1
|
Mun SH, Kwon JY. Effect of Salinity and Salmon Pituitary Extract on the Expression of Reproduction and/or Salinity-Related Genes in the Pituitary Cells of Japaneses Eel. Dev Reprod 2024; 28:75-86. [PMID: 39444641 PMCID: PMC11495884 DOI: 10.12717/dr.2024.28.3.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 10/25/2024]
Abstract
Artificial sexual maturation of eel (Anguilla japonica) involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures. Pituitary cells were cultured into four experimental groups: control culture (control), SPE-treated culture (SPE), NaCl-treated culture (NaCl) and NaCl+SPE treated culture (NaCl+SPE). We investigated the expression of genes presumably related to reproduction and/or salinity, including luteinizing hormone (LHβ), follicle stimulating hormone (FSHβ), progesterone receptor-like (pgrl), prolactin (PRL), dopamine receptor D4 (drd4), neuropeptide B/W receptor 2 (NPBWR2) and relaxin family peptide receptor 3-2b (rxfp3-2b). Gene expression analysis revealed significant upregulation of LHβ in SPE and NaCl+SPE groups compared to control and NaCl (p<0.05). FSHβ expression did not show any significant changes. PRL showed a significant decrease in the NaCl group (p<0.05). Pgrl, NPBWR2, drd4, and rxfp3-2b displayed the highest expression in the control group, with downregulation observed in all treatment groups (NaCl, SPE, and NaCl+SPE) (p<0.05). This study demonstrated the direct effects of salinity changes and SPE treatment on the eel pituitary. Results from this study also suggest that salinity change is necessary but work together with SPE to induce reproductive process, and that LHβ, pgrl, PRL, drd4, NPBWR2, and rxfp3-2b genes are obviously associated with reproduction and salinity changes in eels.
Collapse
Affiliation(s)
- Seong Hee Mun
- Department of Aquatic Life Medical
Sciences, Sunmoon University, Asan 31460,
Korea
- Ecological Risk Research Department,
Korea Institute of Ocean Science and Technology,
Geoje 53201, Korea
| | - Joon Yeong Kwon
- Department of Aquatic Life Medical
Sciences, Sunmoon University, Asan 31460,
Korea
| |
Collapse
|
2
|
Kumar TP, Gireesh-Babu P, Vasudevan D, Pavan-Kumar A, Chaudhari A. Characterization of Kiss/Kissr system and expression profiling through developmental stages indicate kiss1 to be the active isotype in Clarias magur. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1353-1373. [PMID: 38647980 DOI: 10.1007/s10695-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.
Collapse
Affiliation(s)
- Thushar P Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Dileep Vasudevan
- RGCB-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Annam Pavan-Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
3
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
4
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
5
|
Zhao C, Wang B, Liu Y, Feng C, Xu S, Wang W, Liu Q, Li J. New Evidence for the Existence of Two Kiss/Kissr Systems in a Flatfish Species, the Turbot ( Scophthalmus maximus), and Stimulatory Effects on Gonadotropin Gene Expression. Front Endocrinol (Lausanne) 2022; 13:883608. [PMID: 35784551 PMCID: PMC9240279 DOI: 10.3389/fendo.2022.883608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal reproduction is generally controlled by the hypothalamus-pituitary-gonadal (HPG) axis in fish. Previous studies have demonstrated that the kisspeptin (Kiss)/kisspeptin receptor (Kissr) system, a positive regulator of the HPG axis, mediates the responses to environmental cues. Turbot (Scophthalmus maximus), a representative species of Pleuronectiformes, is one of the most commercially important fish species cultured in Europe and North China. However, the mechanisms by which the Kiss/Kissr system regulates the reproductive axis of turbot according to seasonal changes, especially photoperiod, have not been clearly characterized. In the current study, the cDNA sequences of kiss2/kissr2, along with kiss1/kissr3 which was thought to be lost in flatfish species, were cloned and functionally characterized. The kiss1, kiss2, and kissr3 transcripts were highly detected in the brain and gonad, while kissr2 mRNA was only abundantly expressed in the brain. Moreover, kiss/kissr mRNAs were further examined in various brain areas of both sexes. The kiss1, kissr2, kissr3 mRNAs were highly expressed in the mesencephalon, while a substantial degree of kiss2 transcripts were observed in the hypothalamus. During annual reproductive cycle, both kiss and kissr transcript levels declined significantly from the immature to mature stages and increased at the degeneration stage in the brains of both sexes, especially in the mesencephalon and hypothalamus. The ovarian kiss1, kiss2, and kissr2 mRNA levels were highest at the vitellogenic stage (mature stage), while expression of kissr3 was highest at the immature stage. The testicular kiss and kissr transcripts were highest in the immature and degeneration stages, and lowest at the mature stage. In addition, intraperitoneal injection of Kiss1-10 and Kiss2-10 significantly stimulated mRNA levels of pituitary lhβ, fhsβ, and gthα. In summary, two Kiss/Kissr systems were firstly proven in a flatfish species of turbot, and it has a positive involvement in controlling the reproduction of the Kiss/Kissr system in turbot. The results will provide preliminary information regarding how the Kiss/Kissr system controls seasonal reproduction in turbot broodstock.
Collapse
Affiliation(s)
- Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yifan Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Chengcheng Feng
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenqi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Jun Li,
| |
Collapse
|
6
|
Fleming MS, Maugars G, Martin P, Dufour S, Rousseau K. Differential Regulation of the Expression of the Two Thyrotropin Beta Subunit Paralogs by Salmon Pituitary Cells In Vitro. Front Endocrinol (Lausanne) 2020; 11:603538. [PMID: 33329404 PMCID: PMC7729069 DOI: 10.3389/fendo.2020.603538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
We recently characterized two paralogs of the thyrotropin (TSH) beta subunit in Atlantic salmon, tshβa and tshβb, issued from teleost-specific whole genome duplication. The transcript expression of tshβb, but not of tshβa, peaks at the time of smoltification, which revealed a specific involvement of tshβb paralog in this metamorphic event. Tshβa and tshβb are expressed by distinct pituitary cells in salmon, likely related to TSH cells from the pars distalis and pars tuberalis, respectively, in mammals and birds. The present study aimed at investigating the neuroendocrine and endocrine factors potentially involved in the differential regulation of tshβa and tshβb paralogs, using primary cultures of Atlantic salmon pituitary cells. The effects of various neurohormones and endocrine factors potentially involved in the control of development, growth, and metabolism were tested. Transcript levels of tshβa and tshβb were measured by qPCR, as well as those of growth hormone (gh), for comparison and validation. Corticotropin-releasing hormone (CRH) stimulated tshβa transcript levels in agreement with its potential role in the thyrotropic axis in teleosts, but had no effect on tshβb paralog, while it also stimulated gh transcript levels. Thyrotropin-releasing hormone (TRH) had no effect on neither tshβ paralogs nor gh. Somatostatin (SRIH) had no effects on both tshβ paralogs, while it exerted a canonical inhibitory effect on gh transcript levels. Thyroid hormones [triiodothyronine (T3) and thyroxine (T4)] inhibited transcript levels of both tshβ paralogs, as well as gh, but with a much stronger effect on tshβa than on tshβb and gh. Conversely, cortisol had a stronger inhibitory effect on tshβb than tshβa, while no effect on gh. Remarkably, insulin-like growth factor 1 (IGF1) dose-dependently stimulated tshβb transcript levels, while it had no effect on tshβa, and a classical inhibitory effect on gh. This study provides the first data on the neuroendocrine factors involved in the differential regulation of the expression of the two tshβ paralogs. It suggests that IGF1 may be involved in triggering the expression peak of the tshβb paralog at smoltification, thus representing a potential internal signal in the link between body growth and smoltification metamorphosis.
Collapse
Affiliation(s)
- Mitchell Stewart Fleming
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Gersende Maugars
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage (CNSS), Chanteuges, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| |
Collapse
|
7
|
Zhang H, Zhang Y, Guo Y, Zhang X, Wang Q, Liu X, Lin H. Kiss2 but not kiss1 is involved in the regulation of social stress on the gonad development in yellowtail clownfish, Amphiprion clarkii. Gen Comp Endocrinol 2020; 298:113551. [PMID: 32687936 DOI: 10.1016/j.ygcen.2020.113551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The yellowtail clownfish (Amphiprion clarkii) is a hermaphrodite fish, whose sex differentiation and gonad development are closely related to its social status. The kisspeptin/KissR system is regarded as a key factor mediating social stress on reproductive regulation. In order to understand the effects of social rank stress on the yellowtail clownfish gonadal differentiation, full-length cDNAs of two paralogous genes encoding kisspeptin (kiss1 and kiss2) and KissR (kissr2 and kissr3) were cloned and characterized. The results of real-time PCR showed that kiss1 was primarily expressed in the hypothalamus, and kiss2/kissr2 were abundantly expressed in the liver, while kissr3 was almost exclusively concentrated in the cerebellum and pituitary. Moreover, both Kiss1-10 and Kiss2-10 peptides could initiate downstream signaling pathways by interacting with cognate receptors expressed in eukaryotic cells. Among the three social status groups, the mRNA levels of kiss2 in the hypothalamus and pituitary as well as kissr2 in the pituitary were significantly higher in subordinate individuals (nonbreeders) than dominate individuals (females and males); while the mRNA levels of kissr3 in the hypothalamus and gonad were low in subordinate individuals. Furthermore, the plasma estradiol (E2) and testosterone (T) levels were higher in subordinate than dominate individuals. This study shows that kiss2 is involved in the regulation of social stress on the gonad development in the yellowtail clownfish, but not kiss1.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yanyu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yin Guo
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Qian Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xiaochun Liu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haoran Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Identification of kisspeptin2 cDNA in the catfish Heteropneustes fossilis: Expression profile, in situ localization and steroid modulation. Gen Comp Endocrinol 2020; 294:113472. [PMID: 32243956 DOI: 10.1016/j.ygcen.2020.113472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/22/2020] [Accepted: 03/28/2020] [Indexed: 01/02/2023]
Abstract
Kisspeptin (Kiss) is considered an upstream regulator of gonadotropin-releasing hormone in mammals but its role in non-mammalian vertebrates is not unequivocally established. In the catfish Heteropneustes fossilis, a 605 bp long cDNA was identified from the brain by cloning as well as by retrieving from the catfish transcriptome database. The open reading frame (ORF, 93-405 bp) codes for a 113 amino acids long precursor protein. Homology and phylogenetic analyses showed that the predicted protein belongs to the vertebrate Kiss2 type with a high degree of conservation in the Kiss2-10 region (FNFNPFGLRF). The kiss2 transcripts were expressed highly in the brain and gonads in a dimorphic manner with a female bias. In the brain, kiss2 transcripts showed regional differences with higher expression in the medulla oblongata and forebrain regions. The kiss2 transcripts showed significant seasonal variations with the highest expression in the brain in spawning phase and in the gonads in prespawning phase. The kiss2 transcripts were localized in the brain (nucleus preopticus, habenular nucleus, nucleus recessus posterioris, nucleus recessus lateralis) and stratum periventriculare (radial glial cells) of optic tectum, pituitary and ovary (follicular layer and germinal vesicle). Ovariectomy (1, 2, 3 and 4 weeks) decreased brain kiss2 mRNA levels and a single injection of estradiol-17β (E2; 0.5 μg/g body weight) in 3- week ovariectomized (OVX) and sham operated fish resulted in an increase in the transcript levels after 24 h. The E2 receptor antagonist Tamoxifen (TMX) produced biphasic effects on the kiss2 expression in the dose- response study. TMX inhibited the expression in the OVX fish, but elicited a stimulatory effect in the OVX + E2-treated fish. Testosterone (T) decreased, and progesterone (P4) inhibited (resting phase) or stimulated (prespawning phase) the transcript level in 3-week OVX fish. In the 3-week sham groups, E2 increased, and TMX, T and P4 inhibited the kiss2 transcript levels. The results suggest that Kiss2 is an important regulator of the brain- pituitary- gonadal- endocrine axis, and in habenular and optic tectum functions.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
9
|
Durif CMF, Diserud OH, Sandlund OT, Thorstad EB, Poole R, Bergesen K, Escobar‐Lux RH, Shema S, Vøllestad LA. Age of European silver eels during a period of declining abundance in Norway. Ecol Evol 2020; 10:4801-4815. [PMID: 32551062 PMCID: PMC7297751 DOI: 10.1002/ece3.6234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
The European eel (Anguilla anguilla) is critically endangered throughout its range. Knowledge about age distribution of future spawners (silver eels) is essential to monitor the status and contribute to the recovery of this species. Determination of age in anguillid eels is challenging, especially in eels from the northern part of the distribution area where growth is slow and age at maturation can be up to 30 years or more. Eels from the river Imsa in Norway have been monitored since 1975, and this reference time series has been used to assess the stock at the European level. Population dynamics in this catchment were analyzed during the late 1980s by estimating ages on whole cleared otoliths. However, techniques for revealing annual increments on otoliths have evolved over the years sometimes yielding significant differences in age estimates. In this study, the historical otolith data were reanalyzed using a grinding and polishing method rather than reading the whole otolith. The new age estimates were considerably higher than the previous ones, sometimes by up to 29 years. Since the 1980s, mean age of silver eels only slightly increased (from 19 to 21 years in the 2010s). This was mainly due to the disappearance of younger silver eels (<15 years) in the 2010s. The new age estimates agreed with the steep decline in recruitment which occurred in the late 1980s in the Imsa catchment. Mean growth (30 mm/year, min-max: 16-64 mm/year) has not changed since the 1980s, although density in the catchment has decreased. Revealing and reading age of slow-growing eels remain a challenge but adding a measure of otolith reading uncertainty may improve age data collection and contribute to recovery measures for this species.
Collapse
Affiliation(s)
| | | | | | | | | | - Knut Bergesen
- Norwegian Institute for Nature ResearchIms Research StationSandnesNorway
| | | | | | - Leif Asbjørn Vøllestad
- Department of BiosciencesCentre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| |
Collapse
|
10
|
Maugars G, Pasquier J, Atkinson C, Lafont AG, Campo A, Kamech N, Lefranc B, Leprince J, Dufour S, Rousseau K. Gonadotropin-inhibitory hormone in teleosts: New insights from a basal representative, the eel. Gen Comp Endocrinol 2020; 287:113350. [PMID: 31794732 DOI: 10.1016/j.ygcen.2019.113350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
Since its discovery in birds, gonadotropin-inhibitory hormone (GnIH) has triggered investigation in the other groups of vertebrates. In the present study, we have identified a single gnih gene in the European eel (Anguilla anguilla), a representative species of a basal group of teleosts (Elopomorphs). We have also retrieved a single gnih gene in Osteoglossomorphs, as well as in more recently emerged teleosts, Clupeocephala. Phylogeny and synteny analyses allowed us to infer that one of the two gnih paralogs emerged from the teleost-specific whole genome duplication (TWGD or 3R), would have been lost shortly after the 3R, before the emergence of the basal groups of teleosts. This led to the presence of a single gnih in extant teleosts as in other vertebrates. Two gnih paralogs were still found in some teleost species, such as in salmonids, but resulting from the additional whole genome duplication that specifically occurred in this lineage (4R). Eel gnih was mostly expressed in the diencephalon part of the brain, as analyzed by quantitative real-time PCR. Cloning of eel gnih cDNA confirmed that the sequence of the GnIH precursor encoded three putative mature GnIH peptides (aaGnIH-1, aaGnIH-2 and aaGnIH-3), which were synthesized and tested for their direct effects on eel pituitary cells in vitro. Eel GnIH peptides inhibited the expression of gonadotropin subunits (lhβ, fshβ, and common a-subunit) as well as of GnRH receptor (gnrh-r2), with no effect on tshβ and gh expression. The inhibitory effect of GnIH peptides on gonadotropic function in a basal teleost is in agreement with an ancestral inhibitory role of GnIH in the neuroendocrine control of reproduction in vertebrates.
Collapse
Affiliation(s)
- G Maugars
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - J Pasquier
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - C Atkinson
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A-G Lafont
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - A Campo
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - N Kamech
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - B Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - J Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - S Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - K Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
11
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
12
|
Wang B, Yang G, Xu Y, Li W, Liu X. Recent studies of LPXRFa receptor signaling in fish and other vertebrates. Gen Comp Endocrinol 2019; 277:3-8. [PMID: 30465768 DOI: 10.1016/j.ygcen.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis plays a major role in coordinating the reproduction of fish and other vertebrates. Gonadotropin-releasing hormone (GnRH) is the primary stimulatory factor responsible for the hypothalamic control of gonadotropin secretion. In 2000, a previously unidentified hypothalamic neuropeptide was isolated from the brain of Japanese quail and termed gonadotropin-inhibitory hormone (GnIH) based on its ability to directly inhibit gonadotropin release from the cultured quail anterior pituitary gland. One year later, the cDNA sequence that encodes the quail GnIH precursor polypeptide was cloned and was found to encompass two further peptides (GnIH-related peptide (RP)-1 and GnIH-RP-2) besides GnIH. To date, GnIH orthologous have been detected in a variety of vertebrates from fish to humans. These peptides possess a characteristic-LPXRFa (X = L or Q) motif at the C-terminus and are designated as LPXRFa peptides. It is generally accepted that LPXRFa peptides act on GnRH neurons in the hypothalamus to inhibit gonadotropin synthesis and release in addition to affecting the pituitary function in birds and mammals. However, the exact physiological role of LPXRFa is still uncertain in fish and dual actions of LPXRFa on the HPG axis have been observed. Research aiming to elucidate the detailed signaling pathways mediating the actions of LPXRFa on target cells may contribute to understanding the functional divergence of the LPXRFa system in teleosts. Accordingly, this review will discuss the recent advances in LPXRFa receptor signaling, as well as the potential interactions on cell signaling induced by other factors, such as GnRH and kisspeptin.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
13
|
Yue HM, Ye H, Ruan R, Du H, Li CJ, Wei Q. Feedback regulation of 17β-estradiol on two kisspeptin genes in the Dabry's sturgeon (Acipenser dabryanus). Comp Biochem Physiol B Biochem Mol Biol 2019; 230:1-9. [PMID: 30665026 DOI: 10.1016/j.cbpb.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
In tetrapods, kisspeptins are a group of peptides that play essential roles in the regulation of the Gonadotropin-releasing hormone secretion, and may participate in the feedback regulation of sex steroids as well. In this study, two kiss paralogs, designated as dskiss1 and dskiss2 were identified in Acipenser dabryanus. The full-length cDNA sequences of dskiss1 and dskiss2 are 1265 and 744 base pairs (bp), encoding 130 and 146 amino acids, respectively. Multiple sequence alignment indicated that both Kiss1 and Kiss2 decapeptides were highly conserved among vertebrates. Besides, Kiss1 of Dabry's sturgeon shared closer evolutionary relationship with the holostean species spotted gar (Lepisosteus oculatus), while Kiss2 of Acipenser dabryanus was conservatively grouped with the early sarcopterygian coelacanth (Latimeria chalumnae) in the phylogenetic analysis. Tissue distribution analysis showed that dskiss1 transcribed exclusively in the brain, whereas dskiss2 exhibited wider tissue distribution including brain, testis and ovary. Furthermore, male Dabry's sturgeons were intraperitoneally injected with 17β-estradiol (E2) and the effect of E2 on hypothalamus kiss and its receptors kissr mRNA levels was evaluated by relative real-time PCR. The transcription levels of dskiss2 and dskissr1 were significantly increased by E2 injection (P < .05). However, the mRNA levels of dskiss1 and dskissr2 were not changed in E2-treated group compared to the control group. These results indicate that E2 exerts positive feedback effects through dskiss2/dskissr1 in male Dabry's sturgeon.
Collapse
Affiliation(s)
- Hua-Mei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
14
|
Ságodi L, Sólyom E, Kiss-Tóth E. [Neuroendocrine mechanisms controlling the development in puberty. A literature overview]. Orv Hetil 2018; 159:1175-1182. [PMID: 30008234 DOI: 10.1556/650.2018.31125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Puberty is the stage of development in human life, when the hypothalamus-hypophysis-gonad axis is re-activated after quiescence. Humanity has long been concerned with the idea of exogenous and endogenous factors and mechanisms that influence the temporal course of puberty neuroendocrine events. Recent discoveries have helped to understand the functioning of the neuroendocrine system. It has been clarified that kisspeptin plays a key role in puberty and regulation of fertility. However, in the function of the gonadotropin-releasing hormone (GnRH) pulse secretion, besides kisspeptin, neurokinin B, dynorphin neurons other positive and negative signals are involved, guiding the release of hormones of hypophysis gonadotropin. The knowledge of these nerves further enhanced the understanding of GnRH pulsation modulation by endocrine, metabolic and environmental impacts. The authors point out the risk of endocrine disruptors in the physiological course of puberty. The aim of the review is to provide a comprehensive picture of the research results of the physiology of kisspeptin, as the manipulation of kisspeptin signaling has the potential for novel therapies in patients with pathologically low or high luteinizing hormone (LH) pulsatility. Orv Hetil. 2018; 159(29): 1175-1182.
Collapse
Affiliation(s)
- László Ságodi
- Preventív Egészségtudományi Tanszék, Miskolci Egyetem, Egészségügyi Kar Miskolc
| | - Enikő Sólyom
- Velkey László Gyermek-egészségügyi Központ, Borsod-Abaúj-Zemplén Megyei Központi Kórház és Egyetemi Oktató Kórház Miskolc
| | - Emőke Kiss-Tóth
- Preventív Egészségtudományi Tanszék, Miskolci Egyetem, Egészségügyi Kar Miskolc
| |
Collapse
|
15
|
Campo A, Lafont AG, Lefranc B, Leprince J, Tostivint H, Kamech N, Dufour S, Rousseau K. Tachykinin-3 Genes and Peptides Characterized in a Basal Teleost, the European Eel: Evolutionary Perspective and Pituitary Role. Front Endocrinol (Lausanne) 2018; 9:304. [PMID: 29942283 PMCID: PMC6004781 DOI: 10.3389/fendo.2018.00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, neurokinin B (NKB) is a short peptide encoded by the gene tac3. It is involved in the brain control of reproduction by stimulating gonadotropin-releasing hormone (GnRH) neurons, mainly via kisspeptin. We investigated tac3 genes and peptides in a basal teleost, the European eel, which shows an atypical blockade of the sexual maturation at a prepubertal stage. Two tac3 paralogous genes (tac3a and tac3b) were identified in the eel genome, each encoding two peptides (NKBa or b and NKB-related peptide NKB-RPa or b). Amino acid sequence of eel NKBa is identical to human NKB, and the three others are novel peptide sequences. The four eel peptides present the characteristic C-terminal tachykinin sequence, as well as a similar alpha helix 3D structure. Tac3 genes were identified in silico in 52 species of vertebrates, and a phylogeny analysis was performed on the predicted TAC3 pre-pro-peptide sequences. A synteny analysis was also done to further assess the evolutionary history of tac3 genes. Duplicated tac3 genes in teleosts likely result from the teleost-specific whole genome duplication (3R). Among teleosts, TAC3b precursor sequences are more divergent than TAC3a, and a loss of tac3b gene would have even occurred in some teleost lineages. NKB-RP peptide, encoded beside NKB by tac3 gene in actinopterygians and basal sarcopterygians, would have been lost in ancestral amniotes. Tissue distribution of eel tac3a and tac3b mRNAs showed major expression of both transcripts in the brain especially in the diencephalon, as analyzed by specific qPCRs. Human NKB has been tested in vitro on primary culture of eel pituitary cells. Human NKB dose-dependently inhibited the expression of lhβ, while having no effect on other glycoprotein hormone subunits (fshβ, tshβ, and gpα) nor on gh. Human NKB also dose-dependently inhibited the expression of GnRH receptor (gnrh-r2). The four eel peptides have been synthesized and also tested in vitro. They all inhibited the expression of both lhβ and of gnrh-r2. This reveals a potential dual inhibitory role of the four peptides encoded by the two tac3 genes in eel reproduction, exerted at the pituitary level on both luteinizing hormone and GnRH receptor.
Collapse
Affiliation(s)
- Aurora Campo
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Anne-Gaëlle Lafont
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, Normandy University, Rouen, France
| | - Hervé Tostivint
- Muséum National d’Histoire Naturelle, UMR7221 CNRS/MNHN Evolution des Régulations Endocriniennes, Paris, France
| | - Nédia Kamech
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Sylvie Dufour
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Karine Rousseau
- Muséum National d’Histoire Naturelle, Research Unit BOREA (Biology of Aquatic Organisms and Ecosystems), CNRS 7208, IRD 207, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
- *Correspondence: Karine Rousseau,
| |
Collapse
|