1
|
Anderson HA, Robilotto GL, Mickle AD. Role of local angiotensin II signaling in bladder function. Am J Physiol Renal Physiol 2024; 327:F726-F738. [PMID: 39265080 PMCID: PMC11563647 DOI: 10.1152/ajprenal.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Angiotensin II signaling plays a crucial role in many different diseases. Although it has been known for several decades that local angiotensin II signaling molecules are present in the bladder, the understanding of their functions there is still limited, especially compared with other organ systems such as cardiovascular and respiratory systems. This article reviews current literature regarding local angiotensin II signaling in the urinary bladder. By reviewing several decades of literature, the field has provided strong evidence to support the presence of local angiotensin II signaling in the bladder, including the expression of angiotensin type 1 receptor and angiotensin type 2 receptor in both human and animal tissues. In addition, evidence suggests a functional role of angiotensin type 1 receptor in mediating bladder contractions. In bladder disease models, angiotensin II signaling can be upregulated, and angiotensin type 1 receptor activity is associated with increases in inflammation, fibrosis, and oxidative stress. We also address the gaps in knowledge that remain in understanding local angiotensin II signaling in the bladder, including limitations on clinical translatability. Although there is a strong foundation regarding the local presence and role of angiotensin II signaling in the bladder, further research is needed to support translational applications.
Collapse
Affiliation(s)
- Hannah A Anderson
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gabriella L Robilotto
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Aaron D Mickle
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
2
|
Wei L, Bo L, Luo C, Yin N, Jiang W, Qian F, Zhou A, Lu X, Guo H, Mao C. Transplantation of human umbilical cord-derived mesenchymal stem cells improves age-related ovarian functional decline via regulating the local renin-angiotensin system on inflammation and oxidative stress. Stem Cell Res Ther 2024; 15:377. [PMID: 39444026 PMCID: PMC11515572 DOI: 10.1186/s13287-024-03997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Age-related reproductive aging is a natural and irreversible physiological process, and delaying childbearing is increasingly common all over the world. Transplantation of mesenchymal stem cells (MSCs) is considered a new and effective therapy to restore ovarian function, but the relevant mechanisms remain unclear. Recently, it has been found that there is a local Renin-angiotensin system (RAS) in human ovary and it plays a key role. METHODS After collecting follicular fluid from women who received oocyte retrieval for pure male factor infertility, the level of RAS components in it were detected, and the correlation analysis by linear regression. Then, the in vivo experiments on female C57BL/6 mice were designed to measure ovarian function, and the transcription and translation levels of RAS pathway were detected by molecular biology methods. Moreover, the role of RAS in regulating inflammation and oxidative stress in the co-culture system were explored in in vitro experiments on KGN cells. RESULTS First, a total of 139 samples of analyzable follicular fluid were obtained. The local RAS of ovary, which is independent of systemic RAS (P > 0.05), is affected by age (Pearson r < 0, P < 0.05) and related to ovarian function, inflammation, oxidative stress indexes and assisted reproduction laboratory outcomes (P < 0.05). Next, the ovary/body weight of aging mice decreased significantly and serum sex hormones levels changed significantly (P < 0.01). The number of functional follicles decreased, while the atresia follicles increased (P < 0.05). After MSCs transplantation, all the above measures have been partially recovered (P < 0.05). Although several RAS components in aging ovary changed, MSCs only improved the expression level of AT1R (P < 0.05). Furthermore, the secretion ability and mitochondrial membrane potential of aging KGN cells decreased, while the intracellular ROS level and the aging cells ratio increased (P < 0.01). All the above measures have been partially recovered when co-cultured with MSCs (P < 0.05). After Ang(1-7) were added into the co-culture system, the above have been more significantly restored compared with Ang II (P < 0.05). Nevertheless, there was no statistical difference in estradiol level no matter which one was added (P > 0.05). CONCLUSIONS Together, our findings indicate that a novel possible mechanism to explain how stem cells restore age-related ovarian functional decline.
Collapse
Affiliation(s)
- Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Na Yin
- Obstetrics and Gynecology Department, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Wangtao Jiang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fei Qian
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Anwen Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuanping Lu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huiping Guo
- Obstetrics and Gynecology Department, Zhangjiagang First People's Hospital Affiliated to Soochow University, Zhangjiagang, 215699, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
3
|
Zanon P, Terraciano PB, Quandt L, Palma Kuhl C, Pandolfi Passos E, Berger M. Angiotensin II - AT1 receptor signalling regulates the plasminogen-plasmin system in human stromal endometrial cells increasing extracellular matrix degradation, cell migration and inducing a proinflammatory profile. Biochem Pharmacol 2024; 225:116280. [PMID: 38735446 DOI: 10.1016/j.bcp.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The pivotal role of human endometrial stromal cells (hESCs) in the development of endometriosis lies in their ability to adopt a pro-invasive and proinflammatory profile upon migration to areas outside the uterus. However, the molecular mechanisms involved in these events remain unclear. In this study, we investigated how angiotensin II (Ang II) affects the plasminogen-plasmin system in hESCs, and the mechanisms underlying cell proliferation, migration, matrix degradation, and inflammation. Precursors, receptors, and peptidases involved in angiotensin metabolism increased significantly in Ang II-treated hESCs. The expression and activity of tissue (tPA)- and urokinase (uPA)- type plasminogen activators and the receptor for uPA (uPAR) were induced in the presence of Ang II. The up-regulation of tPA-uPA/uPAR pathway significantly contributes to heightened plasmin production both on the surface of hESCs and in their conditioned media. As a result, the plasmin generation induced by Ang II enhances the degradation of fibrin and matrix proteins, while also boosting hESC viability, proliferation, and migration through the up-regulation of growth factor expression. Notably, Ang II-induced hESC migration was dependent on the generation of active plasmin on cell surface. Ang II regulates oxidative and inflammatory signalling in hESCs primarily via NADPH oxidase and through the up-regulation of proinflammatory cytokines and adhesion molecules. Interestingly, Ang II receptor (AT1R) blockage, decreased plasmin generation, tPA-uPA/uPAR expression and hESC migration. Our results suggest that Ang II/AT1R axis regulates hESC proliferation and migration through tPA-uPA/uPAR pathway activation and plasmin generation. We propose the Ang II/AT1R axis as a potential target for endometriosis treatment.
Collapse
Affiliation(s)
- Pamela Zanon
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paula Barros Terraciano
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Letícia Quandt
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Reprodução e Farmacologia Celular, Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Fertilidade, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Markus Berger
- Grupo de Reprodução e Farmacologia Celular, Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA-UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências de Saúde: Ginecologia e Obstetrícia (PPGGO), Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Bhattacharjee J, Rolfo A, Barbosa BF, Imakawa K, Ermini L. Editorial: Developmental biology and endocrine research for a successful pregnancy. Front Endocrinol (Lausanne) 2024; 15:1411864. [PMID: 38803471 PMCID: PMC11128683 DOI: 10.3389/fendo.2024.1411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Jayonta Bhattacharjee
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Alessandro Rolfo
- Department of Surgical Sciences, School of Medicine, University of Turin, Turin, Italy
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Daskalova E, Pencheva M, Denev P. Black Chokeberry ( Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats. Curr Issues Mol Biol 2024; 46:4452-4470. [PMID: 38785538 PMCID: PMC11119763 DOI: 10.3390/cimb46050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Spermatogenesis is a process that continues until the end of an individual's life, although with reduced activity with advancing age. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases observed in aged testes. The use of natural compounds with antioxidant and anti-inflammatory properties has a beneficial effect on the inflammatory and oxidative status of the aged testis. The aim of this study was to determine the effect of supplementation with antioxidant-rich black chokeberry (Aronia melanocarpa) juice on several markers of oxidative stress and aging in rat testis. In total, 24 male Wistar rats were divided into three experimental groups: young controls aged 2 months, old controls aged 27 months, and 27-month-old rats supplemented with black chokeberry juice at a dose of 10 mL/kg for 3 months. A. melanocarpa juice supplementation led to reduced oxidative stress, manifested by increased immunoexpression of nNOS, eNOS, and MAS1 in the seminiferous tubules and in the Leydig cells. The morphometrically determined tubule structure data showed no significant differences between the three groups. However, the intensity of the immunoreaction for TRK-C and NT3 in Leydig cells was demonstrably higher in the supplemented old animals compared with the old controls. There was a significantly higher number of blood vessels around the seminiferous tubules in the supplemented animals compared to the old controls. These data indicate that supplementation with A. melanocarpa juice slows down aging processes in the testis and preserves the functional activity of Leydig cells.
Collapse
Affiliation(s)
- Elena Daskalova
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Li N, Zhang Q, Dai S, Rao W, Shi H, Ding L, Hong M. Angiotensin-(1-7) plays an important role in regulating spermatogenesis in Trachemys scripta elegans under salinity stress. J Exp Biol 2024; 227:jeb246742. [PMID: 38149682 DOI: 10.1242/jeb.246742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-β1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.
Collapse
Affiliation(s)
- Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Qiongyu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Shiyu Dai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Wenzhuo Rao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Chen Q, Liu R, Wei C, Wang X, Wu X, Fan R, Yu X, Li Z, Mao R, Hu J, Zhu N, Liu X, Li Y, Xu M. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin-Angiotensin System Antioxidant Pathway. Nutrients 2023; 15:5130. [PMID: 38140389 PMCID: PMC10745527 DOI: 10.3390/nu15245130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
In older men, an age-related decline in testosterone is closely associated with various adverse health outcomes. With the progression of aging, hyperactivation of the local renin-angiotensin system (RAS) and oxidative stress increase in the testis. The regulation of RAS antioxidants may be a target to delay testicular aging and maintain testosterone levels. Exogenous nucleotides (NTs) have anti-aging potential in several systems, but there are no studies of their effects on the reproductive system. In our study, we examined the effects of exogenous NTs on testosterone synthesis and explored possible mechanisms of action. Therefore, senescence-accelerated mouse prone-8 (SAMP8) mice and senescence-accelerated mouse resistant 1 (SAMR1) were used in the experiment, and they were randomly divided into an NTs free group (NTs-F), a normal control group (control), a low-dose NTs group (NTs-L), a middle-dose NTs (NTs-M), a high-dose NTs group (NTs-H) and SAMR1 groups, and the testis of the mice were collected for testing after 9 months of intervention. The results showed that exogenous NTs could increase the testicular organ index in mice during aging, and delayed the age-associated decline in testosterone levels in SAMP8 male mice, possibly by modulating the local RAS antioxidant pathway and reducing oxidative stress to protect the testis. The present study provides new research clues for the development of preventive and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Chan Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiujuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xin Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xiaochen Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Zhen Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Jiani Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Xinran Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Zhang Q, Xu W, Kong Z, Wu Y, Liu Y. Cadmium exposure-induced rat testicular dysfunction and its mechanism of chronic stress. Food Chem Toxicol 2023; 182:114181. [PMID: 37972751 DOI: 10.1016/j.fct.2023.114181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Cadmium is a common environmental pollutant in daily life, the toxic mechanisms of chronic cadmium exposure on the testes have not been fully elucidated. This study aimed to explore the effects of cadmium exposure on male reproductive health and its mechanism. The results showed that cadmium exposure led widened interstitial spaces, abnormal seminiferous tubule morphology, and decreased Leydig cell numbers. Moreover, sperm quality was significantly reduced, along with a decrease in fertility rate. And cadmium exposure could activate the hypothalamic-pituitary-adrenal (HPA) axis, elevate blood glucocorticoid levels, subsequently increase glucocorticoid receptor (GR) expression and activation in testicular Leydig cells. Then GR act on the glucocorticoid receptor element (GRE) in the DNA methyltransferase 3 A (DNMT3A) promoter region and upregulate DNMT3A expression. Consequently, this led to an increase in DNA methylation levels in the angiotensin II receptor 2 (AT2R) promoter region, resulting in reduced AT2R expression and inhibiting testicular steroidogenesis. This study systematically elucidated that cadmium exposure could lead to testicular steroidogenesis suppression and decreased fertility through the GR/DNMT3A/AT2R signaling pathway. This research further provides theoretical and experimental evidence for confirming the threat of cadmium exposure to human reproduction, and contributes to the guidance and protection of male reproductive health.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Wei Xu
- Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - ZiYu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - YuJiao Wu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| | - Yi Liu
- China Tobacco HuBei Industrial LLC, Wuhan, 430071, China.
| |
Collapse
|
9
|
Macchi R, Sotelo AD, Parrado AC, Salaverry LS, Blanco GA, Castro MS, Rey-Roldán EB, Canellada AM. Losartan impairs HTR-8/SVneo trophoblast migration through inhibition of angiotensin II-induced pro-inflammatory profile in human endometrial stromal cells. Toxicol Appl Pharmacol 2023; 461:116383. [PMID: 36682589 DOI: 10.1016/j.taap.2023.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.
Collapse
Affiliation(s)
- Rosario Macchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Agustina D Sotelo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea C Parrado
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Luciana S Salaverry
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Guillermo A Blanco
- Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Marisa S Castro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Estela B Rey-Roldán
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina
| | - Andrea M Canellada
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Junín 956, Buenos Aires C1113AAD, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Estudios de la Inmunidad Humoral "Prof. Dr. Ricardo A. Margni", Junín 956, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
10
|
Hasdemir PS, Senol Akar S, Goker A, Kosova F, Ucar D, Ozalp Ates FS, Akcali S. The effect of COVID-19 vaccinations on menstrual cycle and serum anti-Mullerian hormone levels in reproductive age women. HUM FERTIL 2023; 26:153-161. [PMID: 36919413 DOI: 10.1080/14647273.2023.2181710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/04/2022] [Indexed: 03/16/2023]
Abstract
The aim of this prospective cohort study was to investigate the effect of coronavirus disease 2019 (COVID-19) vaccinations on menstrual cycle and ovarian reserve in reproductive aged-women. Health care providers (n = 258) vaccinated with inactivated (CoronaVac) and mRNA based (Pfizer-BioNTech®) COVID-19 vaccines were included. All subjects completed a gynaecological and menstrual history questionnaire and Anti-Mullerian Hormone (AMH) levels were measured in serum samples collected before first vaccination and at 1st, 3rd, 6th and 9th months. The prevalence of new-onset menstrual dysregulation following vaccination was 20.6% and it was statistically significant compared to baseline (p = 0.001). Menstrual pattern turned back to normal in 59.6% of vaccinated women. Serum AMH levels gradually decreased until 6th month of follow-up compared to baseline (p < 0.001). A significant increase in serum AMH level was observed at 9th month of follow-up compared to 6th month follow-up levels (p < 0.001). The decrease in serum AMH level was statistically significant regardless of serum anti SARS-CoV-2 antibody levels, subgroups of age, occupation, menstrual dysregulation following vaccination and presence of gynaecological diseases. In conclusion, vaccination against SARS-CoV-2 causes a transient decrease on serum AMH levels and moderate irregularities in menstrual pattern increasing with age and is mostly reversible.
Collapse
Affiliation(s)
- Pinar Solmaz Hasdemir
- Department of Obstetrics and Gynecology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Sebnem Senol Akar
- Department of Infectious Disease, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Funda Kosova
- Department of Biochemistry, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Duygu Ucar
- Department of Obstetrics and Gynecology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Funda Seher Ozalp Ates
- Department of Biostatistics and Medical Informatics, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Sinem Akcali
- Department of Microbiology, Celal Bayar University School of Medicine, Manisa, Turkey
| |
Collapse
|
11
|
Kashyap MK, Bhat A, Janjua D, Rao R, Thakur K, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Chandra Bharti A. Role of angiotensin in different malignancies. ANGIOTENSIN 2023:505-544. [DOI: 10.1016/b978-0-323-99618-1.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hewitt SC, Wu SP, Wang T, Ray M, Brolinson M, Young SL, Spencer TE, DeCherney A, DeMayo FJ. The Estrogen Receptor α Cistrome in Human Endometrium and Epithelial Organoids. Endocrinology 2022; 163:bqac116. [PMID: 35895287 PMCID: PMC9368022 DOI: 10.1210/endocr/bqac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/19/2022]
Abstract
Endometrial health is affected by molecular processes that underlie estrogen responses. We assessed estrogen regulation of endometrial function by integrating the estrogen receptor α (ESR1) cistromes and transcriptomes of endometrial biopsies taken from the proliferative and mid-secretory phases of the menstrual cycle together with hormonally stimulated endometrial epithelial organoids. The cycle stage-specific ESR1 binding sites were determined by chromatin immunoprecipitation and next-generation sequencing and then integrated with changes in gene expression from RNA sequencing data to infer candidate ESR1 targets in normal endometrium. Genes with ESR1 binding in whole endometrium were enriched for chromatin modification and regulation of cell proliferation. The distribution of ESR1 binding sites in organoids was more distal from gene promoters when compared to primary endometrium and was more similar to the proliferative than the mid-secretory phase ESR1 cistrome. Inferred organoid estrogen/ESR1 candidate target genes affected formation of cellular protrusions and chromatin modification. Comparison of signaling effected by candidate ESR1 target genes in endometrium vs organoids reveals enrichment of both overlapping and distinct responses. Our analysis of the ESR1 cistromes and transcriptomes from endometrium and organoids provides important resources for understanding how estrogen affects endometrial health and function.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - San-pin Wu
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Madhumita Ray
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | - Marja Brolinson
- Program in Reproductive and Adult Endocrinology, NICHD, Bethesda, Maryland 20847, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas E Spencer
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, Missouri 65211, USA
| | - Alan DeCherney
- Program in Reproductive and Adult Endocrinology, NICHD, Bethesda, Maryland 20847, USA
| | - Francesco J DeMayo
- Pregnancy & Female Reproduction, RDBL, NIEHS, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
13
|
SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life. Biomedicines 2022; 10:biomedicines10081775. [PMID: 35892675 PMCID: PMC9331824 DOI: 10.3390/biomedicines10081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction.
Collapse
|
14
|
Tandara L, Filipi P, Supe Domic D, Kresic B, Ivcic I, Stojanovic Stipic S, Rubic Z, Tandara M. Laboratory medicine in pandemic of COVID-19. Biochem Med (Zagreb) 2022; 32:020501. [PMID: 35464749 PMCID: PMC8996317 DOI: 10.11613/bm.2022.020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 11/01/2022] Open
Abstract
After the outbreak in China in the year 2019, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) quickly spread around the world causing a protracted pandemic. Approximately one-third of infections appear to be asymptomatic. Symptomatic disease is characterized primarily by symptoms of respiratory tract infection of varying severity. But Coronavirus Disease 2019 (COVID-19) is much more than an acute respiratory disease because SARS-CoV-2 affects many organs inducing a vast number of symptoms such as cardiovascular, neurological, gastrointestinal, dermatological, with numerous complications. Short and long-term effects of infection, severe ones, and especially mild forms of the disease which affect a huge number of patients need to be further investigated. Laboratory medicine has a crucial role in early diagnosis of the disease, recognition of the patients who need hospital care, and close monitoring of hospitalized patients to timely identify associated clinical complications as well as follow-up of patients with long-term COVID-19.
Collapse
Affiliation(s)
- Leida Tandara
- Department of Medical Laboratory Diagnostic, University Hospital Split, Split, Croatia
- University of Split School of Medicine, Split, Croatia
- Corresponding author:
| | - Petra Filipi
- Department of Medical Laboratory Diagnostic, University Hospital Split, Split, Croatia
| | - Daniela Supe Domic
- Department of Medical Laboratory Diagnostic, University Hospital Split, Split, Croatia
- University Department of Health Studies, University of Split, Split, Croatia
| | - Branka Kresic
- Department of Medical Laboratory Diagnostic, University Hospital Split, Split, Croatia
| | - Ivo Ivcic
- University of Split School of Medicine, Split, Croatia
- Clinic for Infectious Diseases, University Hospital Split, Split, Croatia
| | - Sanda Stojanovic Stipic
- University of Split School of Medicine, Split, Croatia
- Department of Anaesthesiology and Intensive Care, University Hospital Split, Split, Croatia
| | - Zana Rubic
- University of Split School of Medicine, Split, Croatia
- Department of Clinical Microbiology, University Hospital Split, Split, Croatia
| | | |
Collapse
|
15
|
Ouni E, Nedbal V, Da Pian M, Cao H, Haas KT, Peaucelle A, Van Kerk O, Herinckx G, Marbaix E, Dolmans MM, Tuuri T, Otala M, Amorim CA, Vertommen D. Proteome-wide and matrisome-specific atlas of the human ovary computes fertility biomarker candidates and open the way for precision oncofertility. Matrix Biol 2022; 109:91-120. [PMID: 35341935 DOI: 10.1016/j.matbio.2022.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Our modern era is witnessing an increasing infertility rate worldwide. Although some of the causes can be attributed to our modern lifestyle (e.g., persistent organic pollutants, late pregnancy), our knowledge of the human ovarian tissue has remained limited and insufficient to reverse the infertility statistics. Indeed, all efforts have been focused on the endocrine and cellular function in support of the cell theory that dates back to the 18th century, while the human ovarian matrisome is still under-described. Hereby, we unveil the extracellular side of the story during different periods of the ovary life, demonstrating that follicle survival and development, and ultimately fertility, would not be possible without its involvement. We examined the human ovarian matrisome and described its remodeling from prepuberty until menopause, creating the first ovarian proteomic codex. Here, we confidently identified and quantified 98 matrisome proteins present in the three ovary groups. Among them, 26 were expressed differently among age groups, delineating a peculiar matrisomal fingerprint at each stage. Such proteins could be potential biomarkers phenotyping ovarian ECM at each age phase of female reproductive life. Beyond proteomics, our study presents a unique approach to understanding the data and depicting the spatiotemporal ECM-intracellular signaling networks and remodeling with age through imaging, advanced text-mining based on natural language processing technology, machine learning, and data sonification. Our findings provide essential context for healthy ovarian physiology, identifying and characterizing disease states, and recapitulating physiological tissues or development in vitro. This comprehensive proteomics analysis represents the ovarian proteomic codex and contributes to an improved understanding of the critical roles that ECM plays throughout the ovarian life span.
Collapse
Affiliation(s)
- Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Valerie Nedbal
- Global Technical Enablement, SAS Institute GmbH, 69118 Heidelberg, Germany
| | | | | | - Kalina T Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Olivier Van Kerk
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Gaetan Herinckx
- PHOS Unit & MASSPROT platform de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Etienne Marbaix
- Cell Biology Unit, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | - Marjut Otala
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00029 Helsinki, Finland
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Didier Vertommen
- PHOS Unit & MASSPROT platform de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
16
|
Ashour E, Gouda W, Mageed L, Okasha A, Afify M, Fawzi OM. Association of gene polymorphisms of ACE, AGT, and ARNT-like protein 1 with susceptibility to gestational diabetes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and aims
Gestational diabetes mellitus is well-defined as glucose intolerance first documented during pregnancy. In this study, we examined the possible associations between I/D polymorphism of the angiotensin-converting enzyme gene, the M235T variant of angiotensinogen gene, and the rs7950226 polymorphism of the ARNT-like protein-1 (BMAL1) gene and the risk for diabetes in Egyptian pregnant women.
Subjects and methods
This study recruited 160 gestational diabetes cases and 165 controls. Genomic DNA was derived from peripheral blood leukocytes and ACE gene (I/D) genotyping was performed using the method of polymerase chain reaction and the polymerase chain reaction-based restriction fragment length polymorphism was used for identifying the M235T variant of AGT gene and the rs7950226 polymorphism of the BMAL1.
Results
The II, ID, and DD genotypes of the ACE gene have significant differences in cases compared to controls (P = 0.000 and X2 = 81.77). The M235T polymorphism of the AGT gene was increased with gestational diabetes risk. Furthermore, the AA genotype of the BMAL1 rs7950226 gene was significantly related to the gestational diabetes risk (P = 0.000 and X2 = 52.82). Furthermore, the allele frequencies of the three variants have significant variances between cases and control.
Conclusion
This study suggested significant associations between ACE (DD), AGT (TT), and BMAL1 rs7950226 (AA) gene polymorphisms with gestational diabetes susceptibility and there was a possibility to identify that II + MM + GG as protective haplotypes and DD + TT + AA as risk haplotypes for gestational diabetes.
Collapse
|
17
|
D’Ippolito S, Turchiano F, Vitagliano A, Scutiero G, Lanzone A, Scambia G, Greco P. Is There a Role for SARS-CoV-2/COVID-19 on the Female Reproductive System? Front Physiol 2022; 13:845156. [PMID: 35309055 PMCID: PMC8924447 DOI: 10.3389/fphys.2022.845156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease (COVID-19) has emerged as a very serious pandemic caused by the rapidly evolving transmission of the coronavirus SARS-CoV-2. Since its outbreak in 2020, the SARS CoV-2 has represented an important challenge for the physicians due to its well known respiratory sequelae. To date, the role of SARS-CoV-2 infection on organs and systems other than lungs and respiratory tract remains less clear. In particular, it remains to be investigated whether the reproductive system can be affected by the SARS-CoV-2 in the long term-period or, in alternative, drugs used to treat COVID-19 might impact the reproductive systems and, in turn, fertility. What is known is that SARS-Cov-2 binds to target cells of host through different receptors including angiotensin-converting enzyme 2 (ACE2), neuropilin-1, AXL and antibody-FcɣR complexes. ACE2 physiologically regulates both the expression of angiotensin II (Ang II) as well as Ang-(1-7) to exerts its physiological functions. The reproductive system abundantly expresses ACE2 and produces Ang-(1-7), starting from precursors which are locally generated or derived from systemic circulation. Ang-(1-7) plays an important role of stimulus to the growth and maturation of ovarian follicle as well as to ovulation. Also human endometrium expresses Ang-(1-7), mainly during the post-ovulatory phase. Animal and human observational studies demonstrated that Ang-(1-7) is involved in the maternal immune response to pregnancy and its deficiency is associated with a defective placenta development. In our manuscript, we review the current knowledge about whether SARS-CoV-2 may impact the female reproductive system. We further explain the possible molecular mechanism by which SARS-CoV-2 might affect ovarian, endometrial and female genital tract cells.
Collapse
Affiliation(s)
- Silvia D’Ippolito
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Rome, Italy
- *Correspondence: Silvia D’Ippolito, , orcid.org/0000-0002-6160-0558
| | - Francesca Turchiano
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Rome, Italy
| | - Amerigo Vitagliano
- Dipartimento di Scienze Mediche, Università degli studi di Ferrara, Ferrara, Italy
| | - Gennaro Scutiero
- Dipartimento di Scienze Mediche, Università degli studi di Ferrara, Ferrara, Italy
| | - Antonio Lanzone
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Antonio Lanzone, , orcid.org/0000-0003-4119-414X
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pantaleo Greco
- Dipartimento di Scienze Mediche, Università degli studi di Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|
19
|
Abstract
Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly affected global economy and daily life and changed our attitudes towards life. The reproductive system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more vulnerable to viral infection compared with males. Therefore, female fertility and associated reproductive health care in the COVID-19 era need more attention. This review summarises the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might affect female fertility and interfere with assisted reproductive technology procedures. The side effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination needs more attention because of the uncertainty of COVID-19.
Collapse
|
20
|
Abstract
Purpose of Review To review the effects of early-life, preconception, and prior-generation exposures on reproductive health in women. Recent Findings Women’s early-life factors can affect reproductive health by contributing to health status or exposure level on entering pregnancy. Alternately, they can have permanent effects, regardless of later-life experience. Nutrition, social class, parental smoking, other adverse childhood experiences, environmental pollutants, infectious agents, and racism and discrimination all affect reproductive health, even if experienced in childhood or in utero. Possible transgenerational effects are now being investigated through three- or more-generation studies. These effects occur with mechanisms that may include direct exposure, behavioral, endocrine, inflammatory, and epigenetic pathways. Summary Pregnancy is increasingly understood in a life course perspective, but rigorously testing hypotheses on early-life effects is still difficult. In order to improve the health outcomes of all women, we need to expand our toolkit of methods and theory. Supplementary Information The online version contains supplementary material available at 10.1007/s40471-021-00279-0.
Collapse
|
21
|
Does SARS-CoV-2 Threaten Male Fertility? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:139-146. [PMID: 33656720 DOI: 10.1007/978-3-030-59261-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the continuing COVID-19 pandemic, one of the most important concerns in reproductive health is the issue of male fertility of recovered patients. In this study, we discuss the potential mechanisms that justify the possible impact of COVID-19 on male fertility. The main point of entry of SARS-CoV-2 into the host cells appears to be through the viral spike protein which permits entry into cells via the angiotensin-converting enzyme 2 (ACE2 receptor). In human testes, ACE2 is enriched in Sertoli and Leydig cells and spermatogonia. Also, it seems that there is a mild or severe cytokine storm in patients with severe COVID-19, and such changes may affect fertility. It should also be mentioned that the orchitis caused by the SARS-CoV-2 virus may have an important impact on fertility. Prolonged and high fever may lead to changes in testicular temperature and destroy germ cells. In general, there is little evidence for a definite conclusion, but there are facts that suggest that COVID-19 may affect male fertility. It is prudent for men of reproductive age who have recovered from COVID-19 to be evaluated for the presence of the virus in semen and fertility-related items. There is an urgent need to conduct quality studies on, in particular, the long-term effects of COVID-19 on the fertility of recovered males.
Collapse
|
22
|
Ziaja M, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. Angiotensin II and Angiotensin Receptors 1 and 2-Multifunctional System in Cells Biology, What Do We Know? Cells 2021; 10:cells10020381. [PMID: 33673178 PMCID: PMC7917773 DOI: 10.3390/cells10020381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
For years, the renin-angiotensin system (RAS) has been perceived as a system whose role is to primarily modulate the functioning of the cardiovascular system. Years of research into the role of RAS have provided the necessary data to confirm that the role of RAS is very complex and not limited to the cardiovascular system. The presence of individual elements of the renin-angiotensin (RA) system allows to control many processes, ranging from the memorization to pro-cancer processes. Maintaining the proportions between the individual axes of the RA system allows for achieving a balance, often called homeostasis. Thus, any disturbance in the expression or activity of individual RAS elements leads to pathophysiological processes.
Collapse
|
23
|
Nateghi R, Ghashghaei S, Shokoohian B, Hezavehei M, Abbaszadeh M, Ebrahimi B, Shahverdi A, Mashayekhi M, Shpichka A, Timashev P, Nasr-Esfahani MH, Vosough M. Female Reproductive Health in SARS-CoV-2 Pandemic Era. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:241-245. [PMID: 34913290 PMCID: PMC8530213 DOI: 10.22074/ijfs.2021.534956.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic struck global health systems with overgrowing demands in many fields of health care; yet, reproductive care, particularly pregnancy care remains a special focus of interest. Pregnancy is a major physiologic change that alters temporarily normal function of many organs, and specifically the immune system. Therefore, pregnant women are more susceptible to respiratory pathogens compared to the others. The current pandemic may have serious consequences on pregnancy whether directly or indirectly. In the present review, direct and indirect possible adverse effects of SARS-CoV-2 infection on female reproductive system by focusing on pregnancy and delivery has been discussed in details. In addition, the pregnancy consequences and whether maternal infection can affect infants were deliberated. The adverse impact of luck down and related psychological complications and obesity on pregnant women were discussed as well. Finally, the effects of SARS-CoV-2 vaccination on maternal health and pregnancy outcome was analyzed.
Collapse
Affiliation(s)
- Reihaneh Nateghi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Shahriar Ghashghaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran
| | - Bahare Shokoohian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Mahkameh Abbaszadeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Abolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR,
Tehran, Iran
| | - Mehri Mashayekhi
- Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Iran, Tehran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia,P.O.Box: 1665659911Department of Reproductive Bio-
technologyReproductive Biomedicine Research CenterRoyan Institute for BiotechnologyACECRIsfahanIranP.O.Box: 16635-148Department of Regenerative MedicineCell Science Research
CentreRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
Emails:,
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR,
Isfahan, Iran,P.O.Box: 1665659911Department of Reproductive Bio-
technologyReproductive Biomedicine Research CenterRoyan Institute for BiotechnologyACECRIsfahanIranP.O.Box: 16635-148Department of Regenerative MedicineCell Science Research
CentreRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
Emails:,
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR,
Tehran, Iran,P.O.Box: 1665659911Department of Reproductive Bio-
technologyReproductive Biomedicine Research CenterRoyan Institute for BiotechnologyACECRIsfahanIranP.O.Box: 16635-148Department of Regenerative MedicineCell Science Research
CentreRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
Emails:,
| |
Collapse
|
24
|
Receptors | Angiotensin Receptors. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021. [PMCID: PMC8326513 DOI: 10.1016/b978-0-12-819460-7.00096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The renin-angiotensin-aldosterone system (RAS) is a vital hormone-receptor system that regulates cardiovascular and renal functions. In this article, we discuss exciting new findings in the RAS field. Recently solved active state crystal structures of Angiotensin II type 1 (AT1R) and type 2 receptor (AT2R) helped in understanding receptor activation mechanisms in detail. Also, considerable attention is given to the developments in characterizing the counter-regulatory RAS axis due to current hope for harnessing this axis for the development of protective therapies against various cardiovascular diseases. We describe the RAS component, angiotensin-converting enzyme 2 (ACE2) functioning as cellular entry receptor for the causative agent of COVID-19 pandemic, SARS-CoV-2. Altogether, these discoveries paved the way for developing novel therapies targeting different components of the RAS in the future.
Collapse
|
25
|
I/D Polymorphism Gene ACE and Risk of Preeclampsia in Women with Gestational Diabetes Mellitus. DISEASE MARKERS 2020; 2020:8875230. [PMID: 33456632 PMCID: PMC7785338 DOI: 10.1155/2020/8875230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022]
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are the most common complications of pregnancy, which result in adverse outcomes for the mother and the fetus. GDM is regarded as a separate independent risk factor for PE development, as evidenced by a higher preeclampsia rate in gestational diabetes mellitus than in the general population. The role the endothelial cell dysfunction plays is considered to be the most reasonable one in the origin of these diseases. The activity of plasma and tissue angiotensin converting enzyme (ACE) is believed to be genetically controlled. The available data suggests that increased ACE activity due to deletion (D)/insertion (I) in the 16th intron of ACE gene, which is called ACE gene I/D polymorphism, is associated with preeclampsia and varies depending on the studied population and the geography. We did not find any literature data that estimates the influence of ACE gene I/D polymorphism on PE rate in pregnant women with GDM. Therefore, the present study aimed to investigate a relationship between ACE gene I/D polymorphism and preeclampsia development in the case of GDM in the Russian population. The study used the genomic DNA derived by phenol-chloroform extraction method from venous blood samples in 137 pregnant women, including samples of 74 women with GDM accompanied with PE and the blood samples of 63 women with GDM w/o preeclampsia. Genotyping of insertion/deletion in the I/D region (16 intron of АСЕ gene) was conducted by real-time PCR using the TaqMan competing probe technology. The particular features in the frequency array of alleles and genotypes of the ACE gen I/D polymorphism under review, as associated with preeclampsia development risk in pregnant women with GDM, were identified. The acquired data testify to the need to further study of ACE gene I/D region polymorphism association in a large patient sample taking into account the PE and GDM risk factors estimated in the clinical practice.
Collapse
|
26
|
Liu F, Jiang Q, Sun X, Huang Y, Zhang Z, Han T, Shi Y. Lipid Metabolic Disorders and Ovarian Hyperstimulation Syndrome: A Retrospective Analysis. Front Physiol 2020; 11:491892. [PMID: 33329009 PMCID: PMC7711040 DOI: 10.3389/fphys.2020.491892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/23/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To evaluate the effect of dyslipidemia on the incidence of moderate and severe Ovarian hyperstimulation syndrome (OHSS) in the duration of assisted reproduction technique (ART). METHODS The study included 233 moderate and severe OHSS patients who received hospitalization after in-vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) cycles to avoid severe complications. They were divided into dyslipidemia group and normal lipid metabolism group to evaluate whether dyslipidemia contributes to the development of severe OHSS. Subgroup analysis was set to avoid deviation including the freeze-all group and fresh embryo transfer (ET) group according to whether the eligible women chose fresh embryo transfer immediately after their IVF or ICSI cycles. The main outcome measures included the incidence of moderate OHSS and severe OHSS, total gonadotropin dose, number of oocytes retrieved, age and body mass index (BMI). In the ET groups, the rate of pregnancy is also included for analysis. RESULTS In the freeze-all group, lipid metabolism was ultimately identified as the factor affecting the morbidity of severe OHSS and the ones with dyslipidemia were more likely to develop to severe OHSS (P < 0.05), while the incidence of severe OHSS among the ET groups had no statistical significance (P > 0.05). CONCLUSION The findings of this study suggested that dyslipidemia might contribute to the development of OHSS, especially for those patients who chose the cryopreservation of all embryos. It is essential to consider the risk of OHSS in patients with dyslipidemia although they required cryopreservation of all embryos.
Collapse
Affiliation(s)
- Feifei Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Qi Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xuedong Sun
- Department of Neurology, Shandong Provincial Hospital, Jinan, China
| | - Yuzhen Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Zhenzhen Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ting Han
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| |
Collapse
|
27
|
Gianzo M, Subirán N. Regulation of Male Fertility by the Renin-Angiotensin System. Int J Mol Sci 2020; 21:ijms21217943. [PMID: 33114706 PMCID: PMC7662798 DOI: 10.3390/ijms21217943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
The renin-angiotensin system (RAS) is a peptidic system known mainly for its roles in the maintenance of blood pressure and electrolyte and fluid homeostasis. However, several tissues and cells have been described to possess an intrinsic RAS that acts locally through different paracrine and autocrine mechanisms. In the male reproductive system, several components of this system have been observed in various organs and tissues, such as the testes, spermatozoa and seminal fluid. Some functions attributed to this local RAS are maintenance of seminal plasma electrolytes, regulation of steroidogenesis and spermatogenesis, and sperm functions. However, their specific actions in these locations are not fully understood. Therefore, a deep knowledge of the functions of the RAS at both the testicular and seminal levels could clarify its roles in male infertility and sperm physiology, and the different RAS elements could be used to design tools enabling the diagnosis and/or treatment of male infertility.
Collapse
Affiliation(s)
- Marta Gianzo
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Innovation in Assisted Reproduction Group, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Research and Development Department, MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
- Correspondence:
| |
Collapse
|
28
|
Pascolo L, Zito G, Zupin L, Luppi S, Giolo E, Martinelli M, De Rocco D, Crovella S, Ricci G. Renin Angiotensin System, COVID-19 and Male Fertility: Any Risk for Conceiving? Microorganisms 2020; 8:E1492. [PMID: 32998451 PMCID: PMC7601043 DOI: 10.3390/microorganisms8101492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
The current knowledge concerning the connection between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the renin-angiotensin system (RAS) system in the male reproductive apparatus is still limited, so dedicated studies are urgently required. Concerns about the male fertility consequences of SARS-CoV-2 infection have started to emerge, since epidemiologic studies observed that this coronavirus affects male patients more frequently and with increased severity, possibly because of the hormone-regulated expression of angiotensin-converting enzyme 2 (ACE2) receptor. A disturbance in fertility is also expected based on studies of the previous SARS-CoV infection, which targets the same ACE2 receptor when entering the host cells. In addition, bioinformatics analyses reveal the abundant expression of ACE2 receptor in the male reproductive tissues, particularly in the testis. It has been proposed that pharmacological intervention favoring the angiotensin-(1-7)/ACE2/Mas receptor pathway and increasing ACE2 expression and activity could greatly prevent inflammatory lesions in this area. Finally, in laboratories performing assisted reproductive technologies it is recommended that more attention should be paid not only to sperm quality but also to safety aspects. Data about the potential infectivity of seminal fluid are in fact conflicting and do not exclude risks for both personnel and patients. The potential infectivity of SARS-CoV-2 in reproductive male tissues should be strongly considered and further investigated for the proper management of in vitro fertilization procedures.
Collapse
Affiliation(s)
- Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Stefania Luppi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Elena Giolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Monica Martinelli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Daniela De Rocco
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (S.L.); (E.G.); (M.M.); (D.D.R.); (S.C.); (G.R.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34137 Trieste, Italy
| |
Collapse
|
29
|
Zhang Z, Yuan Y, He L, Yao X, Chen J. Involvement of angiotensin II receptor type 1/NF-κB signaling in the development of endometriosis. Exp Ther Med 2020; 20:3269-3277. [PMID: 32855697 PMCID: PMC7444343 DOI: 10.3892/etm.2020.9071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Endometriosis (EM) is a common disease in women; however, the signaling pathways and related genes underlying the mechanisms of EM remain unclear. The present study aimed to investigate the role of angiotensin II receptor type 1 (AGTR1) in the pathogenesis of EM. Human EM tissues were collected, and the expression levels of AGTR1 and NF-κB in the tissues were analyzed using immunochemistry and western blotting, while the estrogen levels in the EM tissues were determined by ELISA. In vitro human endometrial stromal cells were used to investigate the expression levels of AGTR1 following exposure to estrogen; the interaction between AGTR1 and NF-κB was determined using reverse transcription-quantitative PCR and western blotting; and the effects of AGTR1 on cell proliferation, as well as the apoptotic and migratory abilities of the cells were evaluated using WST-1 assays, wound healing assays and flow cytometry, respectively. It was observed that both the expression levels of AGTR1 and the activity of NF-κB were increased in human EM tissues and stromal cells, and this activation of AGTR1 subsequently increased the activity of NF-κB. Moreover, estrogen was found to regulate the expression levels of AGTR1 in stromal cells. The activation of AGTR1 was demonstrated to promote cell proliferation and migration, in addition to preventing cells from undergoing apoptosis. In conclusion, the present study suggested that the increased activity of the AGTR1-NF-κB axis following the decreased exposure to estrogen may be important for the pathogenesis of EM. In addition, AGTR1 may be a potential therapeutic target for the treatment of EM.
Collapse
Affiliation(s)
- Zhimin Zhang
- Department of Obstetrics, The Fourth Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050011, P.R. China
| | - Yi Yuan
- Department of Obstetrics and Gynecology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Lian He
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xiaoguang Yao
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Jingwei Chen
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| |
Collapse
|
30
|
Involvement of ACE2/Ang-(1-7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals. Int J Mol Sci 2020; 21:ijms21134572. [PMID: 32604999 PMCID: PMC7369927 DOI: 10.3390/ijms21134572] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
In addition to the classic, endocrine renin-angiotensin system, local renin-angiotensin system (RAS) has been documented in many tissues and organs, including the ovaries. The localization and functional activity of the two opposing axes of the system, viz. ACE1/Ang II/AT1 and ACE2/Ang-(1-7)/MAS1, differs between animal species and varied according to the stage of follicle development. It appears that the angiotensin peptides and their receptors participate in reproductive processes such as folliculogenesis, steroidogenesis, oocyte maturation, and ovulation. In addition, changes in the constituent compounds of local RAS may contribute to pathological conditions, such as polycystic ovary syndrome, ovarian hyperstimulation syndrome, and ovarian cancer. This review article examines the expression, localization, metabolism, and activity of individual elements of the ACE2/Ang-(1-7)/MAS1 axis in the ovaries of various animal species. The manuscript also presents the relationship between the secretion of gonadotropins and sex hormones and expression of Ang-(1-7) and MAS1 receptors. It also summarizes current knowledge regarding the positive and negative impact of ACE2/Ang-(1-7)/MAS1 axis on ovarian function.
Collapse
|
31
|
Cavalcante MB, Sarno M, da Silva ACB, Araujo Júnior E, Barini R. Is there any possible link between COVID-19 and human infertility? J Matern Fetal Neonatal Med 2020; 35:2420-2421. [PMID: 32510261 DOI: 10.1080/14767058.2020.1774546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marcelo Borges Cavalcante
- Department of Obstetrics and Gynecology, Fortaleza University (UNIFOR), Fortaleza, Brazil.,CONCEPTUS - Reproductive Medicine, Fortaleza, Brazil
| | - Manoel Sarno
- Department of Obstetrics and Gynecology, Federal University of Bahia (UFBA), Salvador, Brazil.,Harris Birthright Research Center for Fetal Medicine, King's College Hospital and Department of Fetal Medicine, University College, London, United Kingdom
| | - Arlley Cleverson Belo da Silva
- Harris Birthright Research Center for Fetal Medicine, King's College Hospital and Department of Fetal Medicine, University College, London, United Kingdom
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Ricardo Barini
- Department of Obstetrics and Gynecology, Campinas University (UNICAMP), Campinas, Brazil
| |
Collapse
|
32
|
Messiha BAS, Ali MRA, Khattab MM, Abo-Youssef AM. Perindopril ameliorates experimental Alzheimer's disease progression: role of amyloid β degradation, central estrogen receptor and hyperlipidemic-lipid raft signaling. Inflammopharmacology 2020; 28:1343-1364. [PMID: 32488543 DOI: 10.1007/s10787-020-00724-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence indicates that over-stimulation of angiotensin-converting enzyme 1 (ACE1) activity is associated with β-amyloid (Aβ) and phosphorylated tau (p-tau)-induced apoptosis, oxido-nitrosative neuroinflammatory stress and neurodegeneration in Alzheimer's disease (AD). Alternatively, activation of the ACE2, the metalloprotease neprilysin (Neutral Endopeptidase; NEP) and the insulin-degrading enzyme (IDE) could oppose the effects of ACE1 activation. We aim to investigate the relationship between ACE1/ACE2/NEP/IDE and amyloidogenic/hyperlipidemic-lipid raft signaling in hyperlipidemic AD model. Induction of AD was performed in ovariectomized female rats with high-fat high fructose diet (HFFD) feeding after 4 weeks following D-galactose injection (150 mg/kg). The brain-penetrating ACE1 inhibitor perindopril (0.5 mg/kg/day, p.o.) was administered on a daily basis for 30 days. Perindopril significantly decreased hippocampal expression of ACE1 and increased expression of ACE2, NEP and IDE. Perindopril markedly decreased Aβ1-42, improved lipid profile and ameliorated the lipid raft protein markers caveolin1 (CAV1) and flotillin 1 (FLOT1). This was accompanied by decreased expression of p-tau and enhancement of cholinergic neurotransmission, coupled with decreased oxido-nitrosative neuroinflammatory stress, enhancement of blood-brain barrier (BBB) functioning and lower expression of the apoptotic markers glial fibrillary acidic protein (GFAP), Bax and β-tubulin. In addition, perindopril ameliorated histopathological damage and improved learning, cognitive and recognition impairment as well as depressive behavior in Morris water maze, Y maze, novel object recognition and forced swimming tests, respectively. Conclusively, perindopril could improve cognitive defects in AD rats, at least through activation of ACE2/NEP/IDE and inhibition of ACE1 and subsequent modulation of amyloidogenic/hyperlipidemic-lipid raft signaling and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohammed R A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
33
|
Abdelnour SA, Abd El-Hack ME, Noreldin AE, Batiha GE, Beshbishy AM, Ohran H, Khafaga AF, Othman SI, Allam AA, Swelum AA. High Salt Diet Affects the Reproductive Health in Animals: An Overview. Animals (Basel) 2020; 10:ani10040590. [PMID: 32244412 PMCID: PMC7222834 DOI: 10.3390/ani10040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Simple summary Halophytic plants are a promising animal feed source. However, the extreme NaCl2 salt content constraints their use. Excess diet salt adversely affects growth performance and animal’s reproduction worldwide. This review focuses on the impact of high salt intake on growth performance and reproduction ability in animals. Abstract Salinity is a reliable issue of crop productivity loss in the world and in certain tropical and subtropical zones. However, tremendous progress in the genetic improvement of plants for salinity tolerance has been made over several decades. In light of this, halophytic plants can be used as animal feeds and have promising features because they are a good feed resource. However, the main constraint of saline pasture systems is the extreme concentration of NaCl salt in drinking water and forage plants for grazing animals. Ecological reports revealed that excess diet salt causes mortality and morbidity worldwide. Animal fed halophytic forages may have adverse effects on growth performance and reproductive function in males and females due to inducing reductions in hormone regulation, such as testosterone, FSH, LH, and leptin. It was indicated that high salt intake promotes circulating inflammatory factors in the placenta and is associated with adversative effects on pregnancy. This review focuses on the scientific evidence related to the effect of high salt intake on growth performance, spermatogenesis, sperm function, and testicular morphology changes in male animals. In addition, the review will also focus on its effect on some female reproductive features (e.g., ovarian follicle developments, placental indices, and granulosa cell function).
Collapse
Affiliation(s)
- Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| | - Ahmed E. Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Gaber Elsaber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; (G.E.B.); (A.M.B.)
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amani Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555, Obihiro, Hokkaido, Japan; (G.E.B.); (A.M.B.)
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Sarah I. Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt;
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (AAS);
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
34
|
Tian M, Lin X, Wu L, Lu J, Zhang Y, Shi J. Angiotensin II triggers autophagy and apoptosis in PC12 cell line: An in vitro Alzheimer's disease model. Brain Res 2019; 1718:46-52. [PMID: 31054884 DOI: 10.1016/j.brainres.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The activation of renin angiotensin system is involved in multiple pathological processes. Growing evidence reveal that Angiotensin II (Ang II) contributes to the pathogenesis of Alzheimer disease (AD). However, the underlying mechanisms are still not fully understood. METHODS In this study, the effect of Ang II on Aβ1-42 induced neurotoxicity was evaluated in PC12 cells. Apoptosis was examined by flow cytometry analysis and caspase-3 activity assay. Autophagy-related markers were also measured in each group. RESULTS The results indicated that Ang II activated autophagy and triggered apoptosis in PC12 cells in a dose-dependent manner, as demonstrated byincreased LC3 II/I ratio and decreased p62 expression. Moreover, inhibition of autophagy by 3-methyladenine markedly attenuated the apoptosis caused by Ang II. In addition, an AT1R antagonist losartan, rather than the AT2R antagonist PD123319, completely reversed the Ang II induced autophagic activation and subsequent cell apoptosis. CONCLUSIONS Taken together, our study strengthen the crucial function of Ang II/AT1R axis in the pathogenesis of AD in vitro. These findings have deepened our understanding on the role of Ang II in the pathogenesis of AD and support the use of AT1R antagonists for the treatment of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Minjie Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China; Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Jie Lu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China; Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Jingping Shi
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
35
|
Ouni E, Vertommen D, Chiti MC, Dolmans MM, Amorim CA. A Draft Map of the Human Ovarian Proteome for Tissue Engineering and Clinical Applications. Mol Cell Proteomics 2019; 18:S159-S173. [PMID: 29475978 PMCID: PMC6427241 DOI: 10.1074/mcp.ra117.000469] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
Fertility preservation research in women today is increasingly taking advantage of bioengineering techniques to develop new biomimetic materials and solutions to safeguard ovarian cell function and microenvironment in vitro, and in vivo,. However, available data on the human ovary are limited and fundamental differences between animal models and humans are hampering researchers in their quest for more extensive knowledge of human ovarian physiology and key reproductive proteins that need to be preserved. We therefore turned to multi-dimensional label-free mass spectrometry to analyze human ovarian cortex, as it is a high-throughput and conclusive technique providing information on the proteomic composition of complex tissues like the ovary. In-depth proteomic profiling through two-dimensional liquid chromatography-mass spectrometry, Western blotting, histological and immunohistochemical analyses, and data mining helped us to confidently identify 1508 proteins. Moreover, our method allowed us to chart the most complete representation so far of the ovarian matrisome, defined as the ensemble of extracellular matrix proteins and associated factors, including more than 80 proteins. In conclusion, this study will provide a better understanding of ovarian proteomics, with a detailed characterization of the ovarian follicle microenvironment, in order to enable bioengineers to create biomimetic scaffolds for transplantation and three-dimensional in vitro, culture. By publishing our proteomic data, we also hope to contribute to accelerating biomedical research into ovarian health and disease in general.
Collapse
Affiliation(s)
- Emna Ouni
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Costanza Chiti
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A Amorim
- From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium;.
| |
Collapse
|
36
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 718] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
37
|
Zhang L, Liu X, Cui J, Che S, Liu Y, An X, Cao B, Song Y. LncRNA882 regulates leukemia inhibitory factor (LIF) by sponging miR‐15b in the endometrial epithelium cells of dairy goat. J Cell Physiol 2018; 234:4754-4767. [DOI: 10.1002/jcp.27272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/26/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University Yangling Shaanxi China
| |
Collapse
|
38
|
Zitouni H, Raguema N, Gannoun MBA, Hebert-Stutter M, Zouari I, Maleh W, Faleh R, Letaifa DB, Almawi WY, Fournier T, Mahjoub T, Guibourdenche J. Impact of obesity on the association of active renin and plasma aldosterone concentrations, and aldosterone-to-renin ratio with preeclampsia. Pregnancy Hypertens 2018; 14:139-144. [DOI: 10.1016/j.preghy.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
|
39
|
A proposed mechanism for the Berecek phenomenon with implications for cardiovascular reprogramming. ACTA ACUST UNITED AC 2018; 12:644-651. [PMID: 30220305 DOI: 10.1016/j.jash.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/15/2018] [Indexed: 01/29/2023]
Abstract
Berecek et al reported in the 1990s that when spontaneously hypertensive rat (SHR) mating pairs were treated with captopril and the resulting pups were continued on the drug for 2 months followed by drug discontinuation, the pups did not develop full blown hypertension, and the cardiovascular structural changes associated with hypertension in SHR were mitigated. The offspring of the pups also displayed diminished hypertension and structural changes, suggesting that the drug therapy produced a heritable amelioration of the SHR phenotype. This observation is reviewed. The link between cellular renin angiotensin systems and epigenetic histone modification is explored, and a mechanism responsible for the observation is proposed. In any case, the observations of Berecek are sufficiently intriguing and biologically important to merit re-exploration and definitive explanation. Equally important is determining the role of renin angiotensin systems in epigenetic modification.
Collapse
|
40
|
Honorato-Sampaio K, Andrade RF, Bader M, Martins ADS, Santos RAS, Reis AM. Genetic deletion of the Angiotensin-(1-7) receptor Mas leads to a reduced ovulatory rate. Peptides 2018; 107:83-88. [PMID: 30121361 DOI: 10.1016/j.peptides.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is a component of Renin-Angiotensin System (RAS) that acts through activation of the G-protein-coupled receptor Mas. Recent studies highlight Ang-(1-7) as an intermediate of gonadotropin in ovarian physiology. Genetically Mas-deficient mice allow the investigation of Ang-(1-7) in the ovulatory process. Therefore, the present study aimed to analyze the effects of Mas gene deletion on ovulation to confirm our hypothesis that Mas Knockout (Mas-KO) mice exhibit impairment in the ovulatory outcome. First, we evaluated the breeding data from our animal facilities and from a breeding experiment. The ovulation was observed directly from oviducts after a superovulation protocol and in the estrus morning. We also checked the follicular pool and mRNA expression of Insulin-like growth factor-1 (IGF-1) in ovaries to investigate a possible reason underlying the reduced ovulation. Mas-KO mice showed a reduced litter size and decreased spontaneous ovulatory rate. Ovarian stimulation by gonadotropins reversed ovulation outcome in Mas-KO mice. Mas deficiency also promoted a reduced ovarian follicular pool and lower IGF-1 mRNA levels, suggesting that Mas receptor plays a role in the survival of ovarian follicle. The reduction of ovulatory rate highlights the relevance of Ang-(1-7)/Mas axis in female reproduction, probably through a reduction of IGF-1 mRNA levels.
Collapse
Affiliation(s)
- Kinulpe Honorato-Sampaio
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Renato Ferreira Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Almir de Souza Martins
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Robson Augusto Souza Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adelina Martha Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
41
|
Influence and mechanism of Angiotensin 1-7 on biological properties of normal prostate epithelial cells. Biochem Biophys Res Commun 2018; 502:152-159. [DOI: 10.1016/j.bbrc.2018.05.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
|
42
|
Namavar Jahromi B, Parsanezhad ME, Shomali Z, Bakhshai P, Alborzi M, Moin Vaziri N, Anvar Z. Ovarian Hyperstimulation Syndrome: A Narrative Review of Its Pathophysiology, Risk Factors, Prevention, Classification, and Management. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:248-260. [PMID: 29892142 PMCID: PMC5993897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a serious complication of ovulation induction that usually occurs after gonadotropin stimulation, followed by human chorionic gonadotropin administration, for infertility treatment. The existing knowledge about the pathophysiology, risk factors, and primary and secondary methods for the prevention of OHSS is reviewed in this manuscript. The clinical manifestations and characteristics of mild, moderate, severe, and critical forms of the syndrome are defined. The methods of handling affected cases as outpatient or in-hospital management methods as well as indications for hospitalization are summarized in this review. The clinical and biochemical routes of assessing and monitoring hospitalized patients with OHSS, various drugs and medical treatment strategies including indications for aspiration of the ascitic fluid and pleural effusion, and also rare indications for surgery are briefly explained in this article. Severe OHSS, which two decades ago was considered an iatrogenic life-threatening condition, can now be effectively prevented or managed during the early stages. An OHSS-free clinic can be established nowadays by carefully considering the endocrinology of ovulation and using appropriate and dose-adjusted pharmaceutical agents, which are summarized and discussed in this review.
Collapse
Affiliation(s)
- Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Department of Obstetrics and Gynecology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ebrahim Parsanezhad
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
,Department of Obstetrics and Gynecology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shomali
- Department of Obstetrics and Gynecology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran;,Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Bakhshai
- Department of Obstetrics and Gynecology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran;,Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Alborzi
- Department of Obstetrics and Gynecology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran;,Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Moin Vaziri
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran;
| |
Collapse
|
43
|
Gao Q, Ou Z, Jiang T, Tian YY, Zhou JS, Wu L, Shi JQ, Zhang YD. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic parkinsonian behaviors in a rat model of Parkinson's disease. Oncotarget 2018; 8:24099-24109. [PMID: 28445961 PMCID: PMC5421830 DOI: 10.18632/oncotarget.15732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Loss of dopaminergic neurons within the substantia nigra (SN) is a pathological hallmark of Parkinsons disease (PD), which leads to the onset of motor symptoms. Previously, our in vitro studies revealed that Angiotensin II (Ang II) induced apoptosis of dopaminergic neurons through its type 1 receptor (AT1R), but these findings needed to be confirmed via animal experiments. Here, using a rotenone-induced rat model of PD, we observed an overactivation of Ang II/AT1R axis in the SN, since Ang II level and AT1R expression were markedly increased. Furthermore, we provided in vivo evidence that Ang II directly elicited apoptosis of dopaminergic neurons via activation of AT1R in the SN of rats. More importantly, we showed for the first time that oral administration of azilsartan, a newly developed AT1R blocker approved by the U.S. Food and Drug Administration for hypertension treatment, rescued the apoptosis of dopaminergic neurons and relieved the characteristic parkinsonian symptoms in PD rats. These results support the application of AT1R blockers in PD therapy, and strengthen the notion that many therapeutic agents may possess pleiotropic action in addition to their main applications.
Collapse
Affiliation(s)
- Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - You-Yong Tian
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Liang Wu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
44
|
Casalechi M, Dela Cruz C, Lima LC, Maciel LP, Pereira VM, Reis FM. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation. Peptides 2018; 101:145-149. [PMID: 29367076 DOI: 10.1016/j.peptides.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza C Lima
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana P Maciel
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Virgínia M Pereira
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
45
|
High salt diet decreases reproductive performance in rams and down-regulates gene expression of some components of the renin-angiotensin system in the testis. Theriogenology 2018; 107:127-133. [DOI: 10.1016/j.theriogenology.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
|
46
|
Michaelis M, Sobczak A, Koczan D, Langhammer M, Reinsch N, Schoen J, Weitzel JM. Selection for female traits of high fertility affects male reproductive performance and alters the testicular transcriptional profile. BMC Genomics 2017; 18:889. [PMID: 29157197 PMCID: PMC5697431 DOI: 10.1186/s12864-017-4288-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Background Many genes important for reproductive performance are shared by both sexes. However, fecundity indices are primarily based on female parameters such as litter size. We examined a fertility mouse line (FL2), which has a considerably increased number of offspring and a total litter weight of 180% compared to a randomly bred control line (Ctrl) after more than 170 generations of breeding. In the present study, we investigated whether there might be a parallel evolution in males after more than 40 years of breeding in this outbred mouse model. Results Males of the fertility mouse line FL2 showed reduced sperm motility performance in a 5 h thermal stress experiment and reduced birth rate in the outbred mouse line. Transcriptional analysis of the FL2 testis showed the differential expression of genes associated with steroid metabolic processes (Cyp1b1, Cyp19a1, Hsd3b6, and Cyp21a1) and female fecundity (Gdf9), accompanied by 150% elevated serum progesterone levels in the FL2 males. Cluster analysis revealed the downregulation of genes of the kallikrein-related peptidases (KLK) cluster located on chromosome 7 in addition to alterations in gene expression with serine peptidase activity, e.g., angiotensinogen (Agt), of the renin-angiotensin system essential for ovulation. Although a majority of functional annotations map to female reproduction and ovulation, these genes are differentially expressed in FL2 testis. Conclusions These data indicate that selection for primary female traits of increased litter size not only affects sperm characteristics but also manifests as transcriptional alterations of the male side likely with direct long-term consequences for the reproductive performance of the mouse line. Electronic supplementary material The online version of this article (10.1186/s12864-017-4288-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marten Michaelis
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany. .,Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, FBN Dummerstorf, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alexander Sobczak
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany
| | - Joachim M Weitzel
- Institute of Reproductive Biology, University of Rostock, Rostock, Germany. .,Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, FBN Dummerstorf, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
47
|
Wu L, Sun Y, Wan J, Luan T, Cheng Q, Tan Y. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients. Mol Med Rep 2017; 16:272-280. [PMID: 28534980 PMCID: PMC5482139 DOI: 10.3892/mmr.2017.6604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.
Collapse
Affiliation(s)
- Lan Wu
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Yazhou Sun
- Department of Pediatrics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jun Wan
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Ting Luan
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Qing Cheng
- Department of Obstetrics, Nanjing Medical University Affiliated Nanjing Maternal and Child Health Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yong Tan
- First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| |
Collapse
|
48
|
Sun H, Li T, Zhuang R, Cai W, Zheng Y. Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients?: Evidence from a meta-analysis including 55 studies. Medicine (Baltimore) 2017; 96:e6394. [PMID: 28353566 PMCID: PMC5380250 DOI: 10.1097/md.0000000000006394] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Renin-angiotensin system inhibitors (RAS inhibitors) are antihypertensive agents with potential antitumor effects. However, various studies have yielded conflicting results on the influence of RAS inhibitors on survival of cancer patients. The aim of this study was to evaluate the effect of RAS inhibitors on recurrence, metastasis, and survival in cancer patients through a meta-analysis. METHODS PubMed, Web of Science, EMBASE, and Cochrane Library were systematically searched from inception to December 2016. The pooled hazard ratio (HR) with its 95% confidence interval (95% CI) was calculated to evaluate the association between RAS inhibitors and recurrence, metastasis, and survival in cancer patients. RESULTS Fifty-five eligible studies were included in the present meta-analysis. Results showed that there were significant improvements in overall survival (OS) (HR = 0.82; 95% CI: 0.77-0.88; P < 0.001), progression-free survival (HR = 0.74; 95% CI: 0.66-0.84; P < 0.001), and disease-free survival (HR = 0.80; 95% CI: 0.67-0.95; P = 0.01) in RAS inhibitor users compared with nonusers. Subgroup analyses revealed that the effect of RAS inhibitors on OS depended on the cancer type or different RAS inhibitors. CONCLUSION This meta-analysis suggests that RAS inhibitors could improve the survival of cancer patients and depend on cancer type and types of RAS inhibitors.
Collapse
Affiliation(s)
- Hong Sun
- Department of Clinical Pharmacy, School of Pharmacy
| | - Tao Li
- Department of Clinical Pharmacy, School of Pharmacy
| | | | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Predictive and Prognostic Value of sPRR in Patients with Primary Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2016; 2016:6845213. [PMID: 27660742 PMCID: PMC5021861 DOI: 10.1155/2016/6845213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022] Open
Abstract
Aim. The purpose of the present study was to analyze the predictive and prognostic role of soluble (pro)renin receptor (sPRR) as a biomarker for clinicopathological outcome in patients with primary epithelial ovarian cancer (EOC). As part of the renin-angiotensin system (RAS) whose activity is known to increase in ovarian cancer patients, the relation of sPRR and ovarian cancer should be further investigated. Patients and Methods. In this study 197 patients with primary EOC in our institution from 2000 to 2011 were included. sPRR was determined by enzyme-linked immunosorbent assay (ELISA) in preoperative taken blood sera. Associations with clinicopathological outcome were analyzed and serum levels of sPRR in patients have been compared to those in healthy specimen. Kaplan-Meier and logistic/Cox regression assessed the impact of the markers on progression-free survival (PFS) and overall survival (OS). Results. There have been no correlations proved of sPRR levels with neither clinicopathological factors nor prognostic data. Also the distribution of sPRR in patients and controls was normal. Conclusion. sPRR seems to have no predictive, prognostic, or diagnostic value in EOC. As several factors of the RAS which might indicate cancer events have been shown, sPRR seems not to be affected.
Collapse
|
50
|
Incidence of endometrial spotting or bleeding during continuous-combined estrogen-progestin therapy in postmenopausal women with and without hypertension. Menopause 2016; 22:1067-75. [PMID: 25756697 DOI: 10.1097/gme.0000000000000436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Endometrial spotting or bleeding is a common adverse effect among women taking continuous-combined estrogen-progestin therapy. The renin-angiotensin-aldosterone system plays a major role in hypertension and is present in the endometrium. We hypothesized that postmenopausal women with hypertension would have a higher incidence of bleeding compared with postmenopausal women without hypertension. METHODS A multivariate mixed-effects logistic model estimated the odds ratios for the relationship of hypertension status or use of antihypertensive drugs with endometrial bleeding using the Women's Health Initiative database. RESULTS The incidence of spotting or bleeding in the first 12 months of estrogen-progestin use was 42% in women aged 50 to 79 years. Women with hypertension were more likely to experience bleeding than women without hypertension (odds ratio, 1.07; 95% CI, 1.02-1.13). Overall antihypertensive medication use increased bleeding with an odds ratio of 1.24, whereas angiotensin II receptor antagonists had a reduced odds ratio (0.53). CONCLUSIONS Postmenopausal women with hypertension are more likely to bleed than postmenopausal women without hypertension when taking continuous estrogen-progestin, with less bleeding in women using angiotensin II receptor antagonists. This finding is novel and supports our hypothesis that the endometrial renin-angiotensin-aldosterone system may contribute to endometrial bleeding.
Collapse
|