1
|
Zhong L, Hou X, Tian Y, Fu X. Exercise and dietary interventions in the management of diabetic cardiomyopathy: mechanisms and implications. Cardiovasc Diabetol 2025; 24:159. [PMID: 40205621 PMCID: PMC11983742 DOI: 10.1186/s12933-025-02702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025] Open
Abstract
The global prevalence of diabetes is rapidly increasing, significantly raising the risk of various cardiovascular diseases. Among these, diabetic cardiomyopathy (DCM) is a distinct and critical complication characterized by ventricular hypertrophy and impaired myocardial contractility, ultimately progressing to heart failure and making it a leading cause of mortality among diabetic patients. Despite advances in pharmacological therapies, the effectiveness of managing cardiac dysfunction in DCM remains challenging. Consequently, exploring additional therapeutic strategies for the prevention and treatment of DCM is urgently needed. Beyond pharmacological approaches, lifestyle modifications, particularly exercise and dietary interventions, play a fundamental role in managing DCM due to their significant cardiovascular benefits in diabetic patients. This review synthesizes recent advancements in the field, elucidating the underlying mechanisms through which exercise and dietary interventions influence DCM pathophysiology. By integrating these strategies, we aim to facilitate the development of personalized exercise and dietary regimens that effectively mitigate or prevent DCM progression.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
3
|
Cui X, Spanos M, Zhao C, Wan W, Cui C, Wang L, Xiao J. Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10591-5. [PMID: 39863753 DOI: 10.1007/s12265-025-10591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca2+ regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis. Exercise plays a vital role in preserving mitochondrial homeostasis, thereby protecting the cardiovascular system from acute stress, and is a fundamental component in maintaining cardiovascular health. In this study, we review the mitochondrial dysfunction underlying the development and progression of HFpEF. Given the pivotal role of exercise in modulating cardiovascular diseases, we particularly focus on exercise as a potential therapeutic strategy for improving mitochondrial function. Graphical abstract Note: This picture was created with BioRender.com.
Collapse
Affiliation(s)
- Xinxin Cui
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Albert Einstein College of Medicine, Department of Internal Medicine, NCB, Bronx, NY, USA
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Caiyue Cui
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Khattab E, Kyriakou M, Leonidou E, Sokratous S, Mouzarou A, Myrianthefs MM, Kadoglou NPE. Critical Appraisal of Pharmaceutical Therapy in Diabetic Cardiomyopathy-Challenges and Prospectives. Pharmaceuticals (Basel) 2025; 18:134. [PMID: 39861195 PMCID: PMC11768626 DOI: 10.3390/ph18010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) is a multifaceted disorder with a pandemic spread and a remarkable burden of cardiovascular mortality and morbidity. Diabetic cardiomyopathy (DBCM) has been increasingly recognized as the development of cardiac dysfunction, which is accompanied by heart failure (HF) symptoms in the absence of obvious reasons like ischemic heart disease, hypertension, or valvulopathies. Several pathophysiological mechanisms have been proposed, including metabolic disorders (e.g., glycation products), oxidative stress, low-grade inflammation, mitochondrial dysfunction, etc., which should guide the development of new therapeutic strategies. Up to now, HF treatment has not differed between patients with and without diabetes, which limits the expected benefits despite the high cardiovascular risk in the former group. However, DBCM patients may require different management, which prioritize anti-diabetic medications or testing other novel therapies. This review aims to appraise the challenges and prospectives of the individualized pharmaceutical therapy for DBCM.
Collapse
Affiliation(s)
- Elina Khattab
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Michaelia Kyriakou
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Elena Leonidou
- Department of Cardiology, Limassol General Hospital, 3304 Limassol, Cyprus;
| | - Stefanos Sokratous
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | - Angeliki Mouzarou
- Department of Cardiology, Pafos General Hospital, 8026 Paphos, Cyprus;
| | - Michael M. Myrianthefs
- Department of Cardiology, Nicosia General Hospital, 2029 Nicosia, Cyprus; (E.K.); (M.K.); (S.S.); (M.M.M.)
| | | |
Collapse
|
5
|
Marwick TH, Lam C, Liu Y, Del Prato S, Rosenstock J, Butler J, Ezekowitz J, Ibrahim NE, Tang WHW, Zannad F, Perfetti R, Januzzi JL. Echocardiographic phenotypes of diabetic myocardial disorder: evolution over 15 months follow-up in the ARISE-HF trial. Cardiovasc Diabetol 2025; 24:16. [PMID: 39806375 PMCID: PMC11730511 DOI: 10.1186/s12933-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations. OBJECTIVE To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination. METHODS The Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure (ARISE-HF) trial was a Phase 3 randomised trial of an aldose reductase inhibitor in patients with well-controlled type 2 diabetes mellitus (T2DM). The 1858 potential participants (age 67 ± 7 years; 50% women) were screened for SBHF based on abnormal echocardiography or biomarkers (N-terminal pro-B-type natriuretic peptide ≥ 40 ng/L or high sensitivity cardiac troponin T ≥ 10 ng/L [women] and ≥ 16 ng/L [men]). Exercise capacity (peak VO2) was reduced in 669 with DbMD (age 68 ± 7, 50% women), and peak VO2 was reassessed at 15 months. RESULTS The 1463 (79%) participants with DbMD were allocated to four clusters; 907 (49%) showed isolated elevation of cardiac biomarkers, 301 (16%) with systolic dysfunction/hypertrophy, 162 (9%) with diastolic dysfunction and 93 (5%) comprised an overlap cluster (combined diastolic, systolic or LV geometric abnormalities). Reduced VO2 (< 75% predicted) was present in 669 (46%); 72% of those with both systolic and diastolic dysfunction, 56% of those with systolic dysfunction and LVH, 53% of those with diastolic dysfunction and 38% with biomarkers alone (p < 0.0001). In 669 patients followed over 15 months, there was a similar small decrement in VO2 in all groups. CONCLUSIONS Among individuals with T2DM and SBHF, reduced functional capacity is most prevalent in those with multiple physiological disturbances. However, there was no difference between phenogroups in the evolution of exercise intolerance. TRIAL REGISTRATION ARISE-HF, NCT04083339.
Collapse
Affiliation(s)
- Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne and Menzies Institute for Medical Research, Hobart, Australia.
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Carolyn Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Julio Rosenstock
- Southwestern Medical Center, Velocity Clinical Research at Medical City and University of Texas, Dallas, TX, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Justin Ezekowitz
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Nasrien E Ibrahim
- Cardiology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Heart Failure Trials, Baim Institute for Clinical Research, Boston, USA
| |
Collapse
|
6
|
Hu J, Miao X, Yu LH. Long Non-Coding RNAs in Diabetic Cardiomyopathy: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. J Cardiovasc Transl Res 2025:10.1007/s12265-024-10586-8. [PMID: 39786669 DOI: 10.1007/s12265-024-10586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Recent studies emphasize the beneficial effects of exercise on diabetic cardiomyopathy (DCM), adding to the growing body of evidence that underscores the role of exercise in improving health outcomes. Despite this, a notable gap persists in the number of healthcare providers who actively prescribe exercise as a therapeutic intervention for DCM management. In addition, exercise modulates the expression of lncRNAs, which play a pivotal role in DCM progression. Further investigation into this relationship may facilitate the identification of novel biomarkers and therapeutic targets for DCM. This review consolidates recent advances in identifying lncRNAs biomarkers in DCM, summarizing the current knowledge on dysregulated lncRNAs and their molecular mechanisms. Additionally, it offers new insights into the mechanistic roles of lncRNAs, highlighting their potential as biomarkers and therapeutic targets for DCM. Overall, this review aims to inform future research and reinforce the significance of addressing diabetes-related cardiovascular diseases to potentially improve clinical outcomes.
Collapse
Affiliation(s)
- Jie Hu
- GuangZhou Sport University, 1268 Guangzhou Dadao Middle, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Xinwen Miao
- Weihai Municipal Hospital Affiliated to Shandong University, No.70 Heping RoadHuancui District, Weihai, Shandong Province, China
| | - Li-Hua Yu
- College of Sports, YanShan University, No.438, West Hebei Street, Qinhuangdao City, Hebei Province, China.
| |
Collapse
|
7
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
8
|
Du L, Ding X, Tian Y, Chen J, Li W. Effect of anthocyanins on metabolic syndrome through interacting with gut microbiota. Pharmacol Res 2024; 210:107511. [PMID: 39577753 DOI: 10.1016/j.phrs.2024.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Metabolic syndrome, as a complex pathological condition, is caused by a series of pathogenic factors and has become a global public health challenge. Anthocyanins, a natural water-soluble flavonoid pigment, have attracted much attention due to their antioxidant, anti-inflammatory, and anticancer biological activities. After ingestion, a majority of anthocyanins is not directly absorbed but rather reaches the colon. Hence, the exertion of their biological benefits is closely intertwined with the role played by gut microbiota. In this review, we introduce the pathogenesis and intervention methods of metabolic syndrome, as well as the interaction between anthocyanins and gut microbiota. We also discuss the therapeutic potential of anthocyanins through gut microbiota in addressing a range of metabolic syndrome conditions, including obesity, type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, polycystic ovary syndrome, osteoporosis, and cancer.
Collapse
Affiliation(s)
- Lanlan Du
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yuwen Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Weilin Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Choneva M, Delchev S, Hrischev P, Dimov I, Boyanov K, Dimitrov I, Gerginska F, Georgieva K, Bacelova M, Bivolarska A. Modulation of the Cardiovascular Risk in Type 1 Diabetic Rats by Endurance Training in Combination with the Prebiotic Xylooligosaccharide. Int J Mol Sci 2024; 25:10027. [PMID: 39337515 PMCID: PMC11432573 DOI: 10.3390/ijms251810027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Petar Hrischev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Mariana Bacelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| |
Collapse
|
10
|
Guo Y, Zhou F, Fan J, Wu T, Jia S, Li J, Chen N. Swimming alleviates myocardial fibrosis of type II diabetic rats through activating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. PLoS One 2024; 19:e0310136. [PMID: 39250437 PMCID: PMC11383238 DOI: 10.1371/journal.pone.0310136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
Myocardial fibrosis can trigger heart failure in diabetic cardiomyopathy (DCM), and irisin, an exercise-induced myokine, may have a beneficial effect on cardiac function. However, the specific molecular mechanism between exercise and irisin in the diabetic heart remains not fully explored. This study aimed to investigate how miR-34a mediates exercise-induced irisin to ameliorate myocardial fibrosis and its underlying mechanisms. Type 2 diabetes mellitus (T2DM) with DCM was induced in adult male rats with high-fat diet and streptozotocin injection. The DCM rats were subjected to swimming (60 min/d) and recombinant irisin (r-irisin, 500 μg/kg/d) interventions for 8 weeks, respectively. Cardiac function, cardiomyocyte structure, myocardial fibrosis and its correlated gene and protein expression were analyzed. Swimming intervention alleviated insulin resistance, myocardial fibrosis, and myocardial hypertrophy, and promoted blood glucose homeostasis in T2DM model rats. This improvement was associated with irisin upregulation and miR-34a downregulation in the myocardium, thus enhancing cardiac function. Similar efficacy was observed via intraperitoneal injection of exogenous recombinant irisin. Inhibition of miR-34a in vivo exhibited an anti-myocardial fibrotic effect by promoting irisin secretion through activating sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) signal pathway and downregulating myocardial fibrosis markers (collagen I, collagen III, and transforming growth factor-β1). Therefore, swimming-induced irisin has the potential therapeutic effect on diabetic myocardial fibrosis through activating the miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway.
Collapse
Affiliation(s)
- Yanju Guo
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fengmin Zhou
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jingjing Fan
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jinxiu Li
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| |
Collapse
|
11
|
Graczyk P, Dach A, Dyrka K, Pawlik A. Pathophysiology and Advances in the Therapy of Cardiomyopathy in Patients with Diabetes Mellitus. Int J Mol Sci 2024; 25:5027. [PMID: 38732253 PMCID: PMC11084712 DOI: 10.3390/ijms25095027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.
Collapse
Affiliation(s)
- Patryk Graczyk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| | - Aleksandra Dach
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (A.D.)
| |
Collapse
|
12
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
13
|
Rami M, Ahmadi Hekmatikar A, Rahdar S, Marashi SS, Daud DMA. Highlighting the effects of high-intensity interval training on the changes associated with hypertrophy, apoptosis, and histological proteins of the heart of old rats with type 2 diabetes. Sci Rep 2024; 14:7133. [PMID: 38531890 DOI: 10.1038/s41598-024-57119-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
T2DM is known to cause disturbances in glucose homeostasis and negative changes in the heart muscle, while aging and diabetes are recognized risk factors for CVD. Given this, our study aims to investigate a method for controlling and managing CVDs induced by T2DM in elderly populations. To achieve this, we categorized 40 rats into 5 groups, including HAD (n = 8), HA (n = 8), AD (n = 8), AHT (n = 8), and ADT (n = 8). The exercise protocol consisted of eight weeks of HIIT (three sessions per week) performed at 90-95% of maximal speed. Following cardiac tissue extraction, we assessed the levels of IGF-1, PI3K, and AKT proteins using Western blot technique, and analyzed the histopathological variations of the heart tissue using H&E, Sudan Black, and Masson's trichrome tissue staining. The histological findings from our study demonstrated that T2DM had a significant impact on the development of pathological hypertrophy and fibrosis in the heart tissue of elderly individuals. However, HIIT not only effectively controlled pathological hypertrophy and fibrosis, but also induced physiological hypertrophy in the AHT and ADT groups compared to the HA and AD groups. Results from Sudan Black staining indicated that there was an increase in lipid droplet accumulation in the cytoplasm of cardiomyocytes and their nuclei in the HA and AD groups, while the accumulation of lipid droplets decreased significantly in the AHT and ADT groups. In both the AHT group and the ADT group, a single HIIT session led to a reduction in collagen fiber accumulation and fibrotic frameworks. Our research also revealed that diabetes caused a significant elevation in the levels of IGF-1, PI3K, and AKT proteins, but after eight weeks of HIIT, the levels of these proteins decreased significantly in the training groups. Overall, our findings suggest that HIIT may be a suitable non-pharmacological approach for improving histological and physiological changes in elderly individuals with T2DM. However, we recommend further research to examine the impact of HIIT training on both healthy and diseased elderly populations.
Collapse
Affiliation(s)
- Mohammad Rami
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Amirhossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, 10600, Iran
| | - Samaneh Rahdar
- Department of Basic Sciences, Histology Section, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Shafa Marashi
- Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400, Sabah, Malaysia.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88450, Sabah, Malaysia.
| |
Collapse
|
14
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
15
|
Januzzi JL, Del Prato S, Rosenstock J, Butler J, Ezekowitz J, Ibrahim NE, Lam CSP, Marwick T, Wilson Tang WH, Liu Y, Mohebi R, Urbinati A, Zannad F, Perfetti R. Characterizing diabetic cardiomyopathy: baseline results from the ARISE-HF trial. Cardiovasc Diabetol 2024; 23:49. [PMID: 38302936 PMCID: PMC10835978 DOI: 10.1186/s12933-024-02135-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DbCM) is a form of Stage B heart failure (HF) at high risk for progression to overt disease. Using baseline characteristics of study participants from the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure (ARISE-HF) Trial we sought to characterize clinical characteristics of individuals with findings consistent with DbCM. METHODS Among study participants meeting inclusion criteria, clinical characteristics, laboratory testing, imaging, Kansas City Cardiomyopathy Questionnaire (KCCQ), Physical Activity Scale of the Elderly (PASE) and cardiopulmonary exercise testing (CPET) results were tabulated. Cluster phenogroups were identified. RESULTS Among 691 study participants (mean age 67.4 years; 50% were female), mean duration of type 2 diabetes mellitus (T2DM) was 14.5 years. The median (Q1, Q3) N-terminal pro-B type natriuretic peptide and high sensitivity cardiac troponin T were 71 (35, 135) ng/L and 9 [6, 12] ng/L. The most common echocardiographic abnormalities were reduced global longitudinal strain in 25.3% and impaired diastolic relaxation in 17.7%. Despite rather well-preserved KCCQ scores the average PASE score was markedly impaired at 155 accompanied by an average maximal oxygen consumption of 15.7 mL/Kg/minute on CPET. In K-means clustering, 4 phenogroups were identified including a higher-risk group with more advanced age, greater elevation of cardiac biomarkers, and more prevalent evidence for diastolic dysfunction and left ventricular hypertrophy. CONCLUSIONS Baseline data from the ARISE-HF Trial provide clinical characterization of individuals with T2DM and features of stage B HF, and may help clarify the diagnosis of DbCM. TRIAL REGISTRATION ARISE-HF, NCT04083339.
Collapse
Affiliation(s)
- James L Januzzi
- Heart Failure Trials, Baim Institute for Clinical Research, Boston, MA, USA.
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA.
| | - Stefano Del Prato
- Interdisciplinary Research Center 'Health Science', Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Julio Rosenstock
- Velocity Clinical Research at Medical City and University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, , Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Justin Ezekowitz
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Nasrien E Ibrahim
- Cardiology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Menzies Institute for Medical Research, Hobart, Australia
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | - Reza Mohebi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | | | - Faiez Zannad
- Université de Lorraine, CIC Inserm and CHRU Nancy, Lorraine, France
| | | |
Collapse
|
16
|
D’Haese S, Claes L, de Laat I, Van Campenhout S, Deluyker D, Heeren E, Haesen S, Lambrichts I, Wouters K, Schalkwijk CG, Hansen D, Eijnde BO, Bito V. Moderate-Intensity and High-Intensity Interval Exercise Training Offer Equal Cardioprotection, with Different Mechanisms, during the Development of Type 2 Diabetes in Rats. Nutrients 2024; 16:431. [PMID: 38337716 PMCID: PMC10856993 DOI: 10.3390/nu16030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Endurance exercise training is a promising cardioprotective strategy in type 2 diabetes mellitus (T2DM), but the impact of its intensity is not clear. We aimed to investigate whether and how isocaloric moderate-intensity exercise training (MIT) and high-intensity interval exercise training (HIIT) could prevent the adverse cardiac remodeling and dysfunction that develop T2DM in rats. Male rats received a Western diet (WD) to induce T2DM and underwent a sedentary lifestyle (n = 7), MIT (n = 7) or HIIT (n = 8). Insulin resistance was defined as the HOMA-IR value. Cardiac function was assessed with left ventricular (LV) echocardiography and invasive hemodynamics. A qPCR and histology of LV tissue unraveled underlying mechanisms. We found that MIT and HIIT halted T2DM development compared to in sedentary WD rats (p < 0.05). Both interventions prevented increases in LV end-systolic pressure, wall thickness and interstitial collagen content (p < 0.05). In LV tissue, HIIT tended to upregulate the gene expression of an ROS-generating enzyme (NOX4), while both modalities increased proinflammatory macrophage markers and cytokines (CD86, TNF-α, IL-1β; p < 0.05). HIIT promoted antioxidant and dicarbonyl defense systems (SOD2, glyoxalase 1; p < 0.05) whereas MIT elevated anti-inflammatory macrophage marker expression (CD206, CD163; p < 0.01). We conclude that both MIT and HIIT limit WD-induced T2DM with diastolic dysfunction and pathological LV hypertrophy, possibly using different adaptive mechanisms.
Collapse
Affiliation(s)
- Sarah D’Haese
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Lisa Claes
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Iris de Laat
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sven Van Campenhout
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Dorien Deluyker
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ellen Heeren
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Sibren Haesen
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Ivo Lambrichts
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| | - Kristiaan Wouters
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (K.W.); (C.G.S.)
| | - Dominique Hansen
- UHasselt, Faculty of Rehabilitation Sciences, REVAL Rehabilitation Research Centre, Agoralaan, 3590 Diepenbeek, Belgium;
- Department of Cardiology, Heart Centre Hasselt, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - BO Eijnde
- SMRc-Sports Medicine Research Center, BIOMED-Biomedical Research Institute, Faculty of Medicine & Life Sciences, Hasselt University, 3500 Diepenbeek, Belgium;
- Division of Sport Science, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Virginie Bito
- UHasselt, Cardio & Organ Systems (COST), Biomedical Research Institute, Agoralaan, 3590 Diepenbeek, Belgium; (S.D.); (D.D.); (E.H.); (S.H.); (I.L.)
| |
Collapse
|
17
|
Shabab S, Mahmoudabady M, Gholamnezhad Z, Fouladi M, Asghari AA. Diabetic cardiomyopathy in rats was attenuated by endurance exercise through the inhibition of inflammation and apoptosis. Heliyon 2024; 10:e23427. [PMID: 38163155 PMCID: PMC10757033 DOI: 10.1016/j.heliyon.2023.e23427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), as a ventricular dysfunction, is one of the main causes of death in diabetic patients. Former evidence revealed the beneficial effects of exercise on cardiovascular complications of diabetes. We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on DCM. Male Wistar rats were divided into control, diabetic, metformin (300 mg/kg), HIIT, MICT, metformin + HIIT, and metformin + MICT diabetic groups. Serum biochemical, inflammatory, and oxidative stress indicators, gene expression of BCL2 and BAX, and histopathologic changes of cardiac tissue were assessed. Our analysis revealed an increase in fasting blood sugar (FBS), creatine kinase MB (CK-MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) in diabetes. Also, the superoxide dismutase (SOD) and catalase (CAT) activity, and the total thiol were decreased, in contrast, malondialdehyde (MDA) levels increased in the cardiac tissue of the diabetic group. All of these changes were significantly ameliorated in diabetic animals treated with exercise and metformin + exercise. The level of tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β), as well as the infiltration of inflammatory cells, were decreased in the heart of all exercise training groups. Up-regulation of BCL2 and down-regulation of BAX gene expressions were observed in the cardiac tissue of all exercise-treated groups. In conclusion, HIIT and MICT exercises are effective in preventing DCM development. Exercise training, besides improving oxidative stress and inflammation in cardiac tissue, alleviates cardiac damage by modulating the apoptotic gene expression in diabetic rats.
Collapse
Affiliation(s)
- Sadegh Shabab
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Fouladi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Tang M, Su Q, Duan Y, Fu Y, Liang M, Pan Y, Yuan J, Wang M, Pang X, Ma J, Laher I, Li S. The role of MOTS-c-mediated antioxidant defense in aerobic exercise alleviating diabetic myocardial injury. Sci Rep 2023; 13:19781. [PMID: 37957221 PMCID: PMC10643467 DOI: 10.1038/s41598-023-47073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023] Open
Abstract
Myocardial remodeling and dysfunction are commonly observed in type 2 diabetes mellitus (T2DM). Aerobic exercise can partly alleviate diabetes-induced myocardial dysfunction through its antioxidant actions. MOTS-c is a potential exercise mimic. This study aimed to investigate the effects of MOTS-c on improving diabetic heart function and its mechanism and to identify whether MOTS-c improved antioxidant defenses due to aerobic exercise. Herein, we established a rat model of T2DM induced by high-fat diet combined with a low-dose streptozotocin injection. Interventions were performed using intraperitoneal injections of MOTS-c (i.p. 0.5 mg/kg/day, 7 days/week) or aerobic exercise training (treadmill, 20 m/min, 60 min/day, 5 days/week) for 8 weeks. Myocardial ultrastructure was assessed using transmission electron microscopy (TEM), myocardial lipid peroxidation levels (MDA), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) levels were assessed using colorimetric methods, and molecular analyses including MOTS-c, Kelch-like ECH-associated protein 1 (Keap1), Nuclear factor E2-related factor 2 (Nrf2), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)and phospho-AMPK (p-AMPK) were examined using Western blot. The results showed that MOTS-c, with or without exercise, reduced myocardial ultrastructural damage and improved glucolipid metabolism and cardiac function in T2DM. Furthermore, MOTS-c increased antioxidant markers such as SOD, CAT, and the protein expression of myocardial MOTS-c, Keap1, Nrf2, and p-AMPK. MOTS-c with exercise treatment reduced myocardial MDA and increased p-AMPK significantly comparing to only exercise or MOTS-c alone. Our findings suggest that MOTS-c may be a helpful supplement for overcoming exercise insufficiency and improving myocardial structure and function in diabetes.
Collapse
Affiliation(s)
- Mi Tang
- School of Physical Education, Xihua University, Chengdu, 610039, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Quansheng Su
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yimei Duan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Min Liang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Xiao SL, Bober E, Kassianides X, Medici F, Xiao HB. Diabetic cardiomyopathy: an educational review. THE BRITISH JOURNAL OF CARDIOLOGY 2023; 30:18. [PMID: 38911684 PMCID: PMC11190836 DOI: 10.5837/bjc.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
This educational review provides information about the epidemiology of diabetes and heart failure (diabetic cardiomyopathy) and the challenges in diagnosis and screening. Details on how to investigate patients with imaging and other modalities are discussed, as well as an update regarding the efficacy and safety of novel agents for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Su-Lee Xiao
- Specialist Registrar (ST5) Geriatric Medicine Charing Cross Hospital, Fulham Palace Road, London W6 8RF
| | - Emilia Bober
- Foundation Year 1 Doctor Northwick Park Hospital, Watford Road, Harrow, Middlesex, HA1 3UJ
| | - Xenophon Kassianides
- Specialty Registar in General Practice Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Anlaby Road, Hull, HU3 2JZ
| | | | - Han B Xiao
- Consultant Cardiologist Homerton Hospital, Homerton Row, London, E9 6SR
| |
Collapse
|
20
|
Hsu CC, Wang JS, Shyu YC, Fu TC, Juan YH, Yuan SS, Wang CH, Yeh CH, Liao PC, Wu HY, Hsu PH. Hypermethylation of ACADVL is involved in the high-intensity interval training-associated reduction of cardiac fibrosis in heart failure patients. J Transl Med 2023; 21:187. [PMID: 36894992 PMCID: PMC9999524 DOI: 10.1186/s12967-023-04032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that DNA methylation can be affected by physical activities and is associated with cardiac fibrosis. This translational research examined the implications of DNA methylation associated with the high-intensity interval training (HIIT) effects on cardiac fibrosis in patients with heart failure (HF). METHODS Twelve HF patients were included and received cardiovascular magnetic resonance imaging with late gadolinium enhancement for cardiac fibrosis severity and a cardiopulmonary exercise test for peak oxygen consumption ([Formula: see text]O2peak). Afterwards, they underwent 36 sessions of HIIT at alternating 80% and 40% of [Formula: see text]O2peak for 30 min per session in 3-4 months. Human serum from 11 participants, as a means to link cell biology to clinical presentations, was used to investigate the exercise effects on cardiac fibrosis. Primary human cardiac fibroblasts (HCFs) were incubated in patient serum, and analyses of cell behaviour, proteomics (n = 6) and DNA methylation profiling (n = 3) were performed. All measurements were conducted after completing HIIT. RESULTS A significant increase (p = 0.009) in [Formula: see text]O2peak (pre- vs. post-HIIT = 19.0 ± 1.1 O2 ml/kg/min vs. 21.8 ± 1.1 O2 ml/kg/min) was observed after HIIT. The exercise strategy resulted in a significant decrease in left ventricle (LV) volume by 15% to 40% (p < 0.05) and a significant increase in LV ejection fraction by approximately 30% (p = 0.010). LV myocardial fibrosis significantly decreased from 30.9 ± 1.2% to 27.2 ± 0.8% (p = 0.013) and from 33.4 ± 1.6% to 30.1 ± 1.6% (p = 0.021) in the middle and apical LV myocardium after HIIT, respectively. The mean single-cell migration speed was significantly (p = 0.044) greater for HCFs treated with patient serum before (2.15 ± 0.17 μm/min) than after (1.11 ± 0.12 μm/min) HIIT. Forty-three of 1222 identified proteins were significantly involved in HIIT-induced altered HCF activities. There was significant (p = 0.044) hypermethylation of the acyl-CoA dehydrogenase very long chain (ACADVL) gene with a 4.474-fold increase after HIIT, which could activate downstream caspase-mediated actin disassembly and the cell death pathway. CONCLUSIONS Human investigation has shown that HIIT is associated with reduced cardiac fibrosis in HF patients. Hypermethylation of ACADVL after HIIT may contribute to impeding HCF activities. This exercise-associated epigenetic reprogramming may contribute to reduce cardiac fibrosis and promote cardiorespiratory fitness in HF patients. TRIAL REGISTRATION NCT04038723. Registered 31 July 2019, https://clinicaltrials.gov/ct2/show/NCT04038723 .
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan.
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Jong-Shyan Wang
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
- Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and intervention, Linkou and Taoyuan Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chao-Hung Wang
- Department of Cardiology, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chi-Hsiao Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung, 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
21
|
Petronilho A, Gois MDO, Sakaguchi C, Frade MCM, Roscani MG, Catai AM. Effects of Physical Exercise on Left Ventricular Function in Type 2 Diabetes Mellitus: A Systematic Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2023. [DOI: 10.36660/ijcs.20220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
22
|
Eldesoqui M, Eldken ZH, Mostafa SA, Al-Serwi RH, El-Sherbiny M, Elsherbiny N, Mohammedsaleh ZM, Sakr NH. Exercise Augments the Effect of SGLT2 Inhibitor Dapagliflozin on Experimentally Induced Diabetic Cardiomyopathy, Possible Underlying Mechanisms. Metabolites 2022; 12:metabo12070635. [PMID: 35888760 PMCID: PMC9315877 DOI: 10.3390/metabo12070635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
One of the most prevalent cardiovascular problems linked with type 2 diabetes mellitus (T2DM) is diabetic cardiomyopathy (DCM). DCM is associated with myocardial oxidative stress, inflammation, apoptosis, suppressed autophagy, extracellular matrix remodeling, and fibrosis. The current study aims to investigate the protective effect of sodium-glucose transport 2 inhibitor (SGLT2i) dapagliflozin and/or exercise on DCM. Thirty adult male Sprague Dawley rats are used. T2DM is induced by a 6-week high-fat diet (HFD) followed by a single intraperitoneal (IP) injection of 35 mg/kg streptozotocin (STZ). Rats are divided into five groups, control, diabetic (DM), DM + swimming, DM + dapagliflozin, and DM + dapagliflozin and swimming. Serum glucose, insulin, insulin resistance (HOMA-IR), and cardiac enzymes (CK-MB and lactate dehydrogenase (LDH) are measured. Heart specimens are used for evaluation of cellular oxidative stress markers malondialdehyde (MDA), antioxidant enzymes, glutathione (GSH), and catalase (CAT), as well as mRNA expression of TGF-β, MMP9, IL-1β, and TNF-α. Stained sections with haematoxylin and eosin (H & E) and Masson trichrome are used for histopathological evaluation and detection of fibrosis, respectively. Immunohistochemical staining for apoptosis (caspase-3), and autophagy (LC3) are also carried out. The combinations of SGLT2i and exercise exhibited the most significant cardioprotective effect. It improved diabetic-induced histopathological alterations in the myocardium and attenuated the elevation of serum blood glucose, CK-MB, LDH, myocardial MDA, and mRNA expression of TNF-α, IL-1β, TGF-β, MMP9, and the immune expression of caspase-3. Moreover, this combination increased the serum insulin, myocardial antioxidants GSH and CAT, and increase the immune expression of the LC-3. In conclusion, a combination of SGLT2i and exercise exerted a better antioxidant, anti-inflammatory, and antifibrotic effect in DCM. Moreover, the combination enhances the autophagic capacity of the heart.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Zienab Helmy Eldken
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Noha Hammad Sakr
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33511, Egypt;
| |
Collapse
|
23
|
Wang T, Li J, Li H, Zhong X, Wang L, Zhao S, Liu X, Huang Z, Wang Y. Aerobic Exercise Inhibited P2X7 Purinergic Receptors to Improve Cardiac Remodeling in Mice With Type 2 Diabetes. Front Physiol 2022; 13:828020. [PMID: 35711309 PMCID: PMC9197582 DOI: 10.3389/fphys.2022.828020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM), the main complication of diabetes mellitus, presents as cardiac dysfunction by ventricular remodeling. In addition, the inhibition of P2X7 purinergic receptors (P2X7R) alleviates cardiac fibrosis and apoptosis in Type 1 diabetes. However, whether exercise training improves cardiac remodeling by regulating P2X7R remains unknown. Methods: Db/db mice spontaneously induced with type 2 diabetes and high-fat diet (HFD) and mice with streptozotocin (STZ)-induced type 2 diabetes mice were treated by 12-week treadmill training. Cardiac functions were observed by two-dimensional echocardiography. Hematoxylin-eosin staining, Sirius red staining and transmission electron microscopy were respectively used to detect cardiac morphology, fibrosis and mitochondria. In addition, real-time polymerase chain reaction and Western Blot were used to detect mRNA and protein levels. Results: Studying the hearts of db/db mice and STZ-induced mice, we found that collagen deposition and the number of disordered cells significantly increased compared with the control group. However, exercise markedly reversed these changes, and the same tendency was observed in the expression of MMP9, COL-I, and TGF-β, which indicated cardiac fibrotic and hypertrophic markers, including ANP and MyHC expression. In addition, the increased Caspase-3 level and the ratio of Bax/Bcl2 were reduced by exercise training, and similar results were observed in the TUNEL test. Notably, the expression of P2X7R was greatly upregulated in the hearts of db/db mice and HFD + STZ-induced DM mice and downregulated by aerobic exercise. Moreover, we indicated that P2X7R knock out significantly reduced the collagen deposition and disordered cells in the DM group. Furthermore, the apoptosis levels and TUNEL analysis were greatly inhibited by exercise or in the P2X7R-/- group in DM. We found significant differences between the P2X7R-/- + DM + EX group and DM + EX group in myocardial tissue apoptosis and fibrosis, in which the former is significantly milder. Moreover, compared with the P2X7R-/- + DM group, the P2X7R-/- + DM + EX group represented a lower level of cardiac fibrosis. The expression levels of TGF-β at the protein level and TGF-β and ANP at the genetic level were evidently decreased in the P2X7R-/- + DM + EX group. Conclusion: Aerobic exercise reversed cardiac remodeling in diabetic mice at least partly through inhibiting P2X7R expression in cardiomyocytes.
Collapse
Affiliation(s)
- Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Zhong
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luya Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujue Zhao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuesheng Liu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yonghua Wang
- Department of Physical Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Daghigh F, Karimi P, Alihemmati A, Majidi Zolbin M, Ahmadiasl N. Swimming training modulates lung injury induced by ovariectomy in diabetic rats: involvement of inflammatory and fibrotic biomarkers. Arch Physiol Biochem 2022; 128:514-520. [PMID: 31821061 DOI: 10.1080/13813455.2019.1699934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONTEXT Previous studies have noted that the incidence of inflammatory and fibrotic diseases is higher in diabetic menopausal women. OBJECTIVE In the present study, we evaluated effects of swimming training on inflammatory and fibrotic biomarkers in the lung of ovariectomized diabetic rats. MATERIALS AND METHODS Forty female rats were assigned into four groups: sham; rats underwent surgery without ovariectomies, OVX: rats that underwent ovariectomies, OVX.Dia: ovariectomized rats with high-fat diet, OVX.Dia. Exe: ovariectomized diabetic rats with 8 weeks of swimming training. At the end of experiment, protein expressions were assessed with western blot. Lung sections were subjected to immunohistochemical and haematoxylin eosin staining. RESULTS There was a significant difference in the protein expressions between exercise and ovariectomized diabetic groups (p < .05). CONCLUSION The present study showed strong potential of swimming training on oestrogen deficient diabetic lung. These data encourage further investigation into the inclusive effects of exercise in menopausal diabetic women.
Collapse
Affiliation(s)
- Faeze Daghigh
- Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Majidi Zolbin
- Department of Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadiasl
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Iwai K, Ushigome E, Okada K, Yokota I, Majima S, Nakanishi N, Hashimoto Y, Okada H, Senmaru T, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial. J Clin Med 2022; 11:jcm11030650. [PMID: 35160103 PMCID: PMC8836688 DOI: 10.3390/jcm11030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Hypertension usually coexists with diabetes mellitus and significantly increases the risk of macrovascular complications. Blood pressure measured at home, especially nocturnal blood pressure, is particularly important because it is more strongly associated with target organ damage than clinical blood pressure measurements. Regular moderate aerobic exercise has been shown to have anti-hypertensive effects. This study aimed to investigate the effects of aerobic exercise on home blood pressure in patients with diabetes. This randomized crossover trial was based on outpatient treatment at a university hospital. In this randomized crossover trial, 124 patients with type 2 diabetes were randomly assigned to two groups over 56 days: an exercise preceding group (exercise intervention for 28 days and then no exercise intervention for the following 28 days) and an exercise lagging group (no exercise intervention for 28 days and then exercise intervention for the following 28 days). The associations between the nocturnal blood pressure and exercise intervention were assessed accordingly. A decrease in blood pressure was observed in the morning and evening, at 2 a.m. and 3 a.m. after exercise intervention; however, there was no significant difference between groups. Moderate exercise was not effective in lowering nocturnal blood pressure in this study.
Collapse
Affiliation(s)
- Keiko Iwai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Correspondence: ; Tel.: +81-75-251-5505
| | - Kazufumi Okada
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Hokkaido 060-0808, Japan; (K.O.); (I.Y.)
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Hokkaido 060-0808, Japan; (K.O.); (I.Y.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Hiroshi Okada
- Department of Endocrinology and Diabetology, Matsushita Memorial Hospital, Osaka 570-8540, Japan;
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.I.); (S.M.); (N.N.); (Y.H.); (T.S.); (M.H.); (M.A.); (M.Y.); (M.F.)
| |
Collapse
|
26
|
Zhu D, Zhang X, Wang F, Ye Q, Yang C, Liu D. Irisin rescues diabetic cardiac microvascular injury via ERK1/2/Nrf2/HO-1 mediated inhibition of oxidative stress. Diabetes Res Clin Pract 2022; 183:109170. [PMID: 34863716 DOI: 10.1016/j.diabres.2021.109170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cardiac microvascular dysfunction is a common feature across cardiovascular complications in diabetes, while effective therapy remains elusive. This study was designed to evaluate the effect of irisin on cardiac microvascular injury in type 2 diabetes mellitus (T2DM). METHODS T2DM was induced in C57BL/6J mice. A cohort diabetic mice received a 12-week treatment of irisin. Cardiac function and microvessel density were evaluated. Whether irisin directly regulates cardiac microvascular endothelial cells (CMECs) function was determined in vitro. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms. RESULTS Irisin improved cardiac function in diabetic mice, and increased microvessel density. In vitro study revealed that irisin promoted CMECs proliferation and reduced high glucose and high lipid (HGHL)-induced apoptosis. Mechanistically, irisin increased mRNA and protein levels of heme oxygenase 1 (HO-1), superoxide dismutase 1 and superoxide dismutase 2, among which HO-1 ranked top. Irisin stimulated the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 and nuclear factor erythroid-derived 2-like 2 (Nrf2) nuclear translocation, while U0126 (the inhibitor of ERK1/2) inhibited irisin-induced Nrf2 nuclear translocation and HO-1 expression. Nrf2 siRNA inhibited irisin's antioxidative effects. CONCLUSION Irisin could rescue cardiac microvessels against oxidative stress and apoptosis in diabetes via ERK1/2/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Di Zhu
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Xiaotian Zhang
- Hospital of Troop 75600, 3002 Fuqiang Road, Shenzhen 518048, China
| | - Fenglin Wang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Qiao Ye
- Clinical Medicine Laboratory, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China
| | - Caizhe Yang
- Department of Endocrinology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China.
| | - Demin Liu
- Department of Cardiology, Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050010, China.
| |
Collapse
|
27
|
Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism 2021; 125:154910. [PMID: 34627874 PMCID: PMC8941799 DOI: 10.1016/j.metabol.2021.154910] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Heart failure and cardiovascular disorders represent the leading cause of death in diabetic patients. Here we present a systematic review of the main mechanisms underlying the development of diabetic cardiomyopathy. We also provide an excursus on the relative contribution of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells to the pathophysiology of heart failure in diabetes. After having described the preclinical tools currently available to dissect the mechanisms of this complex disease, we conclude with a section on the most recent updates of the literature on clinical management.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Molecular Pharmacology, Einstein Institute for Neuroimmunology and Inflammation, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; International Translational Research and Medical Education (ITME), Department of Advanced Biomedical Science, "Federico II" University, 80131 Naples, Italy.
| |
Collapse
|
28
|
Zhang X, Gao F. Exercise improves vascular health: Role of mitochondria. Free Radic Biol Med 2021; 177:347-359. [PMID: 34748911 DOI: 10.1016/j.freeradbiomed.2021.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Vascular mitochondria constantly integrate signals from environment and respond accordingly to match vascular function to metabolic requirements of the organ tissues, while mitochondrial dysfunction contributes to vascular aging and pathologies such as atherosclerosis, stenosis, and hypertension. As an effective lifestyle intervention, exercise induces extensive mitochondrial adaptations through vascular mechanical stress and the increased production and release of reactive oxygen species and nitric oxide that activate multiple intracellular signaling pathways, among which peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) plays a critical role. PGC-1α coordinates mitochondrial quality control mechanisms to maintain a healthy mitochondrial pool and promote endothelial nitric oxide synthase activity in vasculature. The mitochondrial adaptations to exercise improve bioenergetics, balance redox status, protect endothelial cells against detrimental insults, increase vascular plasticity, and ameliorate aging-related vascular dysfunction, thus benefiting vascular health. This review highlights recent findings of mitochondria as a central hub integrating exercise-afforded vascular benefits and its underlying mechanisms. A better understanding of the mitochondrial adaptations to exercise will not only shed light on the mechanisms of exercise-induced cardiovascular protection, but may also provide new clues to mitochondria-oriented precise exercise prescriptions for cardiovascular health.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
Maiuolo J, Carresi C, Gliozzi M, Musolino V, Scarano F, Coppoletta AR, Guarnieri L, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Cardamone A, Serra M, Mollace R, Tavernese A, Mollace V. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021; 13:nu13072476. [PMID: 34371986 PMCID: PMC8308586 DOI: 10.3390/nu13072476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8006
| |
Collapse
|
30
|
Abdel Hafez SMN, Zenhom NM, Abdel-Hamid HA. Effects of platelet rich plasma on experimentally induced diabetic heart injury. Int Immunopharmacol 2021; 96:107814. [PMID: 34162165 DOI: 10.1016/j.intimp.2021.107814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Diabetic heart is one of the common complications of diabetes mellitus. Platelet-rich plasma (PRP) is an autologous product rich in growth factors that can enhance tissue regeneration. This work was conducted to study the PRP ability to improve diabetes-inducing cardiac changes. Also, it sheds more light on the possible mechanisms through which PRP induces its effects. Rats were divided into; control, PRP, diabetic, and PRP-diabetic groups. Cardiac specimens were obtained and processed for biochemical, histological, and immunohistochemical study. The diabetic group exhibited a significant increase in cardiac oxidative stress, inflammation, and cardiac injury markers if compared with the control group. Additionally, the cardiac tissue showed variable morphological changes in the form of focal distortion and loss of cardiac myocytes. Distorted mitochondria and heterochromatic nuclei were observed in the cardiac muscle fibers. The mean number of charcoal-stained macrophages, and mean area fraction for collagen fibers, mean number of PCNA-immune positive cardiac muscle were significantly decrease in PRP- diabetic group. Collectively, the results showed that PRP treatment ameliorated most of all these previous changes. CONCLUSION: PRP ameliorated the diabetic cardiac injury via inhibition of oxidative stress and inflammation. It was confirmed by biochemical, histological, and immunohistochemical study. It could be concluded that PRP could be used as a potential therapy for diabetic heart.
Collapse
Affiliation(s)
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Egypt
| | | |
Collapse
|
31
|
Ness H, Ljones K, Pinho M, Høydal M. Acute high-intensity aerobic exercise increases gene expression of calcium-related proteins and activates endoplasmic reticulum stress responses in diabetic hearts. COMPARATIVE EXERCISE PHYSIOLOGY 2021. [DOI: 10.3920/cep200022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Regular aerobic exercise training has a wide range of beneficial cardiac effects, but recent data also show that acute very strenuous aerobic exercise may impose a transient cardiac exhaustion. The aim of this study was to assess the response to acute high-intensity aerobic exercise on properties of mitochondrial respiration, cardiomyocyte contractile function, Ca2+ handling and transcriptional changes for key proteins facilitating Ca2+ handling and endoplasmic reticulum (ER) stress responses in type 2 diabetic mice. Diabetic mice were assigned to either sedentary control or an acute bout of exercise, consisting of a 10×4 minutes high-intensity interval treadmill run. Mitochondrial respiration, contractile and Ca2+ handling properties of cardiomyocytes were analysed 1 hour after completion of exercise. Gene expression levels of key Ca2+ handling and ER stress response proteins were measured in cardiac tissue samples harvested 1 hour and 24 hours after exercise. We found no significant changes in mitochondrial respiration, cardiomyocyte contractile function or Ca2+ handling 1 hour after the acute exercise. However, gene expression of Atp2a2, Slc8a1 and Ryr2, encoding proteins involved in cardiomyocyte Ca2+ handling, were all significantly upregulated 24 hours after the acute exercise bout. Acute exercise also altered gene expression of several key proteins in ER stress response and unfolded protein response, including Grp94, total Xbp1, Gadd34, and Atf6. The present results show that despite no significant alterations in functional properties of cardiomyocyte function, Ca2+ handling or mitochondrial respiration following one bout of high intensity aerobic exercise training, the expression of genes involved in Ca2+ handling and key components in ER stress and the unfolded protein response were changed. These transcriptional changes may constitute important steps in initiating adaptive remodelling to exercise training in type 2 diabetes.
Collapse
Affiliation(s)
- H.O. Ness
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - K. Ljones
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M. Pinho
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| | - M.A. Høydal
- NTNU, Norwegian University of Technology and Science (NTNU), Faculty of Medicine and Health, Department of Circulation and Medical Imaging, Group of Molecular and Cellular Cardiology, Prinsesse Kristinas gate 9, Trondheim, 7489, Norway
| |
Collapse
|
32
|
Xiao T, Huang J, Liu Y, Zhao Y, Wei M. Matrine Protects Cardiomyocytes Against Hyperglycemic Stress by Promoting Mitofusin 2-Induced Mitochondrial Fusion. Front Physiol 2021; 11:597429. [PMID: 33613300 PMCID: PMC7888534 DOI: 10.3389/fphys.2020.597429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Matrine, an active component of Sophora flavescens Ait root extracts, has been used in China for years to treat cancer and viral hepatitis. In the present study, we explored the effects of matrine on hyperglycemia-treated cardiomyocytes. Cardiomyocyte function, oxidative stress, cellular viability, and mitochondrial fusion were assessed through immunofluorescence, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assays, and RNA interference. Matrine treatment suppressed hyperglycemia-induced oxidative stress in cardiomyocytes by upregulating transcription of nuclear factor erythroid 2-like 2 and heme oxygenase-1. Matrine also improved cardiomyocyte contractile and relaxation function during hyperglycemia, and it reduced hyperglycemia-induced cardiomyocyte death by inhibiting mitochondrial apoptosis. Matrine treatment increased the transcription of mitochondrial fusion-related genes and thus attenuated the proportion of fragmented mitochondria in cardiomyocytes. Inhibiting mitochondrial fusion by knocking down mitofusin 2 (Mfn2) abolished the cardioprotective effects of matrine during hyperglycemia. These results demonstrate that matrine could be an effective drug to alleviate hyperglycemia-induced cardiomyocyte damage by activating Mfn2-induced mitochondrial fusion.
Collapse
Affiliation(s)
- Tong Xiao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jie Huang
- Department of Ultrasonography, Affiliated Tumor Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Yuan Liu
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yujie Zhao
- Endocrinology and Geriatric Department, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Manman Wei
- Department of Cardiovascular, Henan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
33
|
Wang Y, Zheng X, Li L, Wang H, Chen K, Xu M, Wu Y, Huang X, Zhang M, Ye X, Xu T, Chen R, Zhu Y. Cyclocarya paliurus ethanol leaf extracts protect against diabetic cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-κB signaling. Food Nutr Res 2020; 64:4267. [PMID: 33061882 PMCID: PMC7534947 DOI: 10.29219/fnr.v64.4267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/14/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) is a serious complication of diabetes that can lead to significant mortality. Cyclocarya paliurus is a tree, the leaves of which are often utilized to prevent and treat diabetes mellitus. Whether C. paliurus leaves can prevent or treat DCM, however, it remains to be formally assessed. The present study was therefore designed to assess the ability of C. paliurus to protect against DCM in db/db mice. Methods Male wild-type (WT) and db/db mice were administered C. paliurus ethanol leaf extracts (ECL) or appropriate vehicle controls daily via gavage, and levels of blood glucose in treated animals were assessed on a weekly basis. After a 10-week treatment, the levels of cardiac troponin I (cTn-I), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), aspartate transaminase (AST), total triglycerides (TG), and total cholesterol (TC) in serum were measured. Activities of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in heart tissues were detected. Hematoxylin-eosin (HE) and Masson staining were conducted. The protein expression that related with oxidative stress and inflammatory reaction was evaluated by Western blotting. Results Compared with WT mice, the TG, TC, and blood glucose levels in db/db mice increased significantly, which were reduced by ECL treatment. Compared with WT mice, the levels of LDH, CK-MB, AST, and cTn-I in serum and MDA in heart tissues of db/db mice increased significantly. Activities of SOD, GSH-Px, and CAT in heart tissues of db/db mice decreased significantly. The levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in heart tissues of db/db mice increased remarkably. However, ECL treatment improved the above pathological changes significantly. ECL alleviated pathological injury and fibrosis in heart tissues of mice. Western blotting showed that ECL increased Bcl-2 level and decreased Bax, cle-caspase-3, and cle-caspase-9 expression. Furthermore, ECL inhibited NF-κB nuclear translocation and increased PI3K and p-Akt expressions. Conclusion Our results indicate that ECL treatment can markedly reduce pathological cardiac damage in db/db mice through antiapoptotic, antifibrotic, and anti-inflammatory mechanisms. Specifically, this extract was able to suppress NF-κB activation via the PI3K/Akt signaling pathway. Given its diverse activities and lack of significant side effects, ECL may thus have therapeutic value for the treatment of DCM.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojie Zheng
- Wenzhou Vocational College of Science & Technology, Wenzhou, China
| | - Longyu Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research, Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Mingjie Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yiwei Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxia Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tunhai Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yindi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Yazdani F, Shahidi F, Karimi P. The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. J Physiol Biochem 2020; 76:291-299. [PMID: 32157499 DOI: 10.1007/s13105-020-00733-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
The balance of pro-angiogenic and anti-angiogenic factors has a significant role in the development of diabetic cardiomyopathy. The purpose of this study was to examine the effect of 8 weeks of high-intensity interval training (HIIT) and moderate intensity continuous training (MICT) on the myocardial angiogenic factors and histological changes in male diabetic rats. Thirty-two male Wistar rats were randomly assigned into four groups: healthy non-exercised control, diabetic (D), D + HIIT, and D+ MICT groups. Diabetes type 2 was induced by a high-fat diet for 2 weeks and a single injection of streptozotocin. Following confirmation of diabetes, animals were subjected to HIIT (90 to 95% of VO2max) or MICT (50-65% of VO2max) protocols 5 days a week for 8 weeks. Western blotting was used for detection of protein expressions of vascular endothelial growth factor (VEGF), transforming growth factor-beta (TGF-β), matrix metalloproteinase-2 (MMP2), and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) in the left ventricle. In addition, baseline and final blood glucose and body weight were measured. Histological changes were evaluated using H&E and Masson's trichrome staining. The results showed that exercise increased protein levels of pro-angiogenic factors while reduced anti-angiogenic factors protein levels in diabetic animals. These changes were followed by increased capillary density and reduced interstitial fibrosis in the left ventricle. Moreover, the MICT was superior to HIIT in enhancing angiogenic factors and attenuation of blood glucose and fibrosis in the diabetic rats. These findings confirm the effectiveness of exercise, particularly MICT, in the improvement of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Faramarz Yazdani
- Department of Physiology, Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Fereshteh Shahidi
- Department of Physiology, Faculty of Physical Education and Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Iwai K, Ushigome E, Yokota I, Majima S, Nakanishi N, Hashimoto Y, Okada H, Senmaru T, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Usefulness of Exercise for Home Blood Pressure Control in People with Diabetes: A Study Protocol for a Crossover Randomized Controlled Trial. Diabetes Metab Syndr Obes 2020; 13:4747-4753. [PMID: 33299337 PMCID: PMC7721122 DOI: 10.2147/dmso.s280117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/07/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The coexistence of hypertension and diabetes mellitus significantly increases the risk of macrovascular complications in patients with diabetes. Home blood pressure is important because it is more strongly associated with target organ damage and total mortality than clinic blood pressure measurements. Regular moderate aerobic exercise has antihypertensive effects. This study aims to examine the effect of aerobic exercise therapy on blood pressure at home in patients with diabetes. PATIENTS AND METHODS In this crossover randomized controlled trial, 110 patients with type 2 diabetes will be randomly assigned to two groups: an exercise preceding group and an exercise lagging group. During the exercise period, patients will be instructed to walk either 30 minutes twice each day or 60 minutes once each day for at least 3 days per week. During the non-exercise period, patients will be permitted to perform physical activity associated with activities of daily life. Patients will be followed up for 56 days. The primary outcome will be the mean nocturnal blood pressure from day 24 to 28 during the exercise period compared to that during the non-exercise period. The secondary outcome will include variation in nocturnal blood pressure, mean blood pressure values and variation of morning and evening blood pressure from day 24 to 28 in the exercise period compared to the non-exercise period, body weight, body mass index and bioelectrical impedance analysis. Biochemical tests such as hemoglobin A1c level, blood glucose level, serum lipid profile, renal function, uric acid levels and liver function tests will also be measured. DISCUSSION This randomized controlled trial will provide critical information regarding the effectiveness of moderate exercise on nocturnal blood pressure reduction. If successful, the results of this randomized controlled trial may increase exercise motivation in people with diabetes and may lead to improvement or prevention of target organ damage and overall mortality. TRIAL REGISTRATION Trial registration: University Hospital Medical Information Network, UMIN 000035973. Protocol version number: R000040969. Registration date: February 22, 2019. Recruitment began: June 19, 2019. The date of completion of recruitment: July 3, 2020. URL: http://www.umin.ac.jp.
Collapse
Affiliation(s)
- Keiko Iwai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
- Correspondence: Emi Ushigome Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii Cho, Kamigyo-ku, Kyoto-city, Kyoto621-8585, JapanTel +81-75-251-5505Fax +81-75-252-3721 Email
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido060-0808, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Diabetology, Matsushita Memorial Hospital, Moriguchi, Osaka, 570-8540, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto602-8566, Japan
| |
Collapse
|
36
|
Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Int J Mol Sci 2019; 20:ijms20246284. [PMID: 31842522 PMCID: PMC6940726 DOI: 10.3390/ijms20246284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.
Collapse
|
37
|
Zou F, Wang L, Liu H, Wang W, Hu L, Xiong X, Wu L, Shen Y, Yang R. Sophocarpine Suppresses NF-κB-Mediated Inflammation Both In Vitro and In Vivo and Inhibits Diabetic Cardiomyopathy. Front Pharmacol 2019; 10:1219. [PMID: 31736745 PMCID: PMC6836764 DOI: 10.3389/fphar.2019.01219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of mortality in patients with diabetes. DCM is a leading cause of mortality in patients with diabetes. We used both in vitro and in vivo experiments to investigate the hypothesis that sophocarpine (SPC), a natural quinolizidine alkaloid derived from a Chinese herb, could protect against DCM. We used hyperglycemic myocardial cells and a streptozotocin (STZ)-induced type 1 diabetes mellitus mouse model. SPC protected myocardial cells from hyperglycemia-induced injury by improving mitochondrial function, suppressing inflammation, and inhibiting cardiac apoptosis. The SPC treatment significantly inhibited the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in high-glucose-stimulated inflammatory responses. Moreover, SPC significantly slowed the development and progression of DCM in STZ-induced diabetic mice. These results show that SPC suppresses NF-κB-mediated inflammation both in vitro and in vivo and may be used to treat DCM.
Collapse
Affiliation(s)
- Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Ling Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Han Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Longlong Hu
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Xiaoying Xiong
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Lijuan Wu
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| | - Renqiang Yang
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Nanchang University, Nangchang, China
| |
Collapse
|
38
|
Li X, Li Z, Li B, Zhu X, Lai X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci 2019; 234:116773. [PMID: 31422095 DOI: 10.1016/j.lfs.2019.116773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
AIMS NLRP3 inflammasome activation is essential for the development and prognosis of diabetic cardiomyopathy (DCM). The anti-aging protein Klotho is suggested to modulate tissue inflammatory responses. The aim of the present study was to examine the protective effects of Klotho on DCM. MAIN METHODS A streptozotocin-induced diabetes mouse model was established to assess the effects of Klotho in vivo, which was administered for 12 weeks. The characteristics of type 1 DCM were evaluated by general status, echocardiography, and histopathology. The expression of associated factors was determined by RT-qPCR and western blotting. Parallel experiments to determine the molecular mechanism through which Klotho prevents DCM were performed using H9C2 cells exposed to high glucose (35 mM). KEY FINDINGS Diabetes-induced increases in serum creatine kinase-muscle/brain and lactate dehydrogenase levels, cardiac fibrosis, cardiomyocyte apoptosis, and cardiac dysfunction were ameliorated by Klotho. Additionally, Klotho suppressed TXNIP expression, NLRP3 inflammasome activation, and expression of the inflammatory cytokines tumor necrosis factor ɑ, interleukin-1β, and interleukin-18 in vivo. In high glucose-cultured cardiomyocytes, Klotho and N-acetylcysteine significantly downregulated intracellular reactive oxygen species generation and TXNIP/NLRP3 inflammasome activation. Pretreatment of H9C2 cells with NLRP3 siRNA or Klotho prevented high glucose-induced inflammation and apoptosis in H9C2 cells. SIGNIFICANCE Our results demonstrate that the protective effect of Klotho on diabetes-induced cardiac injury is associated with inhibition of the NLRP3 inflammasome pathway, suggesting its therapeutic potential for DCM.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Zhiyang Li
- Grade 2016 Class 2, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China; Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong 266011, China
| | - Xingjun Lai
- Department of Cardiology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
39
|
Watanabe LP, Riddle NC. New opportunities: Drosophila as a model system for exercise research. J Appl Physiol (1985) 2019; 127:482-490. [DOI: 10.1152/japplphysiol.00394.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Because of the growing rates of obesity in much of the world, exercise as a treatment option for obesity and as part of a healthy lifestyle is of great interest to the general public, health policy makers, and scientists alike. Despite the long history of exercise promotion and exercise research, there are still significant gaps in our understanding of how exercise impacts individuals and what role genetics plays in determining an individual’s response to exercise. Model organisms are positioned uniquely to help address these questions because of the challenges associated with carrying out large-scale, well-controlled studies in humans. The fruit fly model system, Drosophila melanogaster, has joined the models used for exercise research only recently but already has made significant contributions to the field. In this review, we highlight the opportunities for exercise research in Drosophila. We review the resources available to researchers interested in using Drosophila for exercise research, focusing on the existing systems to induce exercise in Drosophila, to measure the amount of exercise performed, and to assess physical fitness. We illustrate the potential of the Drosophila system by drawing attention to pioneering studies in Drosophila exercise research and emphasize the unique opportunities this model system represents.
Collapse
Affiliation(s)
- Louis P. Watanabe
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|