phospholamban (PLN), a key regulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis and cardiac contractility. The PLN-R14del variant in specific is recognized as the cause in an increasing number of patients worldwide, and extensive investigations have enabled rapid advances towards the delineation of PLN-R14del disease pathogenesis and discovery of an effective treatment. We provide a critical overview of current knowledge on PLN-R14del disease pathophysiology, including clinical, animal model, cellular and biochemical studies, as well as diverse therapeutic approaches that are being pursued. The milestones achieved in <20 years, since the discovery of the PLN R14del mutation (2006), serve as a paradigm of international scientific collaboration and patient involvement towards finding a cure.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| | - Pieter C. Glijnis
- Stichting Genetische Hartspierziekte PLN, Phospholamban Foundation, Wieringerwerf, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Evangelia G. Kranias
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Despina Sanoudou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Correspondence: Elizabeth Vafiadaki Despina Sanoudou
| |
Collapse
|