1
|
Siddique AHH, Kale PP. Importance of glucose and its metabolism in neurodegenerative disorder, as well as the combination of multiple therapeutic strategies targeting α-synuclein and neuroprotection in the treatment of Parkinson's disease. Rev Neurol (Paris) 2024; 180:736-753. [PMID: 38040547 DOI: 10.1016/j.neurol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 12/03/2023]
Abstract
According to recent findings, Phosphoglycerate Kinase 1 (pgk-1) enzyme is linked to Parkinson's disease (PD). Mutations in the PGK-1 gene lead to decreases in the pgk-1 enzyme which causes an imbalance in the levels of energy demand and supply. An increase in glycolytic adenosine triphosphate (ATP) production would help alleviate energy deficiency and sustain the acute energetic need of neurons. Neurodegeneration is caused by an imbalance or reduction in ATP levels. Recent data suggest that medications that increase glycolysis and neuroprotection can be used to treat PD. The current study focuses on treatment options for disorders associated with the pgk-1 enzyme, GLP-1, and A2A receptor which can be utilized to treat PD. A combination of metformin and terazosin, exenatide and meclizine, istradefylline and salbutamol treatments may benefit parkinsonism. The review also looked at potential target-specific new techniques that might assist in satisfying unfulfilled requirements in the treatment of PD.
Collapse
Affiliation(s)
- A H H Siddique
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| | - P P Kale
- Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V. L. Mehta Road, Vile Parle west, 400056 Mumbai, India.
| |
Collapse
|
2
|
Lysikova T, Tomascova A, Kovalska M, Lehotsky J, Leskova Majdova K, Kaplan P, Tatarkova Z. Dynamics in Redox-Active Molecules Following Ischemic Preconditioning in the Brain. Neurol Int 2024; 16:533-550. [PMID: 38804479 PMCID: PMC11130914 DOI: 10.3390/neurolint16030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
It is well known that the brain is quite vulnerable to oxidative stress, initiating neuronal loss after ischemia-reperfusion (IR) injury. A potent protective mechanism is ischemic preconditioning (IPC), where proteins are among the primary targets. This study explores redox-active proteins' role in preserving energy supply. Adult rats were divided into the control, IR, and IPC groups. Protein profiling was conducted to identify modified proteins and then verified through activity assays, immunoblot, and immunohistochemical analyses. IPC protected cortex mitochondria, as evidenced by a 2.26-fold increase in superoxide dismutase (SOD) activity. Additionally, stable core subunits of respiratory chain complexes ensured sufficient energy production, supported by a 16.6% increase in ATP synthase activity. In hippocampal cells, IPC led to the downregulation of energy-related dehydrogenases, while a significantly higher level of peroxiredoxin 6 (PRX6) was observed. Notably, IPC significantly enhanced glutathione reductase activity to provide sufficient glutathione to maintain PRX6 function. Astrocytes may mobilize PRX6 to protect neurons during initial ischemic events, by decreased PRX6 positivity in astrocytes, accompanied by an increase in neurons following both IR injury and IPC. Maintained redox signaling via astrocyte-neuron communication triggers IPC's protective state. The partnership among PRX6, SOD, and glutathione reductase appears essential in safeguarding and stabilizing the hippocampus.
Collapse
Affiliation(s)
- Terezia Lysikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Anna Tomascova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Katarina Leskova Majdova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (T.L.); (A.T.); (J.L.); (K.L.M.); (P.K.)
| |
Collapse
|
3
|
Xiao L, Yin Y, Sun Z, Liu J, Jia Y, Yang L, Mao Y, Peng S, Xie Z, Fang L, Li J, Xie X, Gan Z. AMPK phosphorylation of FNIP1 (S220) controls mitochondrial function and muscle fuel utilization during exercise. SCIENCE ADVANCES 2024; 10:eadj2752. [PMID: 38324677 PMCID: PMC10849678 DOI: 10.1126/sciadv.adj2752] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Exercise-induced activation of adenosine monophosphate-activated protein kinase (AMPK) and substrate phosphorylation modulate the metabolic capacity of mitochondria in skeletal muscle. However, the key effector(s) of AMPK and the regulatory mechanisms remain unclear. Here, we showed that AMPK phosphorylation of the folliculin interacting protein 1 (FNIP1) serine-220 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Loss of FNIP1 in skeletal muscle resulted in increased mitochondrial content and augmented metabolic capacity, leading to enhanced exercise endurance in mice. Using skeletal muscle-specific nonphosphorylatable FNIP1 (S220A) and phosphomimic (S220D) transgenic mouse models as well as biochemical analysis in primary skeletal muscle cells, we demonstrated that exercise-induced FNIP1 (S220) phosphorylation by AMPK in muscle regulates mitochondrial electron transfer chain complex assembly, fuel utilization, and exercise performance without affecting mechanistic target of rapamycin complex 1-transcription factor EB signaling. Therefore, FNIP1 is a multifunctional AMPK effector for mitochondrial adaptation to exercise, implicating a mechanism for exercise tolerance in health and disease.
Collapse
Affiliation(s)
- Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhifu Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Mansour HM, Mohamed AF, Khattab MM, El-Khatib AS. Heat Shock Protein 90 in Parkinson's Disease: Profile of a Serial Killer. Neuroscience 2024; 537:32-46. [PMID: 38040085 DOI: 10.1016/j.neuroscience.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by abnormal α-synuclein misfolding and aggregation, mitochondrial dysfunction, oxidative stress, as well as progressive death of dopaminergic neurons in the substantia nigra. Molecular chaperones play a role in stabilizing proteins and helping them achieve their proper structure. Previous studies have shown that overexpression of heat shock protein 90 (HSP90) can lead to the death of dopaminergic neurons associated with PD. Inhibiting HSP90 is considered a potential treatment approach for neurodegenerative disorders, as it may reduce protein aggregation and related toxicity, as well as suppress various forms of regulated cell death (RCD). This review provides an overview of HSP90 and its role in PD, focusing on its modulation of proteostasis and quality control of LRRK2. The review also explores the effects of HSP90 on different types of RCD, such as apoptosis, chaperone-mediated autophagy (CMA), necroptosis, and ferroptosis. Additionally, it discusses HSP90 inhibitors that have been tested in PD models. We will highlight the under-investigated neuroprotective effects of HSP90 inhibition, including modulation of oxidative stress, mitochondrial dysfunction, PINK/PARKIN, heat shock factor 1 (HSF1), histone deacetylase 6 (HDAC6), and the PHD2-HSP90 complex-mediated mitochondrial stress pathway. By examining previous literature, this review uncovers overlooked neuroprotective mechanisms and emphasizes the need for further research on HSP90 inhibitors as potential therapeutic strategies for PD. Finally, the review discusses the potential limitations and possibilities of using HSP90 inhibitors in PD therapy.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies (BIO-INN), Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Bir A, Ghosh A, Müller WE, Ganguly A. Mitochondrial dysfunction and metabolic syndrome. METABOLIC SYNDROME 2024:157-172. [DOI: 10.1016/b978-0-323-85732-1.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Heidari H, Lawrence DA. Climate Stressors and Physiological Dysregulations: Mechanistic Connections to Pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:28. [PMID: 38248493 PMCID: PMC10815632 DOI: 10.3390/ijerph21010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
This review delves into the complex relationship between environmental factors, their mechanistic cellular and molecular effects, and their significant impact on human health. Climate change is fueled by industrialization and the emission of greenhouse gases and leads to a range of effects, such as the redistribution of disease vectors, higher risks of disease transmission, and shifts in disease patterns. Rising temperatures pose risks to both food supplies and respiratory health. The hypothesis addressed is that environmental stressors including a spectrum of chemical and pathogen exposures as well as physical and psychological influences collectively impact genetics, metabolism, and cellular functions affecting physical and mental health. The objective is to report the mechanistic associations linking environment and health. As environmental stressors intensify, a surge in health conditions, spanning from allergies to neurodegenerative diseases, becomes evident; however, linkage to genetic-altered proteomics is more hidden. Investigations positing that environmental stressors cause mitochondrial dysfunction, metabolic syndrome, and oxidative stress, which affect missense variants and neuro- and immuno-disorders, are reported. These disruptions to homeostasis with dyslipidemia and misfolded and aggregated proteins increase susceptibility to cancers, infections, and autoimmune diseases. Proposed interventions, such as vitamin B supplements and antioxidants, target oxidative stress and may aid mitochondrial respiration and immune balance. The mechanistic interconnections of environmental stressors and disruptions in health need to be unraveled to develop strategies to protect public health.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
| | - David A. Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
7
|
Fernando R, Shindyapina AV, Ost M, Santesmasses D, Hu Y, Tyshkovskiy A, Yim SH, Weiss J, Gladyshev VN, Grune T, Castro JP. Downregulation of mitochondrial metabolism is a driver for fast skeletal muscle loss during mouse aging. Commun Biol 2023; 6:1240. [PMID: 38066057 PMCID: PMC10709625 DOI: 10.1038/s42003-023-05595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Skeletal muscle aging is characterized by the loss of muscle mass, strength and function, mainly attributed to the atrophy of glycolytic fibers. Underlying mechanisms driving the skeletal muscle functional impairment are yet to be elucidated. To unbiasedly uncover its molecular mechanisms, we recurred to gene expression and metabolite profiling in a glycolytic muscle, Extensor digitorum longus (EDL), from young and aged C57BL/6JRj mice. Employing multi-omics approaches we found that the main age-related changes are connected to mitochondria, exhibiting a downregulation in mitochondrial processes. Consistent is the altered mitochondrial morphology. We further compared our mouse EDL aging signature with human data from the GTEx database, reinforcing the idea that our model may recapitulate muscle loss in humans. We are able to show that age-related mitochondrial downregulation is likely to be detrimental, as gene expression signatures from commonly used lifespan extending interventions displayed the opposite direction compared to our EDL aging signature.
Collapse
Affiliation(s)
- Raquel Fernando
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79401, USA
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764, Neuherberg, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany.
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany.
- German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany.
- University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
8
|
Carvalho C, Moreira PI. Metabolic defects shared by Alzheimer's disease and diabetes: A focus on mitochondria. Curr Opin Neurobiol 2023; 79:102694. [PMID: 36842275 DOI: 10.1016/j.conb.2023.102694] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two global epidemics that share several metabolic defects, such as insulin resistance, impaired glucose metabolism, and mitochondrial defects. Importantly, strong evidence demonstrates that T2D significantly increases the risk of cognitive decline and dementia, particularly AD. Here, we provide an overview of the metabolic defects that characterize and link both pathologies putting the focus on mitochondria. The biomarker potential of mitochondrial components and the therapeutic potential of some drugs that target and modulate mitochondria are also briefly discussed.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
10
|
Rivera J, Gangwani L, Kumar S. Mitochondria Localized microRNAs: An Unexplored miRNA Niche in Alzheimer's Disease and Aging. Cells 2023; 12:cells12050742. [PMID: 36899879 PMCID: PMC10000969 DOI: 10.3390/cells12050742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Mitochondria play several vital roles in the brain cells, especially in neurons to provide synaptic energy (ATP), Ca2+ homeostasis, Reactive Oxygen Species (ROS) production, apoptosis, mitophagy, axonal transport and neurotransmission. Mitochondrial dysfunction is a well-established phenomenon in the pathophysiology of many neurological diseases, including Alzheimer's disease (AD). Amyloid-beta (Aβ) and Phosphorylated tau (p-tau) proteins cause the severe mitochondrial defects in AD. A newly discovered cellular niche of microRNAs (miRNAs), so-called mitochondrial-miRNAs (mito-miRs), has recently been explored in mitochondrial functions, cellular processes and in a few human diseases. The mitochondria localized miRNAs regulate local mitochondrial genes expression and are significantly involved in the modulation of mitochondrial proteins, and thereby in controlling mitochondrial function. Thus, mitochondrial miRNAs are crucial to maintaining mitochondrial integrity and for normal mitochondrial homeostasis. Mitochondrial dysfunction is well established in AD pathogenesis, but unfortunately mitochondria miRNAs and their precise roles have not yet been investigated in AD. Therefore, an urgent need exists to examine and decipher the critical roles of mitochondrial miRNAs in AD and in the aging process. The current perspective sheds light on the latest insights and future research directions on investigating the contribution of mitochondrial miRNAs in AD and aging.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Laxman Gangwani
- Department of Veterinary Pathobiology and Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Correspondence:
| |
Collapse
|
11
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|
13
|
Mitophagy in Traumatic Brain Injury: A New Target for Therapeutic Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4906434. [PMID: 35126814 PMCID: PMC8813270 DOI: 10.1155/2022/4906434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) contributes to death, and disability worldwide more than any other traumatic insult and damage to cellular components including mitochondria leads to the impairment of cellular functions and brain function. In neurons, mitophagy, autophagy-mediated degradation of damaged mitochondria, is a key process in cellular quality control including mitochondrial homeostasis and energy supply and plays a fundamental role in neuronal survival and health. Conversely, defective mitophagy leads to the accumulation of damaged mitochondria and cellular dysfunction, contributing to inflammation, oxidative stress, and neuronal cell death. Therefore, an extensive characterization of mitophagy-related protective mechanisms, taking into account the complex mechanisms by which each molecular player is connected to the others, may provide a rationale for the development of new therapeutic strategies in TBI patients. Here, we discuss the contribution of defective mitophagy in TBI, and the underlying molecular mechanisms of mitophagy in inflammation, oxidative stress, and neuronal cell death highlight novel therapeutics based on newly discovered mitophagy-inducing strategies.
Collapse
|
14
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
15
|
Choubey V, Zeb A, Kaasik A. Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells 2021; 11:38. [PMID: 35011599 PMCID: PMC8750762 DOI: 10.3390/cells11010038] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria in the cell are the center for energy production, essential biomolecule synthesis, and cell fate determination. Moreover, the mitochondrial functional versatility enables cells to adapt to the changes in cellular environment and various stresses. In the process of discharging its cellular duties, mitochondria face multiple types of challenges, such as oxidative stress, protein-related challenges (import, folding, and degradation) and mitochondrial DNA damage. They mitigate all these challenges with robust quality control mechanisms which include antioxidant defenses, proteostasis systems (chaperones and proteases) and mitochondrial biogenesis. Failure of these quality control mechanisms leaves mitochondria as terminally damaged, which then have to be promptly cleared from the cells before they become a threat to cell survival. Such damaged mitochondria are degraded by a selective form of autophagy called mitophagy. Rigorous research in the field has identified multiple types of mitophagy processes based on targeting signals on damaged or superfluous mitochondria. In this review, we provide an in-depth overview of mammalian mitophagy and its importance in human health and diseases. We also attempted to highlight the future area of investigation in the field of mitophagy.
Collapse
Affiliation(s)
- Vinay Choubey
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (A.Z.); (A.K.)
| | | | | |
Collapse
|
16
|
Mallach A, Gobom J, Arber C, Piers TM, Hardy J, Wray S, Zetterberg H, Pocock J. Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells 2021; 10:cells10112866. [PMID: 34831089 PMCID: PMC8616378 DOI: 10.3390/cells10112866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Microglial exosomes are an emerging communication pathway, implicated in fulfilling homeostatic microglial functions and transmitting neurodegenerative signals. Gene variants of triggering receptor expressed on myeloid cells-2 (TREM2) are associated with an increased risk of developing dementia. We investigated the influence of the TREM2 Alzheimer’s disease risk variant, R47Hhet, on the microglial exosomal proteome consisting of 3019 proteins secreted from human iPS-derived microglia (iPS-Mg). Exosomal protein content changed according to how the iPS-Mg were stimulated. Thus lipopolysaccharide (LPS) induced microglial exosomes to contain more inflammatory signals, whilst stimulation with the TREM2 ligand phosphatidylserine (PS+) increased metabolic signals within the microglial exosomes. We tested the effect of these exosomes on neurons and found that the exosomal protein changes were functionally relevant and influenced downstream functions in both neurons and microglia. Exosomes from R47Hhet iPS-Mg contained disease-associated microglial (DAM) signature proteins and were less able to promote the outgrowth of neuronal processes and increase mitochondrial metabolism in neurons compared with exosomes from the common TREM2 variant iPS-Mg. Taken together, these data highlight the importance of microglial exosomes in fulfilling microglial functions. Additionally, variations in the exosomal proteome influenced by the R47Hhet TREM2 variant may underlie the increased risk of Alzheimer’s disease associated with this variant.
Collapse
Affiliation(s)
- Anna Mallach
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-43180 Molndal, Sweden; (J.G.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
| | - Thomas M. Piers
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-43180 Molndal, Sweden; (J.G.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
- Correspondence:
| |
Collapse
|
17
|
Zhao Y, Liu X, Zheng Y, Liu W, Ding C. Aronia melanocarpa polysaccharide ameliorates inflammation and aging in mice by modulating the AMPK/SIRT1/NF-κB signaling pathway and gut microbiota. Sci Rep 2021; 11:20558. [PMID: 34663844 PMCID: PMC8523697 DOI: 10.1038/s41598-021-00071-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Aronia melanocarpa is a natural medicinal plant that has a variety of biological activities, its fruit is often used for food and medicine. Aronia melanocarpa polysaccharide (AMP) is the main component of the Aronia melanocarpa fruit. This research evaluated the delay and protection of AMP obtained from Aronia melanocarpa fruit on aging mice by D-Galactose (D-Gal) induction and explored the effect of supplementing AMP on the metabolism of the intestinal flora of aging mice. The aging model was established by intraperitoneal injection of D-Gal (200 mg/kg to 1000 mg/kg) once per 3 days for 12 weeks. AMP (100 and 200 mg/kg) was given daily by oral gavage after 6 weeks of D-Gal-induced. The results showed that AMP treatment significantly improved the spatial learning and memory impairment of aging mice determined by the eight-arm maze test. H&E staining showed that AMP significantly reversed brain tissue pathological damage and structural disorders. AMP alleviated inflammation and oxidative stress injury in aging brain tissue by regulating the AMPK/SIRT1/NF-κB and Nrf2/HO-1 signaling pathways. Particularly, AMP reduced brain cell apoptosis and neurological deficits by activating the PI3K/AKT/mTOR signaling pathway and its downstream apoptotic protein family. Importantly, 16S rDNA analysis indicated the AMP treatment significantly retarded the aging process by improving the composition of intestinal flora and abundance of beneficial bacteria. In summary, this study found that AMP delayed brain aging in mice by inhibiting inflammation and regulating intestinal microbes, which providing the possibility for the amelioration and treatment of aging and related metabolic diseases.
Collapse
Affiliation(s)
- Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yinan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
18
|
Matsushima Y, Takahashi K, Yue S, Fujiyoshi Y, Yoshioka H, Aihara M, Setoyama D, Uchiumi T, Fukuchi S, Kang D. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun Biol 2021; 4:974. [PMID: 34400774 PMCID: PMC8368198 DOI: 10.1038/s42003-021-02498-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human ATP-dependent Lon protease (LONP1) forms homohexameric, ring-shaped complexes. Depletion of LONP1 causes aggregation of a broad range of proteins in the mitochondrial matrix and decreases the levels of their soluble forms. The ATP hydrolysis activity, but not protease activity, of LONP1 is critical for its chaperone-like anti-aggregation activity. LONP1 forms a complex with the import machinery and an incoming protein, and protein aggregation is linked with matrix protein import. LONP1 also contributes to the degradation of imported, aberrant, unprocessed proteins using its protease activity. Taken together, our results show that LONP1 functions as a gatekeeper for specific proteins imported into the mitochondrial matrix. Yuichi Matsushima et al. revealed that Human ATP-dependent Lon protease (LONP1), a mitochondrial protease with unfolding activity, serves as a gatekeeper for several mitochondrial matrix entering proteins: supporting the folding of required proteins and degrading the aberrant ones.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuya Takahashi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Song Yue
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Fujiyoshi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideaki Yoshioka
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamune Aihara
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue. Mol Metab 2021; 53:101276. [PMID: 34153520 PMCID: PMC8319365 DOI: 10.1016/j.molmet.2021.101276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/−) mice were fed a high-fat diet (HFD, 60% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/− mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/− mice in a glucose tolerance test. However, Hsp60+/− mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance. Mice with reduced HSP60 levels are protected from diet-induced obesity. Hsp60+/− mice exhibit altered adipose tissue energy metabolism. WAT of Hsp60+/− mice exhibit elevated insulin-independent glucose uptake. Hsp60+/− mice show improved global, but impaired WAT insulin action.
Collapse
|
20
|
Central Acting Hsp10 Regulates Mitochondrial Function, Fatty Acid Metabolism, and Insulin Sensitivity in the Hypothalamus. Antioxidants (Basel) 2021; 10:antiox10050711. [PMID: 33946318 PMCID: PMC8145035 DOI: 10.3390/antiox10050711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.
Collapse
|
21
|
Park HJ, Kim HN, Kim CY, Seo MD, Baek SH. Synergistic Protection by Isoquercitrin and Quercetin against Glutamate-Induced Oxidative Cell Death in HT22 Cells via Activating Nrf2 and HO-1 Signaling Pathway: Neuroprotective Principles and Mechanisms of Dendropanax morbifera Leaves. Antioxidants (Basel) 2021; 10:antiox10040554. [PMID: 33918248 PMCID: PMC8066007 DOI: 10.3390/antiox10040554] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Dendropanax morbifera leaves (DML) have long been used as traditional medicine to treat diverse symptoms in Korea. Ethyl acetate-soluble extracts of DML (DMLE) rescued HT22 mouse hippocampal neuronal cells from glutamate (Glu)-induced oxidative cell death; however, the protective compounds and mechanisms remain unknown. Here, we aimed to identify the neuroprotective ingredients and mechanisms of DMLE in the Glu-HT22 cell model. Five antioxidant compounds were isolated from DMLE and characterized as chlorogenic acid, hyperoside, isoquercitrin, quercetin, and rutin by spectroscopic methods. Isoquercitrin and quercetin significantly inhibited Glu-induced oxidative cell death by restoring intracellular reactive oxygen species (ROS) levels and mitochondrial superoxide generation, Ca2+ dysregulation, mitochondrial dysfunction, and nuclear translocation of apoptosis-inducing factor. These two compounds significantly increased the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the presence or absence of Glu treatment. Combinatorial treatment of the five compounds based on the equivalent concentrations in DMLE showed that significant protection was found only in the cells cotreated with isoquercitrin and quercetin, both of whom showed prominent synergism, as assessed by drug–drug interaction analysis. These findings suggest that isoquercitrin and quercetin are the active principles representing the protective effects of DMLE, and these effects were mediated by the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Hye-Jin Park
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea; (H.-J.P.); (H.-N.K.)
| | - Ha-Neul Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea; (H.-J.P.); (H.-N.K.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul Young Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan-si 15588, Korea;
| | - Min-Duk Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea; (H.-J.P.); (H.-N.K.)
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (M.-D.S.); (S.-H.B.)
| | - Seung-Hoon Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea; (H.-J.P.); (H.-N.K.)
- Correspondence: (M.-D.S.); (S.-H.B.)
| |
Collapse
|
22
|
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol 2021; 33:e12932. [PMID: 33506556 DOI: 10.1111/jne.12932] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The regulation of energy homeostasis is controlled by the brain and, besides requiring high amounts of energy, it relies on functional insulin/insulin-like growth factor (IGF)-1 signalling in the central nervous system. This energy is mainly provided by mitochondria in form of ATP. Thus, there is an intricate interplay between mitochondrial function and insulin/IGF-1 action to enable functional brain signalling and, accordingly, propagate a healthy metabolism. To adapt to different nutritional conditions, the brain is able to sense the current energy status via mitochondrial and insulin signalling-dependent pathways and exerts an appropriate metabolic response. However, regional, cell type and receptor-specific consequences of this interaction occur and are linked to diverse outcomes such as altered nutrient sensing, body weight regulation or even cognitive function. Impairments of this cross-talk can lead to obesity and glucose intolerance and are linked to neurodegenerative diseases, yet they also induce a self-sustainable, dysfunctional 'metabolic triangle' characterised by insulin resistance, mitochondrial dysfunction and inflammation in the brain. The identification of causal factors deteriorating insulin action, mitochondrial function and concomitantly a signature of metabolic stress in the brain is of utter importance to offer novel mechanistic insights into development of the continuously rising prevalence of non-communicable diseases such as type 2 diabetes and neurodegeneration. This review aims to determine the effect of insulin action on brain mitochondrial function and energy metabolism. It precisely outlines the interaction and differences between insulin action, insulin-like growth factor (IGF)-1 signalling and mitochondrial function; distinguishes between causality and association; and reveals its consequences for metabolism and cognition. We hypothesise that an improvement of at least one signalling pathway can overcome the vicious cycle of a self-perpetuating metabolic dysfunction in the brain present in metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mareike Schell
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristina Wardelmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- Department of Molecular and Experimental Nutritional Medicine, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
23
|
Seydi E, Mehrpouya L, Sadeghi H, Rahimi S, Pourahmad J. Luteolin attenuates Fipronil-induced neurotoxicity through reduction of the ROS-mediated oxidative stress in rat brain mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104785. [PMID: 33771263 DOI: 10.1016/j.pestbp.2021.104785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Luteolin (LUT) as a natural compound found in vegetables and fruits has various pharmacological effects. Fipronil (FPN), as a pesticide, has been considered for its effect on the antioxidant system and induction of oxidative stress. This study was designed to investigate the protective effects of LUT against the oxidative stress and mitochondrial toxicity induced by FPN on the rat brain. Several parameters such as mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, cytochrome c release, mitochondrial glutathione (GSH), lipid peroxidation (LPO) and Adenosine triphosphate (ATP) levels were assessed. Results indicated that the administration of LUT (25 μM) significantly improved oxidative stress and mitochondrial damages induced via FPN (6, 12 and 24 μM) in isolated mitochondria from the brain. These results show that LUT exerted protective effects against FPN-induced neurotoxicity in vitro through improving oxidative stress and mitochondrial damages.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Mehrpouya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadiseh Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Rahimi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Abstract
The concept of brain health has been inconsistently used across disciplines. This concept analysis sought to clarify brain health and construct a unified definition that may lead to consistent use of this concept. The analysis used Walker and Avant's framework to identify scholarly reports on the concept of brain health from various electronic databases. Building on the identified data sources, brain health can be understood as the brain's ability to optimally adapt to internal and external human conditions through cognitive and emotional responses across one's lifespan, which result in sustainable positive changes in brain structures and functional features. This analysis emphasized that maintaining brain health has positive implications on an individual's lifelong quality of health, independence, and delaying cognitive decline. By clarifying uses and definitions of the concept of brain health, this concept analysis may enable researchers and clinicians to evaluate and interpret the concept related data consistently.
Collapse
Affiliation(s)
- Boniface Harerimana
- Parkwood Institute Research, Lawson Health Research Institute, London, Canada.,Arthur Labatt Family School of Nursing, University of Western Ontario, London, Canada
| | - Cheryl Forchuk
- Parkwood Institute Research, Lawson Health Research Institute, London, Canada.,Arthur Labatt Family School of Nursing, University of Western Ontario, London, Canada.,Schulich Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Julie Walsh
- Parkwood Institute Research, Lawson Health Research Institute, London, Canada
| | - Jennifer Fogarty
- Parkwood Institute Research, Lawson Health Research Institute, London, Canada.,Schulich Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Michael Borrie
- Parkwood Institute Research, Lawson Health Research Institute, London, Canada.,Schulich Medicine & Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
25
|
Bhat A, Tan V, Heng B, Lovejoy DB, Sakharkar MK, Essa MM, Chidambaram SB, Guillemin GJ. Roflumilast, a cAMP-Specific Phosphodiesterase-4 Inhibitor, Reduces Oxidative Stress and Improves Synapse Functions in Human Cortical Neurons Exposed to the Excitotoxin Quinolinic Acid. ACS Chem Neurosci 2020; 11:4405-4415. [PMID: 33261317 DOI: 10.1021/acschemneuro.0c00636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The overexpression of phosphodiesterase 4 (PDE4) enzymes is reported in several neurodegenerative diseases. PDE4 depletes cyclic 3'-5' adenosine monophosphate (cAMP) and, in turn, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), the key players in cognitive function. The present study was undertaken to investigate the mechanism behind the protective effects of roflumilast (ROF), a cAMP-specific PDE4 inhibitor, against quinolinic acid (QUIN)-induced neurotoxicity using human primary cortical neurons. Cytotoxicity was analyzed using an MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC-10 staining, respectively. Caspase 3/7 activity was measured using an ApoTox-Glo Triplex assay kit. cAMP was measured using an ELISA kit. The protein expression of CREB, BDNF, SAP-97, synaptophysin, synapsin-I, and PSD-95 was analyzed by the Western blotting technique. QUIN exposure down-regulated CREB, BDNF, and synaptic protein expression in neurons. Pretreatment with ROF increased the intracellular cAMP, mitochondrial membrane potential, and nicotinamide adenine dinucleotide (NAD+) content and decreased the ROS and caspase 3/7 levels in QUIN-exposed neurons. ROF up-regulated the expression of synapse proteins SAP-97, synaptophysin, synapsin-I, PSD-95, and CREB and BDNF, which indicates its potential role in memory. This study suggests for the first time that QUIN causes pre- and postsynaptic protein damage. We further demonstrate the restorative effects of ROF on the mitochondrial membrane potential and antiapoptotic properties in human neurons. These data encourage further investigations to reposition ROF in neurodegenerative diseases and their associated cognitive deficits.
Collapse
Affiliation(s)
- Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Vanessa Tan
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - David B. Lovejoy
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A2, Canada
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru, Karnataka 570015, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, Karnataka 570015, India
| | - Gilles J. Guillemin
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
26
|
Wang SF, Huang KH, Tseng WC, Lo JF, Li AFY, Fang WL, Chen CF, Yeh TS, Chang YL, Chou YC, Hung HH, Lee HC. DNAJA3/Tid1 Is Required for Mitochondrial DNA Maintenance and Regulates Migration and Invasion of Human Gastric Cancer Cells. Cancers (Basel) 2020; 12:3463. [PMID: 33233689 PMCID: PMC7699785 DOI: 10.3390/cancers12113463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer is a common health issue. Deregulated cellular energetics is regarded as a cancer hallmark and mitochondrial dysfunction might contribute to cancer progression. Tid1, a mitochondrial co-chaperone, may play a role as a tumor suppressor in various cancers, but the role of Tid1 in gastric cancers remains under investigated. METHODS The clinical TCGA online database and immunohistochemical staining for Tid1 expression in tumor samples of gastric cancer patients were analyzed. Tid1 knockdown by siRNA was applied to investigate the role of Tid1 in gastric cancer cells. RESULTS Low Tid1 protein-expressing gastric cancer patients had a poorer prognosis and higher lymph node invasion than high Tid1-expressing patients. Knockdown of Tid1 did not increase cell proliferation, colony/tumor sphere formation, or chemotherapy resistance in gastric cancer cells. However, Tid1 knockdown increased cell migration and invasion. Moreover, Tid1 knockdown reduced the mtDNA copy number of gastric cancer cells. In addition, the Tid1-galectin-7-MMP-9 axis might be associated with Tid1 knockdown-induced cell migration and invasion of gastric cancer cells. CONCLUSIONS Tid1 is required for mtDNA maintenance and regulates migration and invasion of gastric cancer cells. Tid1 deletion may be a poor prognostic factor in gastric cancers and could be further investigated for development of gastric cancer treatments.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
| | - Kuo-Hung Huang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wei-Chuan Tseng
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
| | - Jeng-Fan Lo
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Pathology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wen-Liang Fang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (K.-H.H.); (A.F.-Y.L.); (W.-L.F.)
- Department of Surgery, Division of General Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan;
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Yueh-Ching Chou
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-F.W.); (Y.-L.C.); (Y.-C.C.)
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
- Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
| | - Hung-Hsu Hung
- School of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medicine, Division of Gastroenterology, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; (W.-C.T.); (J.-F.L.)
| |
Collapse
|
27
|
Anand RS, Ganesan D, Rajasekaran S, Jayavelu T. Astrocytes resolve ER stress through mitochondrial fusion facilitated by biotin availability. Cell Stress Chaperones 2020; 25:945-953. [PMID: 32572785 PMCID: PMC7591659 DOI: 10.1007/s12192-020-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022] Open
Abstract
Structures of cellular organelles are intertwined with their functions that undergo alterations once the organelles are stressed. Since organelle functions are dependent on each other, an organelle-specific stress possibly influences the structure and function of its associated organelles. In this perspective, our study demonstrated that endoplasmic reticulum (ER)-specific stress induced by tunicamycin in primary astroglial culture is associated with altered mitochondrial dynamics and matched with the changes as observed in the aging rat brain. However, the exogenous addition of biotin, a highly lipogenic and mitochondrial vitamin, ameliorates ER stress even though its direct targets are not known within ER. Alternatively, the increased biotinylation of mitochondrial carboxylases preserves its basal respiratory capacity by upregulating mitofusin 2 (Mfn2) and, possibly, its associated role on mitochondrial fusion. Furthermore, the Mfn2 increase by biotin augments physical interaction between ER and functional mitochondria to exchange biomolecules as a part of ER stress resolution. This suggests an increased demand for micronutrient biotin under ER stress resolves the same by undergoing appropriate structural and metabolic contacts between ER and mitochondria. These findings provide a paradigm to resolve stress in one organelle by sustaining the metabolic commitments of another interdependent organelle. The findings also highlight a novel role of biotin in inducing Mfn2 expression and localization under ER stress in addition to its known role as a co-enzyme.
Collapse
|
28
|
Okubo Eneni AE, Ben-Azu B, Mayowa Ajayi A, Oladele Aderibigbe A. Diosmin attenuates schizophrenia-like behavior, oxidative stress, and acetylcholinesterase activity in mice. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0119/dmdi-2020-0119.xml. [PMID: 33055311 DOI: 10.1515/dmdi-2020-0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
Objectives Diosmin (DSM), commonly isolated from various plants, is a citrus nutrient that has been shown to increase intracellular antioxidant capacity and assuage symptoms associated with neurological disorders. Deficiency in the antioxidant system has been implicated in the pathogenesis of schizophrenia. The use of antioxidants as neuroprotectants to suppress schizophrenia pathology is increasingly being sought. Hence, this study investigated the effects of DSM on schizophrenia-like behavior and the underlying changes in biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in mice. Methods The acute antipsychotic effect of DSM (25, 50, and 100 mg/kg, intraperitoneally [i.p.]), haloperidol (1 mg/kg, i.p.), and risperidone (RIS) (0.5 mg/kg, i.p.) was investigated on stereotyped behaviors induced by apomorphine (2 mg/kg, i.p.) and ketamine (10 mg/kg, i.p.). The effect of DSM on ketamine-induced hyperlocomotion, immobility enhancement, and its woodblock cataleptogenic potential was evaluated. Also, the subacute antipsychotic potential of DSM was assessed following intraperitoneal injection of DSM (25-100 mg/kg, i.p.) alone and in combination with ketamine (20 mg/kg, i.p.) for 10 days. The behaviors of the animals were assessed in the open-field, Y-maze, and forced swim tests. Brains of the animals were afterward processed for spectrophotometric assay of oxidative stress and AChE contents. Results DSM (25, 50, and 100 mg/kg) attenuated apormorphine-induced stereotypy and devoid of cataleptogenic effect. DSM and RIS reversed acute and subacute ketamine-induced schizophrenia-like behaviors. Disomin alone increased cognitive function and reduced despair-like phenotype. Furthermore, DSM increased superoxide dismutase and glutathione and decreased malondialdehyde and AChE levels in naïve and ketamine schizophrenic mice. Conclusions DSM prevents schizophrenia-like behavior, attenuates oxidative stress, and AChE activity in naïve and ketamine schizophrenic mice.
Collapse
Affiliation(s)
- Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
29
|
Okubo Eneni AE, Ben-Azu B, Mayowa Ajayi A, Oladele Aderibigbe A. Diosmin attenuates schizophrenia-like behavior, oxidative stress, and acetylcholinesterase activity in mice. Drug Metab Pers Ther 2020; 35:dmpt-2020-0119. [PMID: 34704698 DOI: 10.1515/dmpt-2020-0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Diosmin (DSM), commonly isolated from various plants, is a citrus nutrient that has been shown to increase intracellular antioxidant capacity and assuage symptoms associated with neurological disorders. Deficiency in the antioxidant system has been implicated in the pathogenesis of schizophrenia. The use of antioxidants as neuroprotectants to suppress schizophrenia pathology is increasingly being sought. Hence, this study investigated the effects of DSM on schizophrenia-like behavior and the underlying changes in biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in mice. METHODS The acute antipsychotic effect of DSM (25, 50, and 100 mg/kg, intraperitoneally [i.p.]), haloperidol (1 mg/kg, i.p.), and risperidone (RIS) (0.5 mg/kg, i.p.) was investigated on stereotyped behaviors induced by apomorphine (2 mg/kg, i.p.) and ketamine (10 mg/kg, i.p.). The effect of DSM on ketamine-induced hyperlocomotion, immobility enhancement, and its woodblock cataleptogenic potential was evaluated. Also, the subacute antipsychotic potential of DSM was assessed following intraperitoneal injection of DSM (25-100 mg/kg, i.p.) alone and in combination with ketamine (20 mg/kg, i.p.) for 10 days. The behaviors of the animals were assessed in the open-field, Y-maze, and forced swim tests. Brains of the animals were afterward processed for spectrophotometric assay of oxidative stress and AChE contents. RESULTS DSM (25, 50, and 100 mg/kg) attenuated apormorphine-induced stereotypy and devoid of cataleptogenic effect. DSM and RIS reversed acute and subacute ketamine-induced schizophrenia-like behaviors. Disomin alone increased cognitive function and reduced despair-like phenotype. Furthermore, DSM increased superoxide dismutase and glutathione and decreased malondialdehyde and AChE levels in naïve and ketamine schizophrenic mice. CONCLUSIONS DSM prevents schizophrenia-like behavior, attenuates oxidative stress, and AChE activity in naïve and ketamine schizophrenic mice.
Collapse
Affiliation(s)
- Aya-Ebi Okubo Eneni
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
30
|
Arzua T, Yan Y, Jiang C, Logan S, Allison RL, Wells C, Kumar SN, Schäfer R, Bai X. Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Transl Psychiatry 2020; 10:347. [PMID: 33051447 PMCID: PMC7553959 DOI: 10.1038/s41398-020-01029-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal alcohol exposure during pregnancy can substantially impact the development of the fetus, causing a range of symptoms, known as fetal alcohol spectrum disorders (FASDs), such as cognitive dysfunction and psychiatric disorders, with the pathophysiology and mechanisms largely unknown. Recently developed human cerebral organoids from induced pluripotent stem cells are similar to fetal brains in the aspects of development and structure. These models allow more relevant in vitro systems to be developed for studying FASDs than animal models. Modeling binge drinking using human cerebral organoids, we sought to quantify the downstream toxic effects of alcohol (ethanol) on neural pathology phenotypes and signaling pathways within the organoids. The results revealed that alcohol exposure resulted in unhealthy organoids at cellular, subcellular, bioenergetic metabolism, and gene expression levels. Alcohol induced apoptosis on organoids. The apoptotic effects of alcohol on the organoids depended on the alcohol concentration and varied between cell types. Specifically, neurons were more vulnerable to alcohol-induced apoptosis than astrocytes. The alcohol-treated organoids exhibit ultrastructural changes such as disruption of mitochondria cristae, decreased intensity of mitochondrial matrix, and disorganized cytoskeleton. Alcohol exposure also resulted in mitochondrial dysfunction and metabolic stress in the organoids as evidenced by (1) decreased mitochondrial oxygen consumption rates being linked to basal respiration, ATP production, proton leak, maximal respiration and spare respiratory capacity, and (2) increase of non-mitochondrial respiration in alcohol-treated organoids compared with control groups. Furthermore, we found that alcohol treatment affected the expression of 199 genes out of 17,195 genes analyzed. Bioinformatic analyses showed the association of these dysregulated genes with 37 pathways related to clinically relevant pathologies such as psychiatric disorders, behavior, nervous system development and function, organismal injury and abnormalities, and cellular development. Notably, 187 of these genes are critically involved in neurodevelopment, and/or implicated in nervous system physiology and neurodegeneration. Furthermore, the identified genes are key regulators of multiple pathways linked in networks. This study extends for the first time animal models of binge drinking-related FASDs to a human model, allowing in-depth analyses of neurotoxicity at tissue, cellular, subcellular, metabolism, and gene levels. Hereby, we provide novel insights into alcohol-induced pathologic phenotypes, cell type-specific vulnerability, and affected signaling pathways and molecular networks, that can contribute to a better understanding of the developmental neurotoxic effects of binge drinking during pregnancy.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Reilly L Allison
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Clive Wells
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Suresh N Kumar
- Department of Pathology, Children's Research Institute Imaging Core, Neuroscience Imaging Facility, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, 60438, Frankfurt am Main, Germany
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, 53226, WI, USA.
| |
Collapse
|
31
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
32
|
Bar-Ziv R, Bolas T, Dillin A. Systemic effects of mitochondrial stress. EMBO Rep 2020; 21:e50094. [PMID: 32449292 DOI: 10.15252/embr.202050094] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Multicellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology. Here, we describe our current understanding of these communication mechanisms in the context of mitochondrial stress. We focus on cellular mechanisms that deal with perturbations to the mitochondrial proteome and outline recent advances in understanding how local perturbations can affect distal tissues and animal physiology in model organisms. Finally, we discuss recent findings of these responses associated with metabolic and age-associated diseases in mammalian systems, and how they may be employed as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Theodore Bolas
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
33
|
Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action. Nutrients 2020; 12:nu12051518. [PMID: 32456175 PMCID: PMC7284591 DOI: 10.3390/nu12051518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation.
Collapse
|
34
|
Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, Smit AB, Abrahams BS, Fiala A, Achsel T, Bagni C. Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020; 180:1178-1197.e20. [DOI: 10.1016/j.cell.2020.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/01/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
|
35
|
Verma G, Dixit A, Nunemaker CS. A Putative Prohibitin-Calcium Nexus in β-Cell Mitochondria and Diabetes. J Diabetes Res 2020; 2020:7814628. [PMID: 33354575 PMCID: PMC7737164 DOI: 10.1155/2020/7814628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
The role of mitochondria in apoptosis is well known; however, the mechanisms linking mitochondria to the proapoptotic effects of proinflammatory cytokines, hyperglycemia, and glucolipotoxicity are not completely understood. Complex Ca2+ signaling has emerged as a critical contributor to these proapoptotic effects and has gained significant attention in regulating the signaling processes of mitochondria. In pancreatic β-cells, Ca2+ plays an active role in β-cell function and survival. Prohibitin (PHB), a mitochondrial chaperone, is actively involved in maintaining the architecture of mitochondria. However, its possible interaction with Ca2+-activated signaling pathways has not been explored. The present review aims to examine potential crosstalk between Ca2+ signaling and PHB function in pancreatic β-cells. Moreover, this review will focus on the effects of cytokines and glucolipotoxicity on Ca2+ signaling and its possible interaction with PHB. Improved understanding of this important mitochondrial protein may aid in the design of more targeted drugs to identify specific pathways involved with stress-induced dysfunction in the β-cell.
Collapse
Affiliation(s)
- Gaurav Verma
- Molecular Metabolism, Lund University Diabetes Centre, Malmö -21428, Sweden
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Craig S. Nunemaker
- HCOM-Biomedical Sciences, Ohio University, Athens Camp, US-45701 Ohio, USA
| |
Collapse
|
36
|
Bohush A, Bieganowski P, Filipek A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20204976. [PMID: 31600883 PMCID: PMC6834326 DOI: 10.3390/ijms20204976] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.
Collapse
Affiliation(s)
- Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Paweł Bieganowski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland.
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
37
|
Wardelmann K, Blümel S, Rath M, Alfine E, Chudoba C, Schell M, Cai W, Hauffe R, Warnke K, Flore T, Ritter K, Weiß J, Kahn CR, Kleinridders A. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Mol Metab 2019; 21:68-81. [PMID: 30670351 PMCID: PMC6407370 DOI: 10.1016/j.molmet.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism. METHODS To investigate the crosstalk of insulin action and mitochondrial stress responses (MSR), namely the mitochondrial unfolded protein response (UPRmt) and integrated stress response (ISR), qPCR, western blotting, and mitochondrial activity assays were performed. These methods were used to analyze the hypothalamic cell line CLU183 treated with insulin in the presence or absence of the insulin receptor as well as in mice fed a high fat diet (HFD) for three days and STZ-treated mice without or with insulin therapy. Intranasal insulin treatment was used to investigate the effect of acute brain insulin action on metabolism and mitochondrial stress responses. RESULTS Acute HFD feeding reduces hypothalamic mitochondrial stress responsive gene expression of Atf4, Chop, Hsp60, Hsp10, ClpP, and Lonp1 in C57BL/6N mice. We show that insulin via ERK activation increases the expression of MSR genes in vitro as well as in the hypothalamus of streptozotocin-treated mice. This regulation propagates mitochondrial function by controlling mitochondrial proteostasis and prevents excessive autophagy under serum deprivation. Finally, short-term intranasal insulin treatment activates MSR gene expression in the hypothalamus of HFD-fed C57BL/6N mice and reduces food intake and body weight development. CONCLUSIONS We define hypothalamic insulin action as a novel master regulator of MSR, ensuring proper mitochondrial function by controlling mitochondrial proteostasis and regulating metabolism.
Collapse
Affiliation(s)
- Kristina Wardelmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Sabine Blümel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Michaela Rath
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Eugenia Alfine
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Chantal Chudoba
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Mareike Schell
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Hauffe
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Kathrin Warnke
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Tanina Flore
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Katrin Ritter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - André Kleinridders
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
38
|
Cardoso S, Moreira PI. Diabesity and brain disturbances: A metabolic perspective. Mol Aspects Med 2018; 66:71-79. [PMID: 30321556 DOI: 10.1016/j.mam.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
The last decades have been marked by an increased prevalence in non-communicable diseases such as obesity and type 2 diabetes (T2D) as well as by population aging and age-related (brain) diseases. The current notion that the brain and the body are interrelated units is gaining the attention of the scientific and medical community. Growing evidence demonstrates that there is a significant overlap in risk, comorbidity, and pathophysiological mechanisms across obesity, T2D and brain disturbances; settings that seem to be worsened when both obesity and T2D occur simultaneously, the so-called diabesity. Thereupon, there is a great concern to critically appraise and understand the mechanisms by which diabesity can affect brain responses, and may accelerate the decline in brain health. In this framework, metabolic disturbances mediated by altered insulin signaling and mitochondrial function arise among the multifactorial interactions described to occur between obesity, T2D and neurocognitive deficits. In this review we have compiled all the notions and evidence describing how diabesity negatively influences brain function putting the emphasis on insulin signaling pathway disturbances and mitochondrial anomalies. We also debate lifestyle interventions as amenable strategies to lessen metabolic anomalies and, consequently, diabesity-associated brain alterations.
Collapse
Affiliation(s)
- Susana Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal; Institute of Physiology - Faculty of Medicine - University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|