1
|
Verdejo HE, Parra V, Del Campo A, Vasquez-Trincado C, Gatica D, Lopez-Crisosto C, Kuzmicic J, Venegas-Zamora L, Zuñiga-Cuevas U, Troncoso MF, Troncoso R, Rothermel BA, Chiong M, Abel ED, Lavandero S. mTOR inhibition triggers mitochondrial fragmentation in cardiomyocytes through proteosome-dependent prohibitin degradation and OPA-1 cleavage. Cell Commun Signal 2025; 23:256. [PMID: 40450326 DOI: 10.1186/s12964-025-02240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Abstract
INTRODUCTION Cardiac mitochondrial function is intricately regulated by various processes, ultimately impacting metabolic performance. Additionally, protein turnover is crucial for sustained metabolic homeostasis in cardiomyocytes. OBJECTIVE Here, we studied the role of mTOR in OPA-1 cleavage and its consequent effects on mitochondrial dynamics and energetics in cardiomyocytes. RESULTS Cultured rat cardiomyocytes treated with rapamycin for 6-24 h showed a significant reduction in phosphorylation of p70S6K, indicative of sustained inhibition of mTOR. Structural and functional analysis revealed increased mitochondrial fragmentation and impaired bioenergetics characterized by decreases in ROS production, oxygen consumption, and cellular ATP. Depletion of either the mitochondrial protease OMA1 or the mTOR regulator TSC2 by siRNA, coupled with an inducible, cardiomyocyte-specific knockout of mTOR in vivo, suggested that inhibition of mTOR promotes mitochondrial fragmentation through a mechanism involving OMA1 processing of OPA-1. Under homeostatic conditions, OMA1 activity is kept under check through an interaction with microdomains in the inner mitochondrial membrane that requires prohibitin proteins (PHB). Loss of these microdomains releases OMA1 to cleave its substrates. We found that rapamycin both increased ubiquitination of PHB1 and decreased its abundance, suggesting proteasomal degradation. Consistent with this, the proteasome inhibitor MG-132 maintained OPA-1 content in rapamycin-treated cardiomyocytes. Using pharmacological activation and inhibition of AMPK our data supports the hypothesis that this mTOR-PHB1-OMA-OPA-1 pathway impacts mitochondrial morphology under stress conditions, where it mediates dynamic changes in metabolic status. CONCLUSIONS These data suggest that mTOR inhibition disrupts mitochondrial integrity in cardiomyocytes by promoting the degradation of prohibitins and OPA-1, leading to mitochondrial fragmentation and metabolic dysfunction, particularly under conditions of metabolic stress.
Collapse
Grants
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- R01HL108379 and R01DK092065, to E. D. A and R01NS055028, R01HD101006, and P50HD087351 to B.A.R. NIH HHS
- R01HL108379 and R01DK092065, to E. D. A and R01NS055028, R01HD101006, and P50HD087351 to B.A.R. NIH HHS
Collapse
Affiliation(s)
- Hugo E Verdejo
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Departamento Enfermedades Cardiovasculares, Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Andrea Del Campo
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Damian Gatica
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago, Chile
| | - Jovan Kuzmicic
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Xiong L, Xiong Z, Hua J, Chen Q, Wang D. Mechanism of Nano-Microplastics Exposure-Induced Myocardial Fibrosis: DKK3-Mediated Mitophagy Dysfunction and Pyroptosis. J Biochem Mol Toxicol 2025; 39:e70245. [PMID: 40262053 DOI: 10.1002/jbt.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
Nano-microplastics (NMPs), as environmental pollutants, are widely present in nature and pose potential threats to biological health. This study aims to investigate the mechanisms by which NMPs inhibit mitophagy through the suppression of dickkopf-related protein 3 (DKK3) expression, leading to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis and promoting myocardial fibrosis. Healthy adult male C57BL/6 mice were administered NMP solution via gavage, and their cardiac function was monitored. The results showed that NMP exposure significantly reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) and increased the extent of myocardial fibrosis. Transcriptome sequencing identified 14 differentially expressed genes (DEGs), including MYL7. Using the random forest algorithm and functional enrichment analysis, DKK3 was identified as a key gene. In Vitro experiments further confirmed that NMPs downregulate DKK3 expression, thereby inhibiting mitophagy and promoting cardiomyocyte pyroptosis. This study elucidates the molecular mechanisms by which NMPs induce myocardial fibrosis and provides new theoretical bases and molecular targets for the diagnosis and treatment of heart diseases.
Collapse
Affiliation(s)
- Liang Xiong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziyi Xiong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juan Hua
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Mehmood T, Nasir Q, Younis I, Muanprasat C. Inhibition of Mitochondrial Dynamics by Mitochondrial Division Inhibitor-1 Suppresses Cell Migration and Metastatic Markers in Colorectal Cancer HCT116 Cells. J Exp Pharmacol 2025; 17:143-157. [PMID: 40124420 PMCID: PMC11929422 DOI: 10.2147/jep.s510578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction The mitochondria are highly dynamic organelles. The mitochondrial morphology and spatial distribution within the cell is determined by fusion and fission processes of mitochondria. Several studies have used mitochondrial division inhibitor-1 (Mdivi.1) to explore the roles of mitochondrial dynamics in various pathological conditions, including diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, Alzheimer's disease, Huntington's disease and cancers. Purpose The objective of the study was to investigate the role of mitochondrial dynamics in the invasiveness of HCT116 colorectal cancer cells. Material and Methods MTT assay was used to determine the Mdivi.1-induced toxicity in HCT116 cells. Wound healing, cell migration and colony forming assays were adopted to measure the migration and invasion activity of HCT116 cells. Furthermore, flow cytometry was used to determine the Mdivi.1-induced mitochondrial mass quantification, mitochondrial membrane potential and reactive oxygen species generation in HCT116 cells. Additionally, Western Blot analysis was used to determine the expression level of Drp1, p-Drp1, Mnf2, AMPK-α, p-AMPK-α, Cox-2, iNos and MMP9 in HCT116 cells. Results We found that Mdivi.1 induced toxicity and altered the morphology of HCT116 cells in concentration- and time-dependent manners. Mdivi.1 significantly increased mitochondrial mass and dissipated the mitochondrial membrane potential. Furthermore, Mdivi.1 induced reactive oxygen species (ROS) generation and mitochondrial superoxide production, leading to AMPK activation. Moreover, Mdivi.1 decreased dynamin-related protein-1 (Drp1) and phosphorylated-Drp1 expression and increased mitofusin-2 (Mfn2) expression in a concentration-dependent manner at 48 and 72 h post-treatment. Notably, Mdivi.1 induced inhibition of translocation of Drp1 from the cytosol to the outer mitochondrial membrane. Mdivi.1 significantly suppressed the invasion and migration of HCT116 cells and inhibited the formation of HCT116 cell colonies. In addition, Mdivi.1 significantly decreased the expression of metastatic markers including Cox-2, iNos, and MMP-9 in HCT116 cells. Conclusion Collectively, this study revealed that Mdivi.1 downregulates Drp1, upregulates Mfn2, and increases mitochondrial mass with attenuated oxidative metabolism, leading to the inhibition of cell invasion and metastasis in colorectal cancer HCT116 cells. Mitochondrial dynamics are regarded as possible drug targets for interrupting colorectal cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Tahir Mehmood
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangplee, Samut Prakarn, Thailand
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Qandeel Nasir
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Iqra Younis
- Department of Biological Sciences, Superior University, Lahore, Punjab, Pakistan
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangpla, Bangplee, Samut Prakarn, Thailand
| |
Collapse
|
4
|
Omoluabi T, Hasan Z, Piche JE, Flynn ARS, Doré JJE, Walling SG, Weeks ACW, Benoukraf T, Yuan Q. Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model. Aging Cell 2025; 24:e14405. [PMID: 39520141 PMCID: PMC11896524 DOI: 10.1111/acel.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.
Collapse
Affiliation(s)
- Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Zia Hasan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Jessie E. Piche
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Abeni R. S. Flynn
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Jules J. E. Doré
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Susan G. Walling
- Department of Psychology, Faculty of ScienceMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Andrew C. W. Weeks
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Touati Benoukraf
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Qi Yuan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
5
|
Kirichenko TV, Zhivodernikov IV, Kozlova MA, Markin AM, Sinyov VV, Markina YV. Hypertrophic Cardiomyopathy Through the Lens of Mitochondria. Biomedicines 2025; 13:591. [PMID: 40149568 PMCID: PMC11940619 DOI: 10.3390/biomedicines13030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
The mechanisms of pathogenesis of hypertrophic cardiomyopathy are associated with mutations in the sarcomere genes of cardiomyocytes and metabolic disorders of the cell, including mitochondrial dysfunction. Mitochondria are characterized by the presence of their own DNA and enzyme complexes involved in oxidative reactions, which cause damage to mitochondrial protein structures and membranes by reactive oxygen species. Mitochondrial dysfunctions can also be associated with mutations in the genes encoding mitochondrial proteins and lead to a violation of protective functions such as mitophagy, mitochondrial fusion, and fission. Mutations in myofibril proteins can negatively affect mitochondria through increased oxidative stress due to an increased need for ATP. Mitochondrial dysfunction is associated with impaired ATP synthesis and cardiac contractility, leading to clinical manifestations of hypertrophic cardiomyopathy. The current review was designed to characterize the role of mitochondria in the pathogenesis of hypertrophic cardiomyopathy based on published data; the search for publications was based on the analysis of articles including the keywords "hypertrophic cardiomyopathy, mitochondria, dysfunction" in the PubMed and Scopus databases up to January 2025.
Collapse
Affiliation(s)
- Tatiana V. Kirichenko
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | | | - Maria A. Kozlova
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Alexander M. Markin
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
- Medical Institute, Peoples’ Friendship University of Russia Named After Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| | - Vasily V. Sinyov
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
- Petrovsky Medical University, 119435 Moscow, Russia
| |
Collapse
|
6
|
Jia H, Song Y, Hua Y, Li K, Li S, Wang Y. Molecular Mechanism of Aerobic Exercise Ameliorating Myocardial Mitochondrial Injury in Mice with Heart Failure. Int J Mol Sci 2025; 26:2136. [PMID: 40076760 PMCID: PMC11901053 DOI: 10.3390/ijms26052136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 03/14/2025] Open
Abstract
To explore the molecular mechanism of aerobic exercise to improve heart failure and to provide a theoretical basis and experimental reference for the treatment of heart failure. Nine-week-old male mice were used to establish a left ventricular pressure overload-induced heart failure model by transverse aortic constriction (TAC). The mice were randomly divided into four groups: a sham group (SHAM), heart failure group (HF), heart failure + SKQ1 group (HS) and heart failure + aerobic exercise group (HE). The mice in the HE group were subjected to moderate-intensity aerobic exercise interventions. The mitochondrion-targeting antioxidant (SKQ1) contains the lipophilic cation TPP, which targets scavenging mitochondrial ROS. The HS group was subjected to SKQ1 (100 nmol/kg/d) interventions, which were initiated 1 week after the surgery, and the interventions lasted 8 weeks. Cardiac function was assessed by ultrasound, cardiomyocyte size by H&E and WGA staining, myocardial fibrosis by Masson's staining, and myocardial tissue oxidative stress and apoptosis by DHE and TUNEL fluorescence staining, respectively. Western blotting was used to detect the expression of mitochondrial quality control, inflammation, and apoptosis-related proteins. In the cellular level, an in vitro cellular model was established by isolating primary cardiomyocytes from neonatal mice (2-3 days) and intervening with Ang II (1 μM) to mimic heart failure. Oxidative stress and mitochondrial membrane potential were determined in the cardiomyocytes of each group by DHE and JC-1 staining, respectively. Myocardial fibrosis was increased significantly and cardiac function was reduced significantly in the heart failure mice. Aerobic exercise and SKQ1 intervention improved cardiac function and reduced myocardial hypertrophy and myocardial fibrosis in the heart failure mice significantly. Meanwhile, aerobic exercise and SKQ1 intervention reduced the number of DHE-positive particles (p < 0.01) and inhibited myocardial oxidative stress in the heart failure mice significantly. Aerobic exercise also reduced DRP1, Parkin, and BNIP3 protein expression (p < 0.05, p < 0.01), and increased OPA1 and PINK1 protein expression (p < 0.05, p < 0.01) significantly. Moreover, aerobic exercise and SKQ1 intervention decreased the number of TUNEL-positive particles and the expression of inflammation- and apoptosis-related proteins NLRP3, TXNIP, Caspase-1, IL-1β, BAX, BAK, and p53 significantly (p < 0.05, p < 0.01). In addition, the AMPK agonist AICAR and the mitochondria-targeted ROS scavenger (SKQ1) ameliorated AngII-induced mitochondrial fragmentation and decreased mitochondrial membrane potential in cardiomyocytes significantly. It was shown that inhibition of mitochondrial ROS by aerobic exercise, which in turn inhibits mitochondrial damage, improves mitochondrial quality control, and reduces myocardial inflammatory and apoptosis, may be an important molecular mechanism by which aerobic exercise exerts endogenous antioxidant protective effects to improve cardiac function.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Wang
- Institute of Sports and Exercise Biology, School of Physical Education, Shanxi Normal University, Xi’an 710119, China; (H.J.); (Y.S.); (Y.H.); (K.L.); (S.L.)
| |
Collapse
|
7
|
Duan X, Liu R, Lan W, Liu S. The Essential Role of Mitochondrial Dynamics in Viral Infections. Int J Mol Sci 2025; 26:1955. [PMID: 40076578 PMCID: PMC11900267 DOI: 10.3390/ijms26051955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondria are dynamic organelles that play crucial roles in energy production, metabolic balance, calcium homeostasis, apoptosis, and innate immunity, and are key determinants of cell fate. They are also targets for viral invasion of the body. Many viral proteins target mitochondria, controlling mitochondrial morphology, metabolism, and immune response, thereby achieving immune evasion, promoting their proliferation, and accelerating the infection process. Mitochondrial quality control is key to maintaining normal physiological functions and mitochondrial homeostasis. Dysregulation of mitochondrial dynamics is closely related to the development of many diseases. New roles of mitochondrial dynamics in viral infection are constantly being discovered. Viruses change mitochondrial dynamics by targeting mitochondria to achieve a persistent state of infection. Currently, understanding of mitochondrial dynamics during viral infection is limited. Research on the impact of viral proteins on mitochondrial dynamics provides a foundation for investigating the pathogenesis of viral infections, the disease process, and identifying potential therapeutic targets. This review focuses on the connection between viral infection and mitochondrial dynamics and priority areas for research on virus-mediated mitochondrial immunity, provides insight into the regulation of mitochondrial dynamics by viruses targeting mitochondria, and explores potential means of mitochondrial-mediated control and treatment of viral diseases.
Collapse
Affiliation(s)
- Xujie Duan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Rui Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Wenjing Lan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology for Animal Disease, Ministry of Agriculture, Hohhot 010018, China
| |
Collapse
|
8
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Mitochondrial Dysfunction in Cardiac Disease: The Fort Fell. Biomolecules 2024; 14:1534. [PMID: 39766241 PMCID: PMC11673776 DOI: 10.3390/biom14121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial cells and the extracellular matrix achieve their functions through the availability of energy. In fact, the mechanical and electrical properties of the heart are heavily dependent on the balance between energy production and consumption. The energy produced is utilized in various forms, including kinetic, dynamic, and thermal energy. Although total energy remains nearly constant, the contribution of each form changes over time. Thermal energy increases, while dynamic and kinetic energy decrease, ultimately becoming insufficient to adequately support cardiac function. As a result, toxic byproducts, unfolded or misfolded proteins, free radicals, and other harmful substances accumulate within the myocardium. This leads to the failure of crucial processes such as myocardial contraction-relaxation coupling, ion exchange, cell growth, and regulation of apoptosis and necrosis. Consequently, both the micro- and macro-architecture of the heart are altered. Energy production and consumption depend on the heart's metabolic resources and the functional state of the cardiac structure, including cardiomyocytes, non-cardiomyocyte cells, and their metabolic and energetic behavior. Mitochondria, which are intracellular organelles that produce more than 95% of ATP, play a critical role in fulfilling all these requirements. Therefore, it is essential to gain a deeper understanding of their anatomy, function, and homeostatic properties.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Dimitrios Farmakis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (I.P.); (D.F.)
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
9
|
Xu S, Gao Z, Jiang L, Li J, Qin Y, Zhang D, Tian P, Wang W, Zhang N, Zhang R, Xu S. High glucose- or AGE-induced oxidative stress inhibits hippocampal neuronal mitophagy through the Keap1-Nrf2-PHB2 pathway in diabetic encephalopathy. Sci Rep 2024; 14:24044. [PMID: 39402106 PMCID: PMC11473637 DOI: 10.1038/s41598-024-70584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic encephalopathy (DE) is a severe complication of diabetes, but its pathogenesis remains unclear. This study aimed to investigate the roles and underlying mechanisms of high glucose (HG)- and advanced glycosylation end product (AGE)-induced oxidative stress (OS) in the cognitive decline in DE. The DE mouse model was established using a high-fat diet and streptozotocin, and its cognitive functions were evaluated using the Morris Water Maze, novel object recognition, and Y-maze test. The results revealed increased reactive oxygen species (ROS) generation, mitophagy inhibition, and decreased prohibitin 2 (PHB2) expression in the hippocampal neurons of DE mice and HG- or AGE-treated HT-22 cells. However, overexpression of PHB2 reduced ROS generation, reversed mitophagy inhibition, and improved mitochondrial function in the HG- or AGE-treated HT-22 cells and ameliorated cognitive decline, improved mitochondrial structural damage, and reversed mitophagy inhibition of hippocampal neurons in DE mice. Further analysis revealed that the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was involved in the HG- or AGE-mediated downregulation of PHB2 in HT-22 cells. These results demonstrate that HG- or AGE-induced OS inhibits the mitophagy of hippocampal neurons via the Keap1-Nrf2-PHB2 pathway, thereby contributing to the cognitive decline in DE.
Collapse
Affiliation(s)
- Shan Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Jiazheng Li
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Wanchang Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, People's Republic of China.
- Hebei International Joint Research Center for Brain Science, Shijiazhuang, 050031, People's Republic of China.
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050031, People's Republic of China.
| |
Collapse
|
10
|
Liu J, Luo R, Zhang Y, Li X. Current status and perspective on molecular targets and therapeutic intervention strategy in hepatic ischemia-reperfusion injury. Clin Mol Hepatol 2024; 30:585-619. [PMID: 38946464 PMCID: PMC11540405 DOI: 10.3350/cmh.2024.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
Hepatic ischemia‒reperfusion injury (HIRI) is a common and inevitable complication of hepatic trauma, liver resection, or liver transplantation. It contributes to postoperative organ failure or tissue rejection, eventually affecting patient prognosis and overall survival. The pathological mechanism of HIRI is highly complex and has not yet been fully elucidated. The proposed underlying mechanisms include mitochondrial damage, oxidative stress imbalance, abnormal cell death, immune cell hyperactivation, intracellular inflammatory disorders and other complex events. In addition to serious clinical limitations, available antagonistic drugs and specific treatment regimens are still lacking. Therefore, there is an urgent need to not only clarify the exact etiology of HIRI but also reveal the possible reactions and bottlenecks of existing drugs, helping to reduce morbidity and shorten hospitalizations. We analyzed the possible underlying mechanism of HIRI, discussed various outcomes among different animal models and explored neglected potential therapeutic strategies for HIRI treatment. By thoroughly reviewing and analyzing the literature on HIRI, we gained a comprehensive understanding of the current research status in related fields and identified valuable references for future clinical and scientific investigations.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Belosludtseva NV, Ilzorkina AI, Serov DA, Dubinin MV, Talanov EY, Karagyaur MN, Primak AL, Liu J, Belosludtsev KN. ANT-Mediated Inhibition of the Permeability Transition Pore Alleviates Palmitate-Induced Mitochondrial Dysfunction and Lipotoxicity. Biomolecules 2024; 14:1159. [PMID: 39334925 PMCID: PMC11430505 DOI: 10.3390/biom14091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Hyperlipidemia is a major risk factor for vascular lesions in diabetes mellitus and other metabolic disorders, although its basis remains poorly understood. One of the key pathogenetic events in this condition is mitochondrial dysfunction associated with the opening of the mitochondrial permeability transition (MPT) pore, a drop in the membrane potential, and ROS overproduction. Here, we investigated the effects of bongkrekic acid and carboxyatractyloside, a potent blocker and activator of the MPT pore opening, respectively, acting through direct interaction with the adenine nucleotide translocator, on the progression of mitochondrial dysfunction in mouse primary lung endothelial cells exposed to elevated levels of palmitic acid. Palmitate treatment (0.75 mM palmitate/BSA for 6 days) resulted in an 80% decrease in the viability index of endothelial cells, which was accompanied by mitochondrial depolarization, ROS hyperproduction, and increased colocalization of mitochondria with lysosomes. Bongkrekic acid (25 µM) attenuated palmitate-induced lipotoxicity and all the signs of mitochondrial damage, including increased spontaneous formation of the MPT pore. In contrast, carboxyatractyloside (10 μM) stimulated cell death and failed to prevent the progression of mitochondrial dysfunction under hyperlipidemic stress conditions. Silencing of gene expression of the predominate isoform ANT2, similar to the action of carboxyatractyloside, led to increased ROS generation and cell death under conditions of palmitate-induced lipotoxicity in a stably transfected HEK293T cell line. Altogether, these results suggest that targeted manipulation of the permeability transition pore through inhibition of ANT may represent an alternative approach to alleviate mitochondrial dysfunction and cell death in cell culture models of fatty acid overload.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (M.V.D.); (K.N.B.)
| | - Anna I. Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (M.V.D.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (M.V.D.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Maxim N. Karagyaur
- Medical Research and Education Institute, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119191 Moscow, Russia
| | - Alexandra L. Primak
- Medical Research and Education Institute, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119191 Moscow, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China;
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (M.V.D.); (K.N.B.)
| |
Collapse
|
12
|
Zhi F, Pu X, Wei W, Liu L, Liu C, Chen Y, Chang X, Xu H. Modulating mitochondrial dynamics ameliorates left ventricular dysfunction by suppressing diverse cell death pathways after diabetic cardiomyopathy. Int J Med Sci 2024; 21:2324-2333. [PMID: 39310254 PMCID: PMC11413890 DOI: 10.7150/ijms.98065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) triggers a detrimental shift in mitochondrial dynamics, characterized by increased fission and decreased fusion, contributing to cardiomyocyte apoptosis and cardiac dysfunction. This study investigated the impact of modulating mitochondrial dynamics on DCM outcomes and underlying mechanisms in a mouse model. DCM induction led to upregulation of fission genes (Drp1, Mff, Fis1) and downregulation of fusion genes (Mfn1, Mfn2, Opa1). Inhibiting fission with Mdivi-1 or promoting fusion with Ginsenoside Rg1 preserved cardiac function, as evidenced by improved left ventricular ejection fraction (LVEF), fractional shortening (FS), and E/A ratio. Both treatments also reduced infarct size and attenuated cardiomyocyte apoptosis, indicated by decreased caspase-3 activity. Mechanistically, Mdivi-1 enhanced mitochondrial function by improving mitochondrial membrane potential, reducing reactive oxygen species (ROS) production, and increasing ATP generation. Ginsenoside Rg1 also preserved mitochondrial integrity and function under hypoxic conditions in HL-1 cardiomyocytes. These findings suggest that restoring the balance of mitochondrial dynamics through pharmacological interventions targeting either fission or fusion may offer a promising therapeutic strategy for mitigating MI-induced cardiac injury and improving patient outcomes.
Collapse
Affiliation(s)
- Fumin Zhi
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiangyi Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wei
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Li Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunyan Liu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ye Chen
- Heilongjiang Forest Industry General Hospital, Beijing, 100053, Harbin 150000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Hongtao Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
13
|
Wang H, Li Y, Cao X, Niu H, Li X, Wang J, Yang J, Xu C, Wang H, Wan S, Li K, Fu S, Yang L. MELATONIN ATTENUATES RENAL ISCHEMIA-REPERFUSION INJURY BY REGULATING MITOCHONDRIAL DYNAMICS AND AUTOPHAGY THROUGH AMPK/DRP1. Shock 2024; 62:74-84. [PMID: 38713551 DOI: 10.1097/shk.0000000000002330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
ABSTRACT Ischemia-reperfusion injury (IRI) often stems from an imbalance between mitochondrial dynamics and autophagy. Melatonin mitigates IRI by regulating mitochondrial dynamics. However, the precise molecular mechanism underlying the role of melatonin in reducing IRI through modulating mitochondrial dynamics remains elusive. The objective of this study was to investigate whether pretreatment with melatonin before IRI confers protective effects by modulating mitochondrial dynamics and mitophagy. Melatonin pretreatment was administered to HK-2 cells and live rats before subjecting them to hypoxia-reoxygenation or IRI, respectively. Cells and rat kidney models were evaluated for markers of oxidative stress, autophagy, mitochondrial dynamics, and the expression of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phospho-AMPKα (P-AMPK). After renal IRI, increased mitochondrial fission and autophagy were observed, accompanied by exacerbated cellular oxidative stress injury and aggravated mitochondrial dysfunction. Nevertheless, melatonin pretreatment inhibited mitochondrial fission, promoted mitochondrial fusion, and attenuated autophagy levels. This intervention was correlated with a notable reduction in oxidative stress injury and remarkable restoration of mitochondrial functionality. Ischemia-reperfusion injury led to a decline in P-AMPK levels, whereas melatonin pretreatment increased the level of P-AMPK levels. Silencing AMPK with small interfering RNA exacerbated mitochondrial damage, and in this context, melatonin pretreatment did not alleviate mitochondrial fission or autophagy levels but resulted in sustained oxidative stress damage. Collectively, these findings indicate that melatonin pretreatment shields the kidneys from IRI by mitigating excessive mitochondrial fission, moderating autophagy levels, and preserving appropriate mitochondrial fission, all in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Huabin Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xichao Cao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Heping Niu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jirong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianwei Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Changhong Xu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Hailong Wang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shun Wan
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Kunpeng Li
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology, Institute of Urology, Gansu Urological Clinical Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
14
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
15
|
Yan M, Gao J, Lan M, Wang Q, Cao Y, Zheng Y, Yang Y, Li W, Yu X, Huang X, Dou L, Liu B, Liu J, Cheng H, Ouyang K, Xu K, Sun S, Liu J, Tang W, Zhang X, Man Y, Sun L, Cai J, He Q, Tang F, Li J, Shen T. DEAD-box helicase 17 (DDX17) protects cardiac function by promoting mitochondrial homeostasis in heart failure. Signal Transduct Target Ther 2024; 9:127. [PMID: 38782919 PMCID: PMC11116421 DOI: 10.1038/s41392-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.
Collapse
Affiliation(s)
- Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Lan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Que Wang
- Department of Health Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan Cao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiaoxue Yu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Bing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Junmeng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology and Department of Cardiology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jin Liu
- Experimental Technology Center for Life Sciences at Beijing Normal University, Beijing, 100875, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiyue Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Liang Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Qing He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
16
|
Chen Y, Huang J, Zhou H, Lin J, Tao J. Pgam5 aggravates hyperglycemia-induced myocardial dysfunction through disrupting Phb2-dependent mitochondrial dynamics. Int J Med Sci 2024; 21:1194-1203. [PMID: 38818468 PMCID: PMC11134593 DOI: 10.7150/ijms.92872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health. Mitochondrial function was evaluated through measurements of mitochondrial membrane potential using the JC-1 probe, and levels of mitochondrial reactive oxygen species (ROS) were assessed. Additionally, the study involved qPCR analysis to quantify the transcriptional changes in genes related to mitochondrial fission and mitophagy. Our findings indicate that hyperglycemia significantly reduces cardiomyocyte viability and impairs mitochondrial function, as evidenced by decreased mitochondrial membrane potential and increased ROS levels. Pgam5 knockdown was observed to mitigate these adverse effects, preserving mitochondrial function and cardiomyocyte viability. On the molecular level, Pgam5 was found to regulate genes associated with mitochondrial fission (such as Drp1, Mff, and Fis1) and mitophagy (including Parkin, Bnip3, and Fundc1). Furthermore, overexpression of Phb2 countered the hyperglycemia-induced mitochondrial dysfunction and normalized the levels of key mitochondrial antioxidant enzymes. The combined data suggest a protective role for both Pgam5 knockdown and Phb2 overexpression against hyperglycemia-induced cellular and mitochondrial damage. The study elucidates the critical roles of Pgam5 and Phb2 in regulating mitochondrial dynamics in the setting of hyperglycemia-induced myocardial dysfunction. By modulating mitochondrial fission and mitophagy, Pgam5 and Phb2 emerge as key players in preserving mitochondrial integrity and cardiomyocyte health under diabetic conditions. These findings contribute significantly to our understanding of the molecular mechanisms underlying diabetic cardiomyopathy and suggest potential therapeutic targets for mitigating myocardial dysfunction in diabetes.
Collapse
Affiliation(s)
- Yingzhen Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jungang Huang
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hao Zhou
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jianguo Lin
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
17
|
Sun L, Xiao Y, San W, Chen Y, Meng G. Dihydromyricetin regulates RIPK3-CaMKII to prevent necroptosis in high glucose-stimulated cardiomyocytes. Heliyon 2024; 10:e28921. [PMID: 38596141 PMCID: PMC11002228 DOI: 10.1016/j.heliyon.2024.e28921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Background Diabetic cardiomyopathy is one common cardiovascular complication without effective treatments. Dihydromyricetin (DHY), a natural dihydroflavonol compound extracted from Ampelopsis grossedentata, possesses versatile pharmacologically important effects. In our current research, we planned to evaluate the impact and probable DHY mechanisms in high glucose (HG)-induced cardiomyocytes. Methods Primary cardiomyocytes were pretreated with different concentrations of DHY (0, 20, 40, 80, 160, and 320 μM) for various time (0, 1, 2, 4, 12, and 24 h). They were then stimulated for 48 h with 5.5 mmol/L normal glucose (NG) and 33.3 mmol/L high glucose (HG). Cell viability, adenosine-triphosphate (ATP) levels, and lactate dehydrogenase (LDH) release of cardiomyocytes were detected. JC-1 staining was employed to measure the mitochondrial membrane potential. MitoSOX staining and dihydroethidium (DHE) staining were applied to evaluate the oxidative stress levels. TDT mediated dUTP nick end labeling (TUNEL) was used to measure apoptotic levels. Expressions of calcium/calmodulin-dependent protein kinase II (CaMKII), phospholamban (PLB), optic atrophy 1 (OPA1), dynamin-related protein 1 (DRP1), caspase 3, mixed kinase lineage domain like protein (MLKL), receptor interacting protein kinase 3 (RIPK3), and receptor interacting protein kinase 1 (RIPK1) were detected by immunofluorescence and/or Western blot. Results DHY improved cell viability, enhanced ATP level, and decreased LDH content in HG-stimulated cardiomyocytes, suggesting DHY attenuating cell injury. DHY reduced number of TUNEL positive cells, inhibited RIPK3 and cleaved-caspase 3 expression, implying DHY alleviated necroptosis in HG-stimulated cardiomyocytes. DHY diminished JC-1 monomers, DHE and MitoSOX fluorescence intensity as well as DRP1 expression but increased JC-1 aggregates intensity and OPA1 expression, indicating that DHY attenuated oxidative stress in HG-stimulated cardiomyocytes. DHY also attenuated CaMKII activity by suppressed PLB phosphorylation and inhibited CaMKII oxidation in HG-stimulated cardiomyocytes. Conclusions HG-induced cardiomyocytes injury was alleviated wherein DHY attenuated necroptosis, repressed ROS production, and inhibited CaMKII oxidation, suggesting that DHY may serve as potential agent to prevent and treat diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
| | - Yujiao Xiao
- Department of Pathology, Jincheng People's Hospital, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacy, Affiliated Maternity & Child Health Care Hospital of Nantong University, Nantong, China
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
18
|
García-Peña LM, Abel ED, Pereira RO. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024; 73:151-161. [PMID: 38241507 PMCID: PMC10796300 DOI: 10.2337/dbi23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 01/21/2024]
Abstract
Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
19
|
Li H, Jia Y, Yao D, Gao M, Wang L, Liu J. Rhein alleviates myocardial ischemic injury by inhibiting mitochondrial division, activating mitochondrial autophagy and suppressing myocardial cell apoptosis through the Drp1/Pink1/Parkin pathway. Mol Biol Rep 2024; 51:266. [PMID: 38302764 DOI: 10.1007/s11033-023-09154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.
Collapse
Affiliation(s)
- Hanqing Li
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Yan Jia
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China
| | - Daomin Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Lijun Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhong Shan Rd, Nanjing, 210002, China.
| |
Collapse
|
20
|
Qin P, Qin T, Liang L, Li X, Jiang B, Wang X, Ma J, Hu F, Zhang M, Hu D. The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample mendelian randomization study. Cardiovasc Diabetol 2024; 23:45. [PMID: 38282013 PMCID: PMC10823732 DOI: 10.1186/s12933-023-02074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/25/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND This study used a bidirectional 2-sample Mendelian randomization study to investigate the potential causal links between mtDNA copy number and cardiometabolic disease (obesity, hypertension, hyperlipidaemia, type 2 diabetes [T2DM], coronary artery disease [CAD], stroke, ischemic stroke, and heart failure). METHODS Genetic associations with mtDNA copy number were obtained from a genome-wide association study (GWAS) summary statistics from the UK biobank (n = 395,718) and cardio-metabolic disease were from largest available GWAS summary statistics. Inverse variance weighting (IVW) was conducted, with weighted median, MR-Egger, and MR-PRESSO as sensitivity analyses. We repeated this in the opposite direction using instruments for cardio-metabolic disease. RESULTS Genetically predicted mtDNA copy number was not associated with risk of obesity (P = 0.148), hypertension (P = 0.515), dyslipidemia (P = 0.684), T2DM (P = 0.631), CAD (P = 0.199), stroke (P = 0.314), ischemic stroke (P = 0.633), and heart failure (P = 0.708). Regarding the reverse directions, we only found that genetically predicted dyslipidemia was associated with decreased levels of mtDNA copy number in the IVW analysis (β= - 0.060, 95% CI - 0.044 to - 0.076; P = 2.416e-14) and there was suggestive of evidence for a potential causal association between CAD and mtDNA copy number (β= - 0.021, 95% CI - 0.003 to - 0.039; P = 0.025). Sensitivity and replication analyses showed the stable findings. CONCLUSIONS Findings of this Mendelian randomization study did not support a causal effect of mtDNA copy number in the development of cardiometabolic disease, but found dyslipidemia and CAD can lead to reduced mtDNA copy number. These findings have implications for mtDNA copy number as a biomarker of dyslipidemia and CAD in clinical practice.
Collapse
Affiliation(s)
- Pei Qin
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University, No. 47, Youti Road, Shenzhen, 518001, Guangdong, China
| | - Tianhang Qin
- Institute of Software Chinese Academy of Sciences, Beijing, Guangdong, China
| | - Lei Liang
- Department of Gynecology and Obstetrics, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xinying Li
- School of Public Health, Shantou University, Shantou, Guangdong, China
| | - Bin Jiang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Xiaojie Wang
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Jianping Ma
- Department of Neurology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Fulan Hu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Ming Zhang
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital of Shenzhen University, No. 47, Youti Road, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
21
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
22
|
Zhang M, Tong Z, Wang Y, Fu W, Meng Y, Huang J, Sun L. Relationship between ferroptosis and mitophagy in renal fibrosis: a systematic review. J Drug Target 2023; 31:858-866. [PMID: 37607069 DOI: 10.1080/1061186x.2023.2250574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Renal fibrosis, characterised by glomerulosclerosis and tubulointerstitial fibrosis, is a typical pathological alteration in the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). However, the limited and expensive options for treating renal fibrosis place a heavy financial burden on patients and healthcare systems. Therefore, it is significant to find an effective treatment for renal fibrosis. Ferroptosis, a non-traditional form of cell death, has been found to play an important role in acute kidney injury (AKI), tumours, neurodegenerative diseases, and so on. Moreover, a growing body of research suggests that ferroptosis might be a potential target of renal fibrosis. Meanwhile, mitophagy is a type of selective autophagy that can selectively degrade damaged or dysfunctional mitochondria as a form of mitochondrial quality control, reducing the production of reactive oxygen species (ROS), the accumulation of which is the main cause of renal fibrosis. Additionally, as a receptor of mitophagy, NIX can release beclin1 to induce mitophagy, which can also bind to solute carrier family 7 member 11 (SLC7A11) to block the activity of cystine/glutamate antitransporter (system Xc-) and inhibit ferroptosis, thereby suggesting a link between mitophagy and ferroptosis. However, there have been only limited studies on the relationship among mitophagy, ferroptosis and renal fibrosis. In this paper, we review the mechanisms of mitophagy, and describe how ferroptosis and mitophagy are related to renal fibrosis in an effort to identify potential novel targets for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Ziyuan Tong
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yaqing Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Jiayi Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
23
|
Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress-Role of New Drugs, Flozins. Biomedicines 2023; 11:2236. [PMID: 37626732 PMCID: PMC10452694 DOI: 10.3390/biomedicines11082236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure (HF) is a multifactorial clinical syndrome involving many complex processes. The causes may be related to abnormal heart structure and/or function. Changes in the renin-angiotensin-aldosterone system, the sympathetic nervous system, and the natriuretic peptide system are important in the pathophysiology of HF. Dysregulation or overexpression of these processes leads to changes in cardiac preload and afterload, changes in the vascular system, peripheral vascular dysfunction and remodeling, and endothelial dysfunction. One of the important factors responsible for the development of heart failure at the cellular level is oxidative stress. This condition leads to deleterious cellular effects as increased levels of free radicals gradually disrupt the state of equilibrium, and, as a consequence, the internal antioxidant defense system is damaged. This review focuses on pharmacotherapy for chronic heart failure with regard to oxidation-reduction metabolism, with special attention paid to the latest group of drugs, SGLT2 inhibitors-an integral part of HF treatment. These drugs have been shown to have beneficial effects by protecting the antioxidant system at the cellular level.
Collapse
Affiliation(s)
- Patryk Bodnar
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | | | - Tomasz Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Anna Ciszek-Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| |
Collapse
|
24
|
Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol 2023; 20:443-462. [PMID: 36609604 DOI: 10.1038/s41569-022-00824-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/09/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce heart failure events by direct action on the failing heart that is independent of changes in renal tubular function. In the failing heart, nutrient transport into cardiomyocytes is increased, but nutrient utilization is impaired, leading to deficient ATP production and the cytosolic accumulation of deleterious glucose and lipid by-products. These by-products trigger downregulation of cytoprotective nutrient-deprivation pathways, thereby promoting cellular stress and undermining cellular survival. SGLT2 inhibitors restore cellular homeostasis through three complementary mechanisms: they might bind directly to nutrient-deprivation and nutrient-surplus sensors to promote their cytoprotective actions; they can increase the synthesis of ATP by promoting mitochondrial health (mediated by increasing autophagic flux) and potentially by alleviating the cytosolic deficiency in ferrous iron; and they might directly inhibit glucose transporter type 1, thereby diminishing the cytosolic accumulation of toxic metabolic by-products and promoting the oxidation of long-chain fatty acids. The increase in autophagic flux mediated by SGLT2 inhibitors also promotes the clearance of harmful glucose and lipid by-products and the disposal of dysfunctional mitochondria, allowing for mitochondrial renewal through mitochondrial biogenesis. This Review describes the orchestrated interplay between nutrient transport and metabolism and nutrient-deprivation and nutrient-surplus signalling, to explain how SGLT2 inhibitors reverse the profound nutrient, metabolic and cellular abnormalities observed in heart failure, thereby restoring the myocardium to a healthy molecular and cellular phenotype.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA.
- Imperial College London, London, UK.
| |
Collapse
|
25
|
Correale M, Tricarico L, Croella F, Alfieri S, Fioretti F, Brunetti ND, Inciardi RM, Nodari S. Novelties in the pharmacological approaches for chronic heart failure: new drugs and cardiovascular targets. Front Cardiovasc Med 2023; 10:1157472. [PMID: 37332581 PMCID: PMC10272855 DOI: 10.3389/fcvm.2023.1157472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Despite recent advances in chronic heart failure (HF) management, the prognosis of HF patients is poor. This highlights the need for researching new drugs targeting, beyond neurohumoral and hemodynamic modulation approach, such as cardiomyocyte metabolism, myocardial interstitium, intracellular regulation and NO-sGC pathway. In this review we report main novelties on new possible pharmacological targets for HF therapy, mainly on new drugs acting on cardiac metabolism, GCs-cGMP pathway, mitochondrial function and intracellular calcium dysregulation.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiothoracic, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Cardiothoracic, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Francesca Croella
- Department of Medical & Surgical Sciences, University of Foggia, Foggia, Italy
| | - Simona Alfieri
- Department of Medical & Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Fioretti
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| | | | - Riccardo M. Inciardi
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Fan ZG, Ji MY, Xu Y, Wang WX, Lu J, Ma GS. Serum Dynamin-Related Protein 1 Concentrations Discriminate Phenotypes and Predict Prognosis of Heart Failure. Rev Cardiovasc Med 2023; 24:123. [PMID: 39076264 PMCID: PMC11273009 DOI: 10.31083/j.rcm2404123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 07/31/2024] Open
Abstract
Background Dynamin-related protein 1 (Drp1) has been demonstrated as a crucial role in mediating the programed cell death and cardiac metabolism through its regulatory of mitophagy in animal studies. However, the clinical values of Drp1 for human cardiac disease remain unknown. This study is aimed to evaluate the diagnostic and prognostic values of serum Drp1 in these patients with heart failure (HF). Methods The enzyme linked immunosorbent assay (ELISA) was used for measuring serum Drp1 concentrations in 85 cases of HF with preserved ejection fraction (HFpEF) and 86 cases of HF with reduced ejection fraction (HFrEF). The diagnostic value of Drp1 was evaluated using the receiver operating characteristic (ROC) analysis. The composite endpoint was consisted of cardiac death and rehospitalization for HF, and the association between Drp1 and clinical outcomes were further determined. Results Serum Drp1 concentrations were much higher in HFpEF than that in HFrEF (4.2 ± 3.7 ng/mL vs. 2.6 ± 2.2 ng/mL, p = 0.001) and the ROC analysis demonstrated it as a potential diagnostic biomarker for distinction of the HF phenotypes, with an optimal cutoff point of 3.5 ng/mL (area under the curve (AUC) = 0.659, sensitivity: 45.9%, specificity: 83.7%). Kaplan-Meier survival analysis indicated that a low serum concentration of Drp1 (cut-off value = 2.5 ng/mL, AUC = 0.738) was in relation to poor prognosis of HF. Moreover, binary logistic regression analysis identified the low serum concentration of Drp1 as an independent risk predictor for rehospitalization (odds ratio (OR) = 6.574, p = 0.001) and a composite endpoint (OR = 5.927, p = 0.001). Conclusions Our findings suggested that low serum concentrations of Drp1 might serve as a predicting biomarker for distinction of HF phenotypes and overall prognosis of HF.
Collapse
Affiliation(s)
- Zhong-guo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
| | - Ming-yue Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
- Department of Cardiology, Lianshui People’s Hospital, 223400 Huaian, Jiangsu, China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
| | - Wan-xin Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
| | - Jing Lu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 210009 Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Fang P, Ye Z, Li R, She D, Zong G, Zhang L, Xue Y, Zhang K. Glucagon-Like Peptide-1 Receptor Agonist Protects Against Diabetic Cardiomyopathy by Modulating microRNA-29b-3p/SLMAP. Drug Des Devel Ther 2023; 17:791-806. [PMID: 36936522 PMCID: PMC10019346 DOI: 10.2147/dddt.s400249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Purpose Our aims were to investigate the pathogenesis of diabetic cardiomyopathy (DCM) and to explore the protective effect of glucagon-like peptide-1 receptor agonist (GLP-1RA) on DCM. Methods After 12 weeks of treatment with exenatide-loaded microspheres, a long-acting GLP-1RA, in DCM mice, cardiac structure and function were evaluated by plasma B-type natriuretic peptide (BNP), echocardiography, H&E, oil red and Sirius staining. The expression of glucagon-like peptide-1 receptor in mouse heart tissue was determined by immunofluorescence staining. The label-free proteomic analysis of cardiac proteins was conducted among control, DCM and DM+GLP-1RA groups. Then, quantitative real-time PCR, Western blotting and dual-luciferase reporter assay were performed to verify the regulation of target protein by the upstream microRNA (miRNA). Results GLP-1RA treatment obviously improved serum BNP, myocardial fibrosis, lipid deposition of the myocardium and echocardiography parameters in DCM mice. Sarcolemmal membrane-associated protein (SLMAP) was one of 61 differentially expressed cardiac proteins found in three groups by proteomic analysis. Up-regulation of microRNA-29b-3p (miR-29b-3p) and down-regulation of SLMAP were found in the ventricular myocardium of GLP-1RA-treated DCM mice. SLMAP was a target of miR-29b-3p, while GLP-1RA regulated SLMAP expression through miR-29b-3p. Furthermore, inhibition of glucagon-like peptide-1 receptor (GLP-1R) in cardiomyocytes reversed the effects of GLP-1RA on miR-29b/SLMAP. Conclusion SLMAP may play roles in the pathogenesis of DCM and may be a target of GLP-1RA in protecting against DCM. After binding to myocardial GLP-1R, GLP-1RA can regulate the expression of myocardial SLMAP through miR-29b-3p.
Collapse
Affiliation(s)
- Ping Fang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Zhengqin Ye
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ran Li
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Dunmin She
- Department of Endocrinology, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, 225001, People’s Republic of China
| | - Guannan Zong
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Liya Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| | - Ying Xue
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
- Correspondence: Ying Xue; Keqin Zhang, Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, No. 389, Xincun Road, Shanghai, 200065, People’s Republic of China, Tel +86-21-66111061, Email ;
| | - Keqin Zhang
- Department of Endocrinology and Metabolism, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People’s Republic of China
| |
Collapse
|
28
|
Jiang X, Zhang K, Gao C, Ma W, Liu M, Guo X, Bao G, Han B, Hu H, Zhao Z. Activation of FMS-like tyrosine kinase 3 protects against isoprenaline-induced cardiac hypertrophy by improving autophagy and mitochondrial dynamics. FASEB J 2022; 36:e22672. [PMID: 36440960 DOI: 10.1096/fj.202200419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
FMS-like receptor tyrosine kinase 3 (Flt3) expression was reported to increase in the heart in response to pathological stress, but the role of Flt3 activation and its underlying mechanisms remain poorly elucidated. This study was designed to investigate the role of Flt3 activation in sympathetic hyperactivity-induced cardiac hypertrophy and its mechanisms through autophagy and mitochondrial dynamics. In vivo, cardiac hypertrophy was established by subcutaneous injection of isoprenaline (6 mg/kg·day) in C57BL/6 mice for 7 consecutive days. The Flt3-ligand intervention was launched 2 h prior to isoprenaline each day. In vitro, experiments of cardiomyocyte hypertrophy, autophagy, and mitochondrial dynamics were performed in neonatal rat cardiomyocytes (NRCMs). Our results revealed that the expression level of Flt3 protein was significantly increased in the hypertrophic myocardium provoked by isoprenaline administration. Flt3-ligand intervention alleviated isoprenaline-induced cardiac oxidative stress, hypertrophy, fibrosis, and contractile dysfunction. Isoprenaline stimulation impaired autophagic flux in hypertrophic mouse hearts, supported by the accumulation of LC3II and P62 proteins, while Flt3-ligand restored the impairment of autophagic flux. Flt3 activation normalized the imbalance of mitochondrial fission and fusion in the hearts of mice evoked by isoprenaline as evidenced by the neutralization of elevated mitochondrial fission markers and reduced mitochondrial fusion markers. In NRCMs, Flt3-ligand treatment attenuated isoprenaline-stimulated hypertrophy, which was abolished by a Flt3-specific blocker AC220. Activating Flt3 reversed isoprenaline-induced autophagosome accumulation and impairment of autophagic flux probably by enhancing SIRT1 expression and consequently TFEB nuclear translocation. Flt3 activation improved the imbalance of mitochondrial dynamics induced by isoprenaline in NRCMs through the SIRT1/P53 pathway. Activation of Flt3 mitigated ISO-stimulated hypertrophy probably involves the restoration of autophagic flux and balance of mitochondrial dynamics. Therefore, activation of Flt3 attenuates isoprenaline-induced cardiac hypertrophy in vivo and in vitro, the potential mechanism probably attributes to SIRT1/TFEB-mediated autophagy promotion and SIRT1/P53-mediated mitochondrial dynamics balance. These findings suggest that activation of Flt3 may be a novel target for protection against cardiac remodeling and heart failure during sympathetic hyperactivity.
Collapse
Affiliation(s)
- Xixi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kaina Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenying Gao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenzhuo Ma
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mengqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gaowa Bao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Bing Han
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhenghang Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
29
|
Packer M. How can sodium-glucose cotransporter 2 inhibitors stimulate erythrocytosis in patients who are iron-deficient? Implications for understanding iron homeostasis in heart failure. Eur J Heart Fail 2022; 24:2287-2296. [PMID: 36377108 PMCID: PMC10100235 DOI: 10.1002/ejhf.2731] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Many patients with heart failure have an iron-deficient state, which can limit erythropoiesis in erythroid precursors and ATP production in cardiomyocytes. Yet, treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors produces consistent increases in haemoglobin and haematocrit, even in patients who are iron-deficient before treatment, and this effect remains unattenuated throughout treatment even though SGLT2 inhibitors further aggravate biomarkers of iron deficiency. Heart failure is often accompanied by systemic inflammation, which activates hepcidin, thus impairing the duodenal absorption of iron and the release of iron from macrophages and hepatocytes, leading to a decline in circulating iron. Inflammation and oxidative stress also promote the synthesis of ferritin and suppress ferritinophagy, thus impairing the release of intracellular iron stores and leading to the depletion of bioreactive cytosolic Fe2+ . By alleviating inflammation and oxidative stress, SGLT2 inhibitors down-regulate hepcidin, upregulate transferrin receptor protein 1 and reduce ferritin; the net result is to increase the levels of cytosolic Fe2+ available to mitochondria, thus enabling the synthesis of heme (in erythroid precursors) and ATP (in cardiomyocytes). The finding that SGLT2 inhibitors can induce erythrocytosis without iron supplementation suggests that the abnormalities in iron diagnostic tests in patients with mild-to-moderate heart failure are likely to be functional, rather than absolute, that is, they are related to inflammation-mediated trapping of iron by hepcidin and ferritin, which is reversed by treatment with SGLT2 inhibitors. An increase in bioreactive cytosolic Fe2+ is also likely to augment mitochondrial production of ATP in cardiomyocytes, thus retarding the progression of heart failure. These effects on iron metabolism are consistent with (i) proteomics analyses of placebo-controlled trials, which have shown that biomarkers of iron homeostasis represent the most consistent effect of SGLT2 inhibitors; and (ii) statistical mediation analyses, which have reported striking parallelism of the effect of SGLT2 inhibitors to promote erythrocytosis and reduce heart failure events.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular InstituteDallasTXUSA
- Imperial CollegeLondonUK
| |
Collapse
|
30
|
Jia Y, Li D, Yu J, Jiang W, Liao X, Zhao Q. Potential diabetic cardiomyopathy therapies targeting pyroptosis: A mini review. Front Cardiovasc Med 2022; 9:985020. [PMID: 36061533 PMCID: PMC9433721 DOI: 10.3389/fcvm.2022.985020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pyroptosis is primarily considered a pro-inflammatory class of caspase-1- and gasdermin D (GSDMD)-dependent programmed cell death. Inflammasome activation promotes the maturation and release of interleukin (IL)-1β and IL-18, cleavage of GSDMD, and development of pyroptosis. Recent studies have reported that NLRP3 inflammasome activation-mediated pyroptosis aggravates the formation and development of diabetes cardiomyopathy (DCM). These studies provide theoretical mechanisms for exploring a novel approach to treat DCM-associated cardiac dysfunction. Accordingly, this review aims to summarize studies that investigated possible DCM therapies targeting pyroptosis and elucidate the molecular mechanisms underlying NLRP3 inflammasome-mediated pyroptosis, and its potential association with the pathogenesis of DCM. This review may serve as a basis for the development of potential pharmacological agents as novel and effective treatments for managing and treating DCM.
Collapse
Affiliation(s)
- Yu Jia
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Jing Yu
- Department of Emergency Medicine and National Clinical Research Center for Geriatrics, Disaster Medicine Center, West China Hospital, Sichuan University West China School of Medicine, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoyang Liao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qian Zhao,
| |
Collapse
|