1
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
2
|
Yang S, Luo W, Sun Y, Wang S. Novel perspectives on growth hormone regulation of ovarian function: mechanisms, formulations, and therapeutic applications. Front Endocrinol (Lausanne) 2025; 16:1576333. [PMID: 40270715 PMCID: PMC12014430 DOI: 10.3389/fendo.2025.1576333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Delayed childbearing has led to a continuous rise in the incidence of infertility because of social development and the evolving roles of women. Assisted reproductive technology (ART) has provided new opportunities for infertility treatment, such as the application of growth hormone (GH). GH regulates ovarian function through multiple pathways, improving follicular development and hormone secretion. However, traditional GH therapy is limited by issues such as low bioavailability and insufficient delivery efficiency. In recent years, drug delivery systems based on novel biomaterials have provided breakthrough solutions for the innovative application of GH in ART. This review summarizes the mechanisms by which GH affects ovarian endocrine function and focuses on the cutting-edge advancements in GH delivery systems with examination of the innovative applications of composite biomaterials in enhancing the therapeutic efficacy of GH. By analyzing the pharmacokinetic properties of novel formulations, the safety and long-term efficacy of their clinical applications can be evaluated. GH delivery systems based on novel biomaterials considerably improve the bioavailability and targeting of GH and could lead to innovative therapeutic strategies for preventing and treating ovarian dysfunction and related diseases. By integrating multidisciplinary research findings, we provide new insights into the field of reproductive medicine that could lead to theoretical and practical importance for promoting the innovative development of ART.
Collapse
Affiliation(s)
- Shao Yang
- Graduate School, Shandong First Medical University, Jinan, Shandong, China
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Luo
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yawei Sun
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shan Wang
- Department of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Shandong First Medical University, Jinan, Shandong, China
- Jinan Engineering Laboratory of Reproductive Diagnosis and Treatment Technology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
3
|
Tătaru I, Gardikiotis I, Dragostin OM, Confederat L, Gîrd C, Zamfir AS, Morariu ID, Chiţescu CL, Dinu (Iacob) A, Popescu LC, Zamfir CL. Multilevel Assessment of Glycemic, Hormonal, and Oxidative Parameters in an Experimental Diabetic Female Rat Model. Biomedicines 2025; 13:922. [PMID: 40299518 PMCID: PMC12024543 DOI: 10.3390/biomedicines13040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Diabetes mellitus induces profound metabolic and endocrine alterations, impacting reproductive function through oxidative stress and hormonal imbalances. This study investigated the effects of alloxan-induced diabetes on hormonal status and oxidative stress in female Wistar rats. Methods: A synthetic sulfonamide derivative (compound S) was obtained via chemical synthesis and characterized by elemental and spectral analysis. Salvia officinalis extract was phytochemically profiled using UHPLC-HRMS and assessed for antioxidant potential using DPPH, ABTS, and FRAP assays. The synthetic compound and the plant extract, along with metformin were evaluated in vivo for their potential antihyperglycemic, hormone-regulating, and antioxidant properties., Serum levels of progesterone, estradiol, and follicle-stimulating hormone (FSH) were evaluated alongside oxidative stress biomarkers transforming growth factor-beta 1 (TGF-β1) and glutathione peroxidase 3 (GPX3). Results: Diabetic rats (untreated) exhibited a significant decrease in estradiol (22.00 ± 4.1 pg/mL vs. 54.74 ± 17.5 pg/mL in controls, p < 0.001) and an increase in progesterone levels (17.38 ± 9.6 ng/mL vs. 3.59 ± 0.90 ng/mL in controls, p < 0.05), suggestive for ovarian dysfunction. TGF-β1 levels were elevated in diabetic rats (27.73 ± 19.4 ng/mL vs. 21.55 ± 13.15 ng/mL in controls, p < 0.05), while increased serum GPX3 (61.50 ± 11.3 ng/mL vs. 38.20 ± 12.84 ng/mL in controls, p < 0.05) indicates enhanced oxidative stress. Statistical analysis revealed a correlation between serum GPX3 levels, FSH (p = -0.039), and estradiol (p = -0.025) in the diabetic group (L2). Conclusions: These findings contribute new evidence regarding the effects of diabetes on reproductive hormones and oxidative stress in female models.
Collapse
Affiliation(s)
- Iulian Tătaru
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.T.); (C.L.Z.)
| | - Ioannis Gardikiotis
- CEMEX—Advanced Center for Research and Development in Experimental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700454 Iasi, Romania;
| | - Oana-Maria Dragostin
- Research Centre in the Medical-Pharmaceutical Field, Department of Pharmaceutical Science, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800201 Galati, Romania; (C.L.C.); (A.D.)
| | - Luminita Confederat
- Department of Biomedical Sciences, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Cerasela Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.G.); (L.C.P.)
| | - Alexandra-Simona Zamfir
- Department of Medical Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ionela Daniela Morariu
- Department of Environmental and Food Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Carmen Lidia Chiţescu
- Research Centre in the Medical-Pharmaceutical Field, Department of Pharmaceutical Science, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800201 Galati, Romania; (C.L.C.); (A.D.)
| | - Ancuța Dinu (Iacob)
- Research Centre in the Medical-Pharmaceutical Field, Department of Pharmaceutical Science, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800201 Galati, Romania; (C.L.C.); (A.D.)
| | - Liliana Costea Popescu
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.G.); (L.C.P.)
| | - Carmen Lăcrămioara Zamfir
- Department of Morphofunctional Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.T.); (C.L.Z.)
| |
Collapse
|
4
|
Spicer LJ, Maylem ERS, Schütz LF. Granulosa cell function in domestic animals: A review on the in vitro effects of FSH, insulin and insulin-like growth factor 1. Domest Anim Endocrinol 2025; 91:106919. [PMID: 39879874 DOI: 10.1016/j.domaniend.2025.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Ovarian granulosa cells produce a variety of biologically active compounds in addition to steroid hormones that include numerous families of growth factors, cytokines and adipokines. Many of these function as endocrine, paracrine and autocrine hormones to regulate ovarian activity. The goal of this review is to provide an update on the evidence in domestic animals on how FSH, insulin and IGF1 regulate the function of granulosa cells with a focus on ovarian steroidogenesis and cell proliferation with comparisons across six domestic animals: pigs, cattle, horses, water buffalo, goats and sheep. In most species, FSH was not a mitogenic stimulus to granulosa cells whereas insulin and IGF1 were stimulatory to cell proliferation in the species it was evaluated. FSH, insulin and IGF1 were all stimulatory to granulosa cell steroidogenesis in the species it was studied. More research is needed to evaluate the role of insulin in the regulation of cell proliferation and steroidogenesis in water buffalo and goats. The role of IGF1 in regulating granulosa cell function in horses also needs further study. Most granulosa-cell secreted factors have direct effects (either positive or negative) on FSH-, insulin- and IGF1-induced steroid production in ovarian cells, but how they all work together to create a cumulative effect to regulate fertility will require further research.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078 USA.
| | - Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV, 89557 USA
| |
Collapse
|
5
|
Sarker MT, Shang X, Chen W, Xu R, Wang S, Xia W, Zhang Y, Jin C, Wang S, Zheng C, Elokil A. Nutritional Impacts of Dietary Selenium, Iodine and their Interaction on Egg Performance, and Antioxidant Profile in Laying Longyuan Duck Breeders. Biol Trace Elem Res 2025; 203:2257-2270. [PMID: 39180631 PMCID: PMC11920373 DOI: 10.1007/s12011-024-04308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024]
Abstract
The present study aimed to optimize the combined effect of dietary selenium (SE) and iodine (ID) on the productive and reproductive performance and antioxidant capacity of Longyuan breeding ducks. A total of 288 Longyan duck breeders aged 20 wk were randomly assigned to four groups with six replicates (n = 72 ducks/group; 12 ducks/replicate). A 2 × 2 factorial arrangement experiment was performed and included 2 supplementation levels of each SE and ID for 200 days of the experimental period. The first group (SE0/ID0) received a basal diet without SE or ID supplementation and was considered to be the control group, whereas the other three groups, SE0/ID4, SE2/ID0 and SE2/ID4, received a basal diet supplemented with 0.4 mg ID/kg, 0.2 mg SE/kg or 0.2 mg SE supplemented with 0.4 mg ID/kg, respectively. The results indicated that the albumin height of the SE2/ID0 group was lower (P < 0.05) than that of the control group, that the egg shape index of the SE2/ID4 and SE0/ID4 groups were lower (P < 0.05) than that of the control group (SE0/ID0), and that the SE concentration significantly increased (P < 0.05) in the SE2/ID0 and SE2/ID4 groups. Hatchability and embryonic mortality improved (P < 0.05) in the SE2/ID0 group. Plasma GSH-Px activity was increased (P < 0.05) by reducing the concentration of malondialdehyde (MDA) in the SE groups. In addition, the tibia length significantly increased (P < 0.05) in the ID (SE0/ID4 and SE2/ID4) groups compared with that in the control group, the plasma content of IGF-1 in the SE2/ID4 and SE0/ID4 groups were greater (P < 0.05) than that in the control group, and the bone mineral content increased (P > 0.05) in the SE2/ID0 and SE0/ID0 groups. Compared with those in the other groups, the mRNA expression of antioxidant-related genes, including Nrf2 and SHMT1 in the SE2/ID4 group was upregulated (P > 0.05), especially in the SE2/ID4 group. Overall, dietary treatment with SE2/ID4 (0.2 mg SE in 0.4 mg ID/kg diet) could be a suitable feed supplement for improving the the egg quality, health status, endogenous antioxidant content, antioxidant-related gene expression and pre-hatching quality of Longyuan duck breeders.
Collapse
Affiliation(s)
- Md Touhiduzzaman Sarker
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiuguo Shang
- College of Animal Science, Foshan University, Foshan, 528225, China
| | - Wei Chen
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Runsheng Xu
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuang Wang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Weiguang Xia
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yanan Zhang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chenglong Jin
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shenglin Wang
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chuntian Zheng
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Abdelmotaleb Elokil
- Institute of Animal ScienceState Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural AffairsGuangdong Public Laboratory of Animal Breeding and Nutrition; Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Animal Production, Faculty of Agriculture, Benha University, 13736, Moshtohor, Egypt
| |
Collapse
|
6
|
Hayashi K, MacLean JA. RHOX Homeobox Transcription Factor Regulation of Ins2 in Rodent Granulosa Cells. Cells 2025; 14:478. [PMID: 40214432 PMCID: PMC11987862 DOI: 10.3390/cells14070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
The Rhox family of homeobox transcription factors comprises established regulators of gonad function, but their downstream targets have been relatively elusive, particularly in the female reproductive tract. Here, we characterize Ins2 as a downstream target of the two granulosa cell-specific factors, Rhox5 and Rhox8, in the ovary. While INS2 is classically produced by islet cells in the pancreas, we found that Ins2 gene expression is present in the mural granulosa cell layer of large antral follicles, and it was not significantly reduced in Rhox5-null mice. This was a surprising finding as we previously validated Ins2 as a direct target of RHOX5 in Sertoli cells, the male counterpart to granulosa cells that serves the germ cell nurse function in the testis. In the ovary, RHOX8 appears to be the major driver of Ins2 expression, as evidenced from the maximal activity of Ins2 promoter reporter plasmids when RHOX8 protein was active within granulosa cells in vitro and the downregulation of endogenous Ins2 in mice with the granulosa cell-specific knockdown of RHOX8 in vivo. RHOX5 induces Rhox8 expression in pre-antral granulosa cells and then becomes relatively silent in peri-ovulatory follicles. However, Rhox8 does not peak until after the ovulatory LH surge. The induction of Rhox8 by progesterone, after the normal window of RHOX5 has passed, may explain why Rhox5-null female mice display apparently normal fertility, if RHOX8 is capable of the redundant stimulation of target genes that are essential for ovulation.
Collapse
Affiliation(s)
- Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Physiology, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
7
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
8
|
Kjeldsen CMN, Oxvig C. The Proteinase PAPP-A has Deep Evolutionary Roots Outside of the IGF System. Genome Biol Evol 2025; 17:evaf042. [PMID: 40084812 PMCID: PMC11925022 DOI: 10.1093/gbe/evaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
The animal pappalysin metalloproteinases, PAPP-A and PAPP-A2, are highly specific regulatory enzymes of the insulin-like growth factor (IGF) system. Cleavage of their only known substrates, a subset of IGF binding proteins (IGFBPs), releases bioactive IGFI and IGFII, thus promoting IGF signaling. Stanniocalcin-1 and -2 (STC1 and STC2) are potent pappalysin inhibitors, completing the STC-PAPP-A-IGFBP-IGF axis. Utilizing homology searches and phylogenetic analyses, we examined the occurrence of pappalysins in the animal kingdom and their functional conservation. This revealed the extensive presence of pappalysins across metazoans, as well as the presence of 3 pappalysins: PAPP-A, PAPP-A2, and a third group of invertebrate pappalysins, which we name invertebrate PAPP-A (invPAPP-A). We show that PAPP-A and PAPP-A2 arose by duplication during early vertebrate evolution. Despite significant evolutionary distance, the domain architecture of the metazoan pappalysins is completely conserved, and several functional domains and motifs are highly conserved across all pappalysins. However, invPAPP-A exists outside the context of IGFBPs, suggesting that the animal pappalysins may have substrates beyond the IGFBPs for PAPP-A and PAPP-A2 that remain to be discovered. Since PAPP-A is an emerging drug target, it is important to understand potential involvement in regulatory systems other than the IGF system, which might be affected upon targeting of PAPP-A.
Collapse
Affiliation(s)
- Caroline M N Kjeldsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000 C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000 C, Denmark
| |
Collapse
|
9
|
Liu Y, Ding F, Yang Y, Ma B. Growth hormone improves the pregnancy outcomes in poor ovarian responders undergoing in vitro fertilization: an umbrella review. J Assist Reprod Genet 2025; 42:721-736. [PMID: 39862359 PMCID: PMC11950600 DOI: 10.1007/s10815-025-03389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Poor ovarian response (POR) significantly impacts the success of assisted reproductive technology (ART), and growth hormone (GH) has been proposed as an adjuvant treatment to improve outcomes in POR patients undergoing in vitro fertilization (IVF). A systematic review and meta-analysis were conducted to evaluate the effectiveness of GH in enhancing pregnancy outcomes, registering a protocol on PROSPERO and searching multiple databases up to September 2023. Twelve systematic reviews/meta-analysis and 20 randomized controlled trials (RCTs) involving 1984 patients were included. Quality assessment was performed using AMSTAR 2, GRADE, and RoB tools. The meta-analysis revealed that GH significantly increased live birth rates [OR=1.80, 95% CI (1.22, 2.64)] and clinical pregnancy rates [OR=1.92, 95% CI (1.51, 2.43)] compared to the control group. Subgroup analysis indicated that administering 5-10 IU/d of GH combined with a long protocol during the middle and late follicular stages maximized these benefits. Despite these promising findings, most outcome indicators exhibited low-quality evidence, highlighting the need for improved research standards to ensure solid evidence supports treatment strategies for POR, thereby promoting reliable application of GH in IVF treatments.
Collapse
Affiliation(s)
- Yongmei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fengxing Ding
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Yang
- The First Hospital of Lanzhou University, Lanzhou, China.
| | - Bin Ma
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Zhang M, Shi Y, Wang Z, Chen Z, Li X, Xu W, Wang N. Genome-Wide Identification and Characterization of gh/prl/sl Family in Cynoglossus semilaevis. Int J Mol Sci 2025; 26:1585. [PMID: 40004051 PMCID: PMC11855606 DOI: 10.3390/ijms26041585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a marine flatfish of significant economic value, characterized by pronounced female-biased sexual size dimorphism (SSD). Sexual differences of cell number and gene expression within the PIT-1 lineage of the pituitary gland may be crucial for interpreting the female-biased SSD of C. semilaevis. Among hormones secreted by PIT-1 cell lineage, growth hormone (gh), prolactin (prl), prolactin 2 (prl2), and somatolactin (sl) comprise a gene family within the extensive superfamily of class-1 helical cytokines. To better understand the function of the gh/prl/sl in teleost SSD, we firstly identified five genes of the gh/prl/sl family (gh, sl, prl, prl2a, and prl2b) and their receptors (ghra, ghrb, prlra, prlrb, and prlr-like) from C. semilaevis at the genome-wide level. Phylogenetic analyses revealed that the gh/prl/sl family and their receptors were each clustered into five distinct groups. More microsatellites were revealed in the intron 2 of gh gene of female rather than the male and pseudo-male individuals, which is positively correlated with its sexual expression pattern. Interaction network prediction indicated that gh, prl, and sl may collectively contribute to individual growth and development. A FRET experiment showed that ghra can act as a receptor for sl. Additionally, the transcripts of the gh/prl/sl family and their receptors exhibited varying abundances in the pituitary, brain, gonad, and liver of both female and male C. semilaevis, with most ligands showing the highest abundance in the female pituitary. Furthermore, gh and sl were found to be maternally expressed. The knock-down of gh, prl, and sl in the pituitary cells could lead to the expression change of igf1, c-fos, and sos2. This study provided a foundation for further functional characterization of the gh/prl/sl gene family, contributing to a deeper understanding of the growth and reproductive mechanisms in C. semilaevis.
Collapse
Affiliation(s)
- Min Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
| | - Yuhong Shi
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
| | - Zhe Wang
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xihong Li
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wenteng Xu
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Bioreading and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.S.); (Z.W.); (Z.C.); (X.L.); (W.X.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
11
|
Khan IU, Khairullah AR, Khan AY, Rehman AU, Mustofa I. Strategic approaches to improve equine breeding and stud farm outcomes. Vet World 2025; 18:311-328. [PMID: 40182817 PMCID: PMC11963589 DOI: 10.14202/vetworld.2025.311-328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/03/2025] [Indexed: 04/05/2025] Open
Abstract
This review explores advanced strategies for enhancing fertility and optimizing reproductive outcomes in equine breeding programs. Horses, being seasonal breeders, present unique reproductive challenges influenced by environmental and physiological factors such as photoperiods, hormone cycles, and aging. Key approaches discussed include hormonal therapies, artificial light manipulation, and nutritional supplementation to improve ovulation and conception rates during the breeding season. Specific hormones such as gonadotropin-releasing hormone analogs, equine follicle-stimulating hormone, and progesterone are analyzed for their roles in synchronizing estrus and increasing ovarian activity. The document also emphasizes the significance of dietary strategies, particularly the inclusion of omega-3 fatty acids, L-arginine, and essential vitamins, in improving reproductive health. In addition, the review underscores the importance of stallion management, addressing factors such as testicular health, age, and environmental stress. Practical methods to mitigate seasonal infertility and improve foaling rates through better reproductive management of mares and stallions are detailed. These insights aim to assist stud farm owners in maximizing breeding efficiency and achieving higher economic returns. The primary goal of this review is to provide a comprehensive guide to practical interventions that increase the productivity and sustainability of equine breeding operations.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia
| | - Asfand Yar Khan
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, DI Khan, KPK, Pakistan
| | - Atta Ur Rehman
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Gomal University, DI Khan, KPK, Pakistan
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
12
|
Huang R, Xia H, Meng T, Fan Y, Tang X, Li Y, Zhang T, Deng J, Yao B, Huang Y, Yang Y. Construction of human pluripotent stem cell-derived testicular organoids and their use as humanized testis models for evaluating the effects of semaglutide. Theranostics 2025; 15:2597-2623. [PMID: 39990223 PMCID: PMC11840739 DOI: 10.7150/thno.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Background: The generation of human testicular organoids from human induced pluripotent stem cells (hiPSCs) presents exciting opportunities for gonadal developmental biology, and reproductive disease modeling. However, creating organoids that closely mimic the tissue structure of testes remains challenging. Methods: In this study, we established a method for generating testicular organoids (TOs) from hiPSCs using a stepwise differentiation approach and a combination of hanging drop and rotational culture systems. The capability of hiPSC-derived precursor testicular cells to self-assemble into organoids was confirmed by detection of morphology, single-cell RNA-sequencing, and protein profiles. The reliability of testicular organoids as a drug evaluation model was assessed by the measurements of transcriptome signatures and functional features, including hormone responsiveness and blood-testis barrier (BTB) formation, and drug sensitivity assessment by recording cell viability and BTB integrity in organoids exposed to reproductive toxicants. Finally, we applied testicular organoids to evaluate the effects of semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA), on testicular function, thereby underscoring their utility as a model for drug evaluation. Results: These organoids exhibited testicular cord-like structures and BTB function. RNA sequencing and functional assays confirmed that testicular organoids possess gene expression profiles and endocrine functions regulated by gonadotropins, closely resembling those of testicular tissue. Notably, these organoids displayed sensitivity to semaglutide. Treatment with semaglutide resulted in reduced testosterone levels and downregulation of INHBB expression, aligning with previous clinical observations. Conclusions: These findings introduced a method for generating testicular organoids from human pluripotent stem cells, highlighting their potential as valuable models for studying testicular function, drug toxicity, and the effects of compounds like semaglutide on testicular health.
Collapse
Affiliation(s)
- Rufei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huan Xia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Meng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yufei Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yifang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tiantian Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jingxian Deng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yadong Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| | - Yan Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China
| |
Collapse
|
13
|
He L, Lin J, Qin Z, Xu Q, Hao L, Fu Y, Ran X, Chen W. Long non-coding RNA NEAT1 promotes ovarian granulosa cell proliferation and cell cycle progression via the miR-29a-3p/IGF1 axis. J Ovarian Res 2025; 18:6. [PMID: 39806494 PMCID: PMC11727426 DOI: 10.1186/s13048-025-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear. METHODS We investigated the function of lncRNA NEAT1 in human ovarian granulosa-like tumor cells (KGN). The effects of NEAT1 overexpression or silencing on cell proliferation and cell cycle were evaluated using CCK-8 assays and flow cytometry. The interaction between NEAT1, miR-29a-3p, and IGF1 was examined using dual-luciferase reporter assays, qRT-PCR, and Western blot analysis. RESULTS NEAT1 promoted granulosa cell proliferation and cell cycle progression by indirectly upregulated IGF1 expression through acting as a molecular sponge for miR-29a-3p. Cell proliferation and G2/M phase proportions were increased by overexpression of NEAT1, whereas cell proliferation and G2/M phase proportions decreased with NEAT1 silencing. The effects of NEAT1 on cell proliferation and cell cycle-related proteins (CCNB1 and CDK2) were partially reversed by miR-29a-3p mimic, while miR-29a-3p inhibitor rescued the effects of NEAT1 silencing. CONCLUSION LncRNA NEAT1 could promote ovarian granulosa cell proliferation and cell cycle progression via the miR-29a-3p/IGF1 axis in polycystic ovary syndrome. Further investigation of this mechanism in clinical samples may have implications for understanding ovarian physiology and pathology.
Collapse
Affiliation(s)
- Lina He
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Jie Lin
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Zhengwen Qin
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Qing Xu
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Li Hao
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Yanhong Fu
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Xu Ran
- Department of Reproductive Medicine, Zigong Hospital of Women and Children Health Care, Zigong, Sichuan, China
| | - Wei Chen
- Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence for Medical Science, Zigong, Sichuan, China.
- Department of Urology, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo- ku, Tokyo, Japan.
| |
Collapse
|
14
|
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers (Basel) 2025; 17:129. [PMID: 39796756 PMCID: PMC11720045 DOI: 10.3390/cancers17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression. Recent research highlights the distinct roles of IGF1 isoforms, including IGF1-Ea, IGF1-Eb, and IGF1-Ec, in promoting tumour growth, metastasis, and hormone signalling interactions, particularly with oestrogen. This review examines the function and clinical significance of IGF-1 isoforms, emphasising their mechanisms in gynaecological physiology and their contributions to EC pathogenesis. Evidence from other cancers further underscores the relevance of IGF1 isoforms in driving tumour behaviours, offering valuable insights into their potential as biomarkers and therapeutic targets. Understanding these mechanisms provides opportunities for novel approaches to the prevention, diagnosis, and treatment of EC, improving patient outcomes and advancing the broader field of hormone-driven cancers.
Collapse
Affiliation(s)
| | - Norfilza Mohd Mokthar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Mohd Nazzary Mamat @ Yusof
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
15
|
Satué K, Fazio E, Velasco-Martinez MG, La Fauci D, Barbiera G, Medica P, Cravana C. Can the reduced GH, IGF-1, and ovarian steroids concentrations be considered as suspected biomarkers of age-associated functional deficit in mares? Theriogenology 2024; 228:75-80. [PMID: 39098123 DOI: 10.1016/j.theriogenology.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
In humans' and experimental animals' components of the somatotropic axis, such as growth hormone (GH) and insulin-like growth factor 1 (IGF-1) concentrations, decrease with advancing age. Although there is evidence regarding IGF-1, the effect of age on GH in mares, as well as the relationships between both parameters, have not yet been elucidated. On the other hand, although GH and IGF-1 are related to follicular development, it is unknown if they could be correlated with the circulating concentrations of ovarian steroids in mares, as occurs in other species. The hypothesis of this study was that both GH and IGF-1 could experience physiological changes with advancing age also in mares, and that both GH/IGF-1 could be correlated with oestradiol-17β (E2) and progesterone (P4), as recorded for other species. Hence, the objective of this study was to evaluate the concentrations of GH, IGF-1, E2, and P4 in mares, according to the different ages. Blood samples were drawn from 56 healthy cyclic Spanish Purebred mares belonging to four different age groups: 6-9 years, 10-13 years, 14-16 years and >16 years. Mares aged 6-9 years and 10-13 years showed higher GH concentrations (P < 0.05) than mares of 14-16 and >16 years; and mares aged 14-16 showed higher GH concentrations (P < 0.05) than >16 years (P < 0.05). Mares aged >16 years showed lower IGF-1 concentrations (P < 0.05) than mares of 6-9, 10-13 and 14-16 years (P < 0.05). The concentrations of E2 and P4 showed no significant differences among different age groups. Both GH and IGF-1 were not correlated with each other or with E2 and P4. The concentrations of E2 and P4 did not change with age. Advancing age leads to a decrease in the activity of the somatotropic axis in physiological cyclic mares, represented by a significant GH reduction, which, however, was ascribed for IGF-1 exclusively to mares over 16 years of age, without alterations in steroid hormone patterns.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Maria Gemma Velasco-Martinez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuliana Barbiera
- Pharmaceutical and Chemical Technician, 98168, Messina, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
16
|
Sabag A, Patten RK, Moreno-Asso A, Colombo GE, Dafauce Bouzo X, Moran LJ, Harrison C, Kazemi M, Mousa A, Tay CT, Hirschberg AL, Redman LM, Teede HJ. Exercise in the management of polycystic ovary syndrome: A position statement from Exercise and Sports Science Australia. J Sci Med Sport 2024; 27:668-677. [PMID: 38960811 DOI: 10.1016/j.jsams.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition amongst females of reproductive age, leading to lifelong cardiometabolic, reproductive, psychological, and dermatologic symptoms as well as a reduced quality of life. Lifestyle interventions, which can include structured exercise programmes delivered by appropriately trained exercise professionals such as clinical exercise physiologists, are considered first-line strategies in PCOS management due to their therapeutic effects on various health outcomes and quality of life. This position statement builds on the 2023 International Evidence-based Guideline for the Assessment and Management of PCOS and describes the role of the exercise professional in the context of the multidisciplinary care team which includes physicians and allied health professionals. This position statement aims to equip exercise professionals with a broad understanding of the pathophysiology of PCOS, how it is diagnosed and managed in clinical practice, and evidence- and consensus-based recommendations for physical activity and exercise in PCOS management. In line with the physical activity recommendations for the general public, individuals with PCOS should aim to undertake between 150 to 300min of moderate-intensity or 75 to 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week. Additionally, muscle-strengthening activities on two non-consecutive days per week are recommended to maintain health and prevent weight gain. For further health benefits and to achieve modest weight loss, individuals with PCOS should aim for a minimum of 250min of moderate-intensity or 150min of vigorous-intensity aerobic activity per week, or an equivalent combination of both spread throughout the week, plus muscle-strengthening activities on two non-consecutive days per week. Adolescents with PCOS should aim for a minimum of 60min moderate- to vigorous-intensity activity each day, incorporating muscle- and bone-strengthening activities three times per week. Finally, exercise professionals should consider the significant psychological burden, including weight stigma, and the high prevalence of comorbidities amongst individuals with PCOS and take appropriate measures to deliver safe and efficacious exercise interventions.
Collapse
Affiliation(s)
- Angelo Sabag
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia.
| | - Rhiannon K Patten
- Institute for Health and Sport (iHeS), Victoria University, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport (iHeS), Victoria University, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Australia
| | - Giorgia E Colombo
- Department of Obstetrics and Gynecology, Ospedale Regionale di Lugano, Switzerland
| | - Xela Dafauce Bouzo
- Centre for Health, Activity and Wellbeing Research (CAWR), School of Sport and Health Sciences, Cardiff Metropolitan University, UK
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Cheryce Harrison
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Maryam Kazemi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, USA
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Chau Tien Tay
- Monash Centre for Health Research and Implementation, Monash University, Australia
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Sweden
| | | | - Helena J Teede
- Monash Centre for Health Research and Implementation, Monash University, Australia
| |
Collapse
|
17
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Lu W, Chen Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. Up-regulated mitochondrial biogenesis associated with GH/IGF axis in the ovaries of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111030. [PMID: 39245261 DOI: 10.1016/j.cbpb.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria play a critical role in follicular development and ovulation, at least in part through the actions of growth hormone (GH)/insulin-like growth factor-1 (IGF-1) on mitochondrial biogenesis. This study aimed to identify seasonal alterations in the GH/IGF-1 system and mitochondrial biogenesis in muskrat (Ondatra zibethicus) ovaries. We utilized the muskrat, a typical seasonal breeder, to clarify the potential impact of the GH/IGF-1 system on mitochondrial biogenesis across different breeding seasons using immunohistochemistry, gene expression and high-throughput sequencing. Alterations in follicular development existed in muskrat ovaries between the breeding season (BS) and non-breeding season (NBS), accompanied by a striking decrease in circulating and ovarian GH and IGF-1 concentrations. GH, GHR, IGF-1, IGF-1R, and mitochondrial biogenesis markers were localized in the ovarian cells of muskrats during both seasons. In contrast, Gh, Ghr, Igf-1, Igf-1r, Ppargc1a, Ppargc1b, Tfam, and Nrf1/2 mRNA levels were higher in BS. The relative levels of GH and IGF-1 in circulation and ovaries were positively associated with mitochondrial biogenesis markers. Additionally, RNA-seq analysis demonstrated that differentially expressed genes might be associated with insulin and PI3K/Akt signaling pathways, as well as mitochondrial function-related pathways. These findings suggest that the intra-ovarian GH/IGF-1 system, which is associated with seasonal changes in mitochondrial biogenesis, is activated in muskrat ovaries in BS.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Nadarajah N, Ssemmondo E, Brooks S, Akinyombo R, Adeleke K, Deshmukh H, Sathyapalan T. Baseline Clinical Factors Associated with Cessation of Growth Hormone Therapy in Patients with Severe Growth Hormone Deficiency - Real World Evidence. Int J Endocrinol Metab 2024; 22:e147825. [PMID: 39839805 PMCID: PMC11742744 DOI: 10.5812/ijem-147825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 01/23/2025] Open
Abstract
Background Growth hormone replacement is indicated in adults with severe growth hormone (GH) deficiency, adult growth hormone deficiency assessment (AGHDA) score of at least 11 and are receiving treatment for other pituitary hormone deficiencies. There are no data looking at the cessation of GH replacement in adult patients with severe GH deficiency and the factors that predict the likelihood of patients continuing or stopping growth hormone replacement. Methods We audited patients on the GH register between January 2006 and January 2023 in Hull University Teaching Hospitals NHS foundation Trust, a UK tertiary hospital. Baseline characteristics, the cause of GH deficiency, AGHDA score at diagnosis and the reason for stopping GH were collected. Proportions were compared between patients adhering to GH replacement and those who had ceased it. Logistic regression analysis was used to identify factors independently associated with cessation of GH. Results The study comprised 141 adult patients with a mean age of 52 years, of which 75 (53%) were female. 54 (38%) individuals had discontinued GH replacement therapy. Predominant reasons for discontinuation were lack of therapeutic benefit (46%) and a change in clinical indication (26%). Among patients who discontinued GH therapy, the most frequent cause of GH deficiency was idiopathic (57%), while for those on GH replacement, pituitary surgery was the leading cause of GH deficiency (53%). Logistic regression analysis showed no baseline factor was statistically significantly associated with GH cessation, except female gender which had a borderline significance (P = 0.05). Conclusions In this real-world investigation of patients with severe GH deficiency, over two in five individuals who discontinued GH therapy cited the absence of perceived benefits. We show a borderline association of female gender with GH cessation and large population-based studies will be needed to investigate this and other causes of GH cessation.
Collapse
Affiliation(s)
- Nageswary Nadarajah
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
| | - Emmanuel Ssemmondo
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre, University of Hull, Hull, UK
| | - Shani Brooks
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
| | - Remi Akinyombo
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
| | | | - Harshal Deshmukh
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- Allam Diabetes Centre, Hull University Teaching Hospitals NHS Foundation Trust, Hull, UK
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre, University of Hull, Hull, UK
| |
Collapse
|
20
|
Liu X, Li N, Wang D, Wen W, Tian L, Zhou H, Mol BW, Shi J, Wang T. Does growth hormone supplementation of in vitro fertilization/intracytoplasmic sperm injection improve cumulative live birth rates in women with poor embryonic development in the previous cycle? Reprod Biol Endocrinol 2024; 22:53. [PMID: 38715065 PMCID: PMC11075314 DOI: 10.1186/s12958-024-01223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Growth hormone (GH) has been proposed as an adjunct in in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles, especially in women with poor ovarian response. However, it is unclear whether GH supplementation is effective in women with poor embryonic development in the previous IVF cycle. The aim of this study was to evaluate the effectiveness of GH supplementation in IVF/ICSI cycles in women with poor embryonic development in the previous cycle. METHODS This is a retrospective cohort study from a public fertility center in China, in which we performed propensity score-matching (PSM) for female age and AFC in a ratio of 1:1. We compared the cumulative live birth rate per started cycle, as well as a series of secondary outcomes. We included 3,043 women with poor embryonic development in the previous IVF/ICSI cycle, of which 1,326 had GH as adjuvant therapy and 1,717 had not. After PSM, there were 694 women in each group. RESULTS After PSM, multivariate analyses showed the cumulative live birth rate to be significantly higher in the GH group than the control group [N = 694, 34.7% vs. N = 694, 27.5%, risk ratio (RR): 1.4 (95%CI: 1.1-1.8)]. Endometrial thickness, number of oocytes retrieved, number of embryos available, and number of good-quality embryos were significantly higher in the GH group compared to controls. Pregnancy outcomes in terms of birth weight, gestational age, fetal sex, preterm birth rate, and type of delivery were comparable. When we evaluated the impact of GH on different categories of female age, the observed benefit in the GH group did not appear to be significant. When we assessed the effect of GH in different AFC categories, the effect of GH was strongest in women with an AFC5-6 (32.2% versus 19.5%; RR 2.0; 95% CI 1.2-3.3). CONCLUSIONS Women with poor embryonic quality in the previous IVF/ICSI cycles have higher rates of cumulative live birth with GH supplementation.
Collapse
Affiliation(s)
- Xitong Liu
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Na Li
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Dongyang Wang
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen Wen
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Li Tian
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Hanying Zhou
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Ben W Mol
- Department of Obstetrics and Gynaecology, Monash Medical Centre, Monash University, Wellington Road, Clayton VIC 3800, Victoria, Australia
- School of Medicine, Medical Sciences and Nutrition, Aberdeen Centre for Women's Health Research, University of Aberdeen, Aberdeen, UK
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China
| | - Tao Wang
- The Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Shaanxi Province, PO Box 710003, Xincheng District, Xi'an CityXi'an, China.
| |
Collapse
|
21
|
Reda GK, Ndunguru SF, Csernus B, Knop R, Lugata JK, Szabó C, Czeglédi L, Lendvai ÁZ. Dietary restriction reveals sex-specific expression of the mTOR pathway genes in Japanese quails. Sci Rep 2024; 14:8314. [PMID: 38594358 PMCID: PMC11004124 DOI: 10.1038/s41598-024-58487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Limited resources affect an organism's physiology through the conserved metabolic pathway, the mechanistic target of rapamycin (mTOR). Males and females often react differently to nutritional limitation, but whether it leads to differential mTOR pathway expression remains unknown. Recently, we found that dietary restriction (DR) induced significant changes in the expression of mTOR pathway genes in female Japanese quails (Coturnix japonica). We simultaneously exposed 32 male and female Japanese quails to either 20%, 30%, 40% restriction or ad libitum feeding for 14 days and determined the expression of six key genes of the mTOR pathway in the liver to investigate sex differences in the expression patterns. We found that DR significantly reduced body mass, albeit the effect was milder in males compared to females. We observed sex-specific liver gene expression. DR downregulated mTOR expression more in females than in males. Under moderate DR, ATG9A and RPS6K1 expressions were increased more in males than in females. Like females, body mass in males was correlated positively with mTOR and IGF1, but negatively with ATG9A and RS6K1 expressions. Our findings highlight that sexes may cope with nutritional deficits differently and emphasise the importance of considering sexual differences in studies of dietary restriction.
Collapse
Affiliation(s)
- Gebrehaweria K Reda
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary.
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary.
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary.
| | - Sawadi F Ndunguru
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Brigitta Csernus
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| | - Renáta Knop
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - James K Lugata
- Doctoral School of Animal Science, University of Debrecen, 4032, Debrecen, Hungary
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, 4032, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 4032, Debrecen, Hungary
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032, Debrecen, Hungary
| |
Collapse
|
22
|
Kumar S, Yadav AS, Magotra A, Bangar YC, Garg AR, Kumar N. Polymorphism of growth hormone (GH) gene and its association with performance and body conformation of Harnali sheep. Trop Anim Health Prod 2024; 56:116. [PMID: 38565756 DOI: 10.1007/s11250-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
The present study was carried out to study the polymorphism in the GH gene and its association with various performance and body conformation traits, viz., birth weight (B-WT), weaning weight (W-WT), six-month body weight (6 M-WT), one-year body weight (Y-WT), annual greasy fleece weight (AGFW), body length (BL), body height (BH), heart girth (HG) and paunch girth (PG) in 138 Harnali sheep. PCR-RFLP was performed to identify polymorphism in the targeted region of the GH gene. The PCR product of 422 bp size of the GH gene was amplified encompassing partial exon 2 and inton 3 in Harnali sheep. The PCR product was digested with HaeIII restriction enzyme for the detection of Single nucleotide polymorphism (SNP). The digested products revealed the presence of two genotypes, i.e. AA and AB in the studied population. A > G mutation (A781G) was observed in our resource population. The AA genotype was found to be the predominant genotype (0.62). Chi square value revealed that resource population was not under Hardy-Weinberg equilibrium with respect to target locus. Period of birth was found to have significant effect on W-WT, Y-WT, BL, BH and PG. Sex of animal was found to have significant (P < 0.05) effect on W-WT and highly significant (P < 0.01) effect on 6 M-WT, Y-WT and AGFW in Harnali sheep. The effect of genotype was found to be significant (P < 0.05) on annual greasy fleece weight. AB genotype was found to be associated with higher annual greasy fleece weight and can be used as a potential candidate marker in selection criteria for improving greasy fleece weight in Harnali sheep.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Livestock Farm Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Abhay Singh Yadav
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Y C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Asha Rani Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Narender Kumar
- Department of Livestock Farm Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| |
Collapse
|
23
|
Song Y, Ma J, Liu Q, Mabrouk I, Zhou Y, Yu J, Liu F, Wang J, Yu Z, Hu J, Sun Y. Protein profile analysis of Jilin white goose testicles at different stages of the laying cycle by DIA strategy. BMC Genomics 2024; 25:326. [PMID: 38561689 PMCID: PMC10986116 DOI: 10.1186/s12864-024-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Jilin white goose is an excellent local breed in China, with a high annual egg production and laying eggs mainly from February to July each year. The testis, as the only organ that can produce sperm, can affect the sexual maturity and fecundity of male animals. Its growth and development are affected and regulated by a variety of factors. Proteomics is generally applied to identify and quantify proteins in cells and tissues in order to understand the physiological or pathological changes that occur in tissues or cells under specific conditions. Currently, the female poultry reproductive system has been extensively studied, while few related studies focusing on the regulatory mechanism of the reproductive system of male poultry have been conducted. RESULTS A total of 1753 differentially expressed proteins (DEPs) were generated in which there were 594, 391 and 768 different proteins showing differential expression in three stages, Initial of Laying Cycle (ILC), Peak of Laying Cycle (PLC) and End of Laying Cycle (ELC). Furthermore, bioinformatics was used to analyze the DEPs. Gene ontology (GO) enrichment, Clusters of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis were adopted. All DEPs were found to be implicated in multiple biological processes and pathways associated with testicular development, such as renin secretion, Lysosomes, SNARE interactions in vesicle trafficking, the p53 signaling pathway and pathways related to metabolism. Additionally, the reliability of transcriptome results was verified by real-time quantitative PCR by selecting the transcript abundance of 6 selected DEPs at the three stages of the laying cycle. CONCLUSIONS The funding in this study will provide critical insight into the complex molecular mechanisms and breeding practices underlying the developmental characteristics of testicles in Jilin white goose.
Collapse
Affiliation(s)
- Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Fengshuo Liu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Zhiye Yu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, 130118, Changchun, China.
- Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, 130118, Changchun, China.
| |
Collapse
|
24
|
Cañón-Beltrán K, García-García RM, Cajas YN, Fierro N, Lorenzo PL, Arias-Álvarez M. Improvement of oocyte competence and in vitro oocyte maturation with EGF and IGF-I in Guinea pig model. Theriogenology 2024; 214:206-214. [PMID: 37907035 DOI: 10.1016/j.theriogenology.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
In vitro maturation (IVM) system is an alternative method to superovulation protocols to obtain mature oocytes. Epidermal Growth Factor (EGF) and Insulin-like Growth Factor I (IGF-I) have been widely used in IVM medium in different species. Although the guinea pig is a valuable animal model for reproductive studies, IVM is rarely used. We aimed to establish a suitable in vitro production system using EGF and/or IGF-I during IVM to improve oocyte competence. Firstly, immunolocalization of EGF and IGF-I receptors in the ovary was assessed. An IVM dose-response experiment was performed with cumulus-oocyte complexes (COCs) supplemented with: 1) EGF [0, 10, 50, 100 ng/mL or 10% fetal calf serum (FCS)]; 2) IGF-I [0, 50, 100, 200 ng/mL or 10% FCS]; or 3) the concentrations of EGF and IGF-I which showed the best IVM index in the previous experiments, with or without Fetal Calf Serum (FCS). Cortical granule and mitochondria distribution patterns were determined in in vivo and in vitro-matured oocytes for the first time in this species. Apoptotic rate after IVM and oocyte competence by in vitro embryo development were evaluated. Immunohistochemistry results showed positive immunostaining of EGF and IGF receptors in corpus luteum, oocytes, granulosa and theca cells in follicles in all stages of development. Supplementation of IVM medium with 50 ng/mL EGF or 100 ng/mL IGF-I or their combination with FCS successfully led to oocyte nuclear and cytoplasmic maturation and reduced the apoptotic rate. Both growth factors improved oocyte competence during IVM in this species since early embryos were in vitro developed, showing better results when FCS was used in the IVM medium.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador.
| | - Rosa M García-García
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - Yulia N Cajas
- Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), Cuenca, EC010205, Ecuador
| | - Natacha Fierro
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, 11-01-608, Ecuador
| | - Pedro L Lorenzo
- Department of Physiology, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain
| | - María Arias-Álvarez
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid - UCM, 28040, Spain.
| |
Collapse
|
25
|
Choi JW, Kim SW, Kim HS, Kang MJ, Kim SA, Han JY, Kim H, Ku SY. Effects of Melatonin, GM-CSF, IGF-1, and LIF in Culture Media on Embryonic Development: Potential Benefits of Individualization. Int J Mol Sci 2024; 25:751. [PMID: 38255823 PMCID: PMC10815572 DOI: 10.3390/ijms25020751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.
Collapse
Affiliation(s)
- Jung-Won Choi
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hee-Sun Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Moon-Joo Kang
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Sung-Ah Kim
- Laboratory of In Vitro Fertilization, Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (J.-W.C.); (H.-S.K.); (M.-J.K.); (S.-A.K.)
| | - Ji-Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Republic of Korea; (S.-W.K.); (J.-Y.H.); (H.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
26
|
Cho HR, Lee GK, Lee JY. Increased Risk of Optic Neuritis in Patients With Fibromyalgia: Nationwide Population-Based Cohort Study in South Korea. Am J Ophthalmol 2024; 257:76-83. [PMID: 37634609 DOI: 10.1016/j.ajo.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To estimate the risk of incidence of optic neuritis and identify the high-risk group among patients with fibromyalgia (FM). DESIGN Population-based cohort study. METHODS A nationwide, population-based study was conducted using data from the Korean National Health Claims database from 2012 to 2021. This study included all the patients with FM from the entire South Korean population aged 20-79 years (FM group). Moreover, those with pain but not diagnosed with FM were considered as the non-FM group. A cohort was established by classifying it into the FM and non-FM groups during the recruitment period. A log-rank analysis was used to compare the risk of optic neuritis incidence between the FM group and non-FM group. Cox proportional hazards regression analysis was performed to calculate the adjusted hazard ratio (HR). The cohort was analyzed by stratifying according to age and sex. RESULTS The FM and non-FM groups included 479,892 and 479,892 participants, respectively. The incidence rate of optic neuritis was 35.65/100,000 person-years in the FM group; the HR was significantly higher in the FM group than in the non-FM group (HR 2.11, 95% CI 1.84-2.41; P < .001). The mean interval between the onset of FM and incident optic neuritis was 2.4 ± 1.8 years. The risk increased significantly in men aged 60-79 years (HR 3.37, 95% CI 2.54-4.48) and in women aged 20-39 years (HR 2.07, 95% CI 1.38-3.22). CONCLUSION We quantified the risk of optic neuritis through a long-term follow-up, which could contribute to understanding the pathophysiology and estimating the general health care burden associated with FM in a practical setting. Great attention should be paid to its risk in older men and younger women.
Collapse
Affiliation(s)
- Hyung Rae Cho
- Department of Anesthesiology and Pain Medicine, Myongji hospital, Hanyang University College of Medicine (H.R.C., G.K.L.), Goyang
| | - Geung Kyu Lee
- Department of Anesthesiology and Pain Medicine, Myongji hospital, Hanyang University College of Medicine (H.R.C., G.K.L.), Goyang
| | - Ju-Yeun Lee
- Department of Ophthalmology, Myongji hospital, Hanyang University College of Medicine (J.-Y.L.), Goyang; Department of Preventive Medicine, Seoul National University College of Medicine (J.-Y.L.), Seoul; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine (J.-Y.L.), Seoul, South Korea.
| |
Collapse
|
27
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
28
|
Uju CN, Unniappan S. Growth factors and female reproduction in vertebrates. Mol Cell Endocrinol 2024; 579:112091. [PMID: 37863469 DOI: 10.1016/j.mce.2023.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Female reproductive efficiency is influenced by the outcomes of various processes, including folliculogenesis, apoptosis, response to gonadotropin signaling, oocyte maturation, and ovulation. The role of hormones in regulating these processes and other reproductive activities has been well established. It is becoming increasingly evident that in addition to well-characterized hormones, growth factors play vital roles in regulating some of these reproductive activities. Growth factors and their receptors are widely distributed in vertebrate ovaries at different stages of ovarian development, indicating their involvement in intraovarian reproductive functions. In the ovary, cell surface receptors allow growth factors to regulate intraovarian reproductive activities. Understanding these actions in the reproductive axis would provide a tool to target growth factors and/or their receptors to yield desirable reproductive outcomes. These include enrichment of in vitro maturation and fertilization culture media, and management of infertility. This review discusses some widely characterized growth factors belonging to the TGF, EGF, IGF, FGF, and BDNF family of peptides and their role in female reproduction in vertebrates, with a focus on mammals.
Collapse
Affiliation(s)
- Chinelo N Uju
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
29
|
Głód P, Borski N, Gogola-Mruk J, Opydo M, Ptak A. Bisphenol S and F affect cell cycle distribution and steroidogenic activity of human ovarian granulosa cells, but not primary granulosa tumour cells. Toxicol In Vitro 2023; 93:105697. [PMID: 37717640 DOI: 10.1016/j.tiv.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bisphenol S (BPS) and F (BPF), a new generation of bisphenols (BPs), are the main substitutes for bisphenol A (BPA). Both have been detected in human body fluids. Importantly, bisphenols are structurally similar to oestrogen, the main sex hormone in females. Because bisphenols bind to nuclear oestrogen receptors (ESR1 and ESR2) and to membrane G-coupled receptor 30 (GPR30), they can disrupt ovarian function. Here, we reveal the molecular mechanism underlying the effects of BPS and BPF on the cell cycle and steroidogenesis in the human ovarian granulosa cell (GC) line HGrC1. We show that BPS and BPF arrest GCs at the G0/G1 phase by inducing expression of cyclin D2, an important event that triggers maximal steroid synthesis in response to the BPS and BPF. We used pharmacological inhibitors to show that BPS and BPF, despite acting via already described pathways, also stimulate steroid secretion via IGF1R pathways in HGrC1 cells. Moreover, we identified differences critical to bisphenols response between normal (HGrC1) and primary tumour granulosa (COV434) cells, that enable COV434 cells to be more resistant to bisphenols. Overall, the data suggest that BPS and BPF drive steroidogenesis in human ovarian GCs by affecting the cell cycle. Furthermore, the results indicate that BPS and BPF act not only via the classical and non-classical ESR pathways, but also via the IGF1R pathway.
Collapse
Affiliation(s)
- Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
30
|
Soares ACS, Alves JPM, Fernandes CCL, Silva MRL, Conde AJH, Teixeira DÍA, Rondina D. Use of monosodium-glutamate as a novel dietary supplement strategy for ovarian stimulation in goats. Anim Reprod 2023; 20:e20230094. [PMID: 38026004 PMCID: PMC10681136 DOI: 10.1590/1984-3143-ar2023-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to investigate the reproductive effects of adding monosodium glutamate (MSG) to the diet of goats. Eleven adult goats received synchronized estrus and follicular waves using three prostaglandin analog injections every seven days. Goats allocated to individual pens received 1 g/kg BW of MSG in their diet for 23 days (MOGLU group, n = 6), whereas the control group (n = 5) maintained the base diet. The supplemented animals showed an increase in dry matter intake (P < 0.0001) and a reduction in heart rate (P < 0.05), respiratory rate, and ruminal movement (P < 0.001). Surface and rectal temperatures were higher in the MOGLU group, (P < 0.0001) with a significant increase in the afternoon. There was an increase (P < 0.05) in the frequency of behaviors related to rumination, defecation, and urination in the MOGLU group, and a reduction in behaviors associated with stress (P < 0.05). No differences were observed in the plasma levels of proteins, albumin, urea, cholesterol, or triglycerides. Glucose levels were lower (P < 0.05) in the MOGLU group, which also showed increased glutathione peroxide levels during the induction of ovulation. Supplemented animals recorded a larger number (P < 0.05) of follicles throughout the experimental period and higher intraovarian blood perfusion (P < 0.05) during ovulation induction. We conclude that MSG exerts a positive effect on the reproductive response in goats and therefore represents an effective nutritional supplement.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Davide Rondina
- Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
31
|
Xu S, Jiao C, Diao Q, Tu Y. Preweaning period is a critical window for rumen microbial regulation of average daily gain in Holstein heifer calves. J Anim Sci Biotechnol 2023; 14:128. [PMID: 37915054 PMCID: PMC10621147 DOI: 10.1186/s40104-023-00934-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Rumen bacterial groups can affect growth performance, such as average daily gain (ADG), feed intake, and efficiency. The study aimed to investigate the inter-relationship of rumen bacterial composition, rumen fermentation indicators, serum indicators, and growth performance of Holstein heifer calves with different ADG. Twelve calves were chosen from a trail with 60 calves and divided into higher ADG (HADG, high pre- and post-weaning ADG, n = 6) and lower ADG (LADG, low pre- and post-weaning ADG, n = 6) groups to investigate differences in bacterial composition and functions and host phenotype. RESULTS During the preweaning period, the relative abundances of propionate producers, including g_norank_f_Butyricicoccaceae, g_Pyramidobacter, and g_norank_f_norank_o_Clostridia_vadinBB60_group, were higher in HADG calves (LDA > 2, P < 0.05). Enrichment of these bacteria resulted in increased levels of propionate, a gluconeogenic precursor, in preweaning HADG calves (adjusted P < 0.05), which consequently raised serum glucose concentrations (adjusted P < 0.05). In contrast, the relative abundances of rumen bacteria in post-weaning HADG calves did not exert this effect. Moreover, no significant differences were observed in rumen fermentation parameters and serum indices between the two groups. CONCLUSIONS The findings of this study revealed that the preweaning period is the window of opportunity for rumen bacteria to regulate the ADG of calves.
Collapse
Affiliation(s)
- Shengyang Xu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Chong Jiao
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qiyu Diao
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yan Tu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
32
|
Feng Q, Wang Y, Han H, Shen H. Effect of growth hormone administration on ameliorating pregnancy outcome in women with advanced maternal age and exploration of its optimized utilization. Front Endocrinol (Lausanne) 2023; 14:1270897. [PMID: 37964949 PMCID: PMC10641280 DOI: 10.3389/fendo.2023.1270897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Age-related fertility decay is a great challenge for clinicians. Growth hormone (GH) supplementation has been studied as an adjuvant since late 1980s. However, it has not come to a consensus on the GH administration due to the ambiguous efficacy among studies with different enrolled population and dosage regime. METHODS A self-controlled retrospective study was conducted on women with advanced maternal age who underwent at least a previous cycle without GH (GH-) and a subsequent cycle with GH co-treatment (GH+). The ovarian stimulation parameters and outcomes were compared between the two cycles and logistical analysis was applied to further explore the association between GH administration protocol as well as other clinical parameters and cumulative live birth in GH+cycle. RESULTS A total of 150 women aged 35-43 were included. The number of oocytes retrieved, MII oocytes, 2PNs, transferrable embryos and good-quality embryos in GH+ significantly increased (p < 0.001). The proportion of cycles with no transferrable embryos was significantly reduced in GH+ cycle compared with previous GH- cycle (3 vs. 32; p < 0.001). GH co-treatment cycles showed significantly higher clinical pregnancy rates (43.75% vs. 6.06%; 38.35% vs. 12.04%, p < 0.001), live birth rates (29.17% vs. 0; 27.07% vs. 0, p < 0.001) in both fresh and frozen-thawed embryo transfer cycle. Cumulative live birth rate of the GH+ cycle reached 33.33%. Use of GH prior to Gn stimulation and lasting until the hCG day seemed to achieve a higher successful live birth rate (OR 2.312, 95%CI 1.074-5.163, p=0.032). CONCLUSION GH supplementation could ameliorate pregnancy outcome in women with advanced maternal age. Dosage regimen of long-term pretreatment prior to Gn stimulation (4 IU every other day) and 4 IU per day until hCG day may of greater efficacy compared with concurrent administration with Gn. Additionally, it's worthy of exploring whether an individualized dosage regimen based on the IGF or IGFBP level of patient would be more reasonable and effective. More well-designed prospective trials with large sample size and fundamental experiments on the mechanism are required to testify findings above.
Collapse
Affiliation(s)
| | - Yanbin Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | | | | |
Collapse
|
33
|
Sui Y, Xiao M, Fu J, Li L, Xu Y, Lei C, Sun X. Growth hormone supplementation during ovarian stimulation in women with advanced maternal age undergoing preimplantation genetic testing for Aneuploidy. J Ovarian Res 2023; 16:204. [PMID: 37858247 PMCID: PMC10585718 DOI: 10.1186/s13048-023-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Studies have shown that supplementation with recombinant human GH (rh-GH) during ovarian stimulation (OS) may improve the ovarian response and clinical outcomes of IVF. However, it remains unclear whether GH is associated with the ploidy status of embryos, and therefore, is unable to explain the underlying reason for the effect of GH on IVF outcomes. This study aimed to investigate whether GH supplementation in women with advanced maternal age (AMA) during OS is related to an increased probability of obtaining euploid blastocysts. METHODS This was a single center retrospective cohort study. The data of all women aged 38-46 years who underwent their first preimplantation genetic testing for aneuploidy (PGT-A) cycle between January 2021 and June 2022 were reviewed. Patients in the GH group received 4 IU/day subcutaneous GH supplementation from the beginning of OS to the trigger day, and patients in the control group did not. A total of 140 patients in the GH group and 272 patients in the control group were included after 1:2 propensity score matching. RESULTS The baseline and cycle characteristics between the two groups were similar. The proportion of cycles which obtained euploid blastocysts was significantly higher in the GH group than that in the control group (41.43% vs. 27.21%, P = 0.00). The GH group had a significantly higher euploid blastocyst rate per cohort (32.47% vs. 21.34%, P = 0.00) and mean euploid blastocyst rate per cycle (per biopsy cycle 0.35 ± 0.40 vs. 0.21 ± 0.33, P = 0.00; per OS cycle 0.27 ± 0.38 vs. 0.16 ± 0.30, P = 0.02). However, the benefit of GH was more significant in patients aged 38-40 years, but not significant in patients aged 41-46 years. Pregnancy outcomes were similar between the two groups after embryo transfer. CONCLUSIONS GH supplementation during OS is associated with a significantly increased probability of obtaining euploid blastocysts in women aged 38-40 years, but this benefit is not significant in women aged 41-46 years. Our results explained the underlying reason for the effect of GH on IVF outcomes in existing studies, and might be helpful for AMA patients undergoing PGT-A cycles to obtain a better outcome meanwhile to avoid over-treatment. TRIAL REGISTRATION NCT05574894, www. CLINICALTRIALS gov .
Collapse
Affiliation(s)
- Yilun Sui
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China
| | - Min Xiao
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China
| | - Lu Li
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China
| | - Yining Xu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China
| | - Caixia Lei
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China.
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, No. 352 Dalin Road, Huangpu District, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Kim SM, Yoo JY, Hong YH, Lee J, Kim JH, Lee JR. The effect of growth hormone on ovarian function recovery in a mouse model of ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1184977. [PMID: 37854196 PMCID: PMC10579899 DOI: 10.3389/fendo.2023.1184977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
Objectives To evaluate the effects and mechanisms of action of growth hormone (GH) in the recovery of ovarian function in ovarian insufficiency induced by cyclophosphamide (CP) in a mouse model. Materials and methods After inducing ovarian insufficiency by administering 400 mg/kg of CP intraperitoneally to 6-week-old ICR mice, the mice were divided into four groups (control, CP, 1 mg/kg GH, and 2 mg/kg GH) with 10 mice in each group. GH was administered a week later for 7 days. Five mice from each group were sacrificed the next day, and their ovaries were collected for histological examination. The remaining mice were superovulated for in vitro fertilization (IVF). The terminal deoxynucleotidyl transferase dUTP-nick end labeling assay was performed to detect apoptosis. Masson's trichrome staining was used to analyze the degree of fibrosis. To quantify angiogenesis, CD31 immunohistochemistry was performed. Angiogenesis-related gene expression profiles were assessed using quantitative reverse transcription polymerase chain reaction. Results CP induced the loss of non-growing (primordial and primary) follicles while GH significantly protected primordial follicles and increased follicular quality. The CP group showed a decrease in fertilization and blastocyst formation rates in IVF. In contrast, the GH treatment group showed dose-dependent enhanced IVF outcomes. Furthermore, GH treatment decreased apoptosis and stromal fibrosis and increased angiogenesis. Many genes involved in angiogenesis, especially Leptin (Lep), platelet endothelial cell adhesion molecule 1 (Pecam-1), and angiogenin (Ang) were up-regulated in the GH treatment groups. Conclusion GH treatment may promote the recovery of ovarian function in ovarian insufficiency induced by the administration of CP via decreasing apoptosis and stromal fibrosis and upregulating Lep, Pecam-1, and Ang genes.
Collapse
Affiliation(s)
- Su Mi Kim
- Department of Obstetrics and Gynecology, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung Young Yoo
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Yeon Hee Hong
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
35
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
36
|
Kabpha A, Phonsiri K, Pasomboon P, Boonanuntanasarn S. Effects of dietary supplementation of estradiol-17β during fry stage on growth, physiological and immune parameters and gonadal gene expression in adult snakeskin gourami. Animal 2023; 17:100950. [PMID: 37660411 DOI: 10.1016/j.animal.2023.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 09/05/2023] Open
Abstract
In snakeskin gourami (Trichopodus pectoralis), females are generally larger than males, and estradiol-17β (E2)-sex reversal to produce female monosex has gained interest in this species. In this study, we aimed to investigate the effects of E2-induced sex reversal on growth, physiological and immune parameters, and gonadal gene expression in adult snakeskin gourami. Fry (7 days posthatching) were divided into different experimental groups based on the dose of E2: control (no E2 (0 mg kg-1) supplementation), E2-100 (100 mg kg-1), E2-200 (200 mg kg-1), and E2-300 (300 mg kg-1), fed with the E2 doses for 90 d and cultured for 11 months (adult stage). The findings revealed that E2 supplementation produced 88.89-100% of female population. After 11 months of culture, the effects of sexual dimorphism on the growth performance of the E2-100 group were not significant compared to that on the growth performance of the control male and female groups; however, it improved significantly in the E2-200 and E2-300 groups (P < 0.05). E2 elevated the CP and fat contents in body in E2-200 and E2-300 groups (P < 0.05) compared to that in the control group. No sex differences in blood metabolites, haematological values, or immune parameters were identified. Nevertheless, E2-200 and E2-300 groups showed increased blood glucose, triglyceride, haemoglobin, and total immunoglobulin (P < 0.05) compared to control male fish. In addition, all concentrations of E2 increased alternative complement 50 (P < 0.05). Several genes, including bHLH, cyp19a1, daz, deadend, esrb, esrrg, gnrhr, gpa, gsg1l, hsd17β, mospd1, nanos2, p53, piwi2, rerg, rps6ka, tgfb, and vgr, showed differential expression between testis and ovary in control female and E2-treated groups. The expression patterns of the genes were similar in the ovary of the control female and E2-200-treated fish. In conclusion, the findings demonstrate that a feminisation duration of 7-97 days and two doses of E2 at 200 or 300 mg kg-1 successfully produced all-female stocks in snakeskin gourami. Furthermore, the findings showed that E2-treated females were maintained throughout adulthood and exhibited several superior characteristics to male fish. Together with the information generated on differentially expressed sex-related genes, these findings could enable the culturing of faster-growing sex to increase productivity and contribute to the development of intensive snakeskin gourami farming.
Collapse
Affiliation(s)
- A Kabpha
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - K Phonsiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - P Pasomboon
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - S Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
37
|
Biswas S, Ghosh S, Maitra S. Role of insulin-like growth factor 1 (IGF1) in the regulation of mitochondrial bioenergetics in zebrafish oocytes: lessons from in vivo and in vitro investigations. Front Cell Dev Biol 2023; 11:1202693. [PMID: 37457295 PMCID: PMC10347385 DOI: 10.3389/fcell.2023.1202693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Optimal mitochondrial functioning is indispensable for acquiring oocyte competence and meiotic maturation, whilst mitochondrial dysfunction may lead to diminished reproductive potential and impaired fertility. The role of the intra-ovarian IGF system in ovarian follicular dynamics has been implicated earlier. Although several studies have demonstrated the role of the IGF axis in facilitating mitochondrial function over a multitude of cell lines, its role in oocyte energy metabolism remains largely unexplored. Here using zebrafish, the relative importance of IGF1 in modulating oocyte mitochondrial bioenergetics has been investigated. A dramatic increase in ovarian lhcgr and igf1 expression accompanied heightened ATP levels and mitochondrial polarization in full-grown (FG) oocytes resuming meiotic maturation and ovulation in vivo. Concomitant with elevated igf1 expression and IGF1R phosphorylation, hCG (LH analog) stimulation of FG follicles in vitro prompted a sharp increase in NRF-1 and ATP levels, suggesting a positive influence of gonadotropin action on igf1 expression vis-à-vis oocyte bioenergetics. While recombinant IGF1 administration enhanced mitochondrial function, IGF1R immunodepletion or priming with PI3K inhibitor wortmannin could abrogate NRF-1 immunoreactivity, expression of respiratory chain subunits, ΔΨM, and ATP content. Mechanistically, activation of PI3K/Akt signaling in IGF1-treated follicles corroborated well with the rapid phosphorylation of GSK3β at Ser9 (inactive) followed by PGC-1β accumulation. While selective inhibition of GSK3β promoted PGC-1β, Akt inhibition could abrogate IGF1-induced p-GSK3β (Ser9) and PGC-1β immunoreactive protein indicating Akt-mediated GSK3β inactivation and PGC-1β stabilization. The IGF1-depleted follicles showed elevated superoxide anions, subdued steroidogenic potential, and attenuated G2-M1 transition. In summary, this study highlights the importance of IGF1 signaling in oocyte bioenergetics prior to resumption of meiosis.
Collapse
|
38
|
Hartanto S, Budiyanto A, Widayanti R, Setyawan EMN, Prasetya ID. Characterization of polymorphisms in the follicle-stimulating hormone receptor and insulin-like growth factor-1 genes and their association with fertility traits in Jawa-Brebes cows. Vet World 2023; 16:711-716. [PMID: 37235159 PMCID: PMC10206960 DOI: 10.14202/vetworld.2023.711-716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim The availability of fertility markers is crucial for maintaining, protecting, and improving the genetics of Jawa-Brebes (Jabres) cows. Follicle-stimulating hormone receptor (FSHR) and insulin-like growth factor-1 (IGF-1) play critical roles in female reproductive physiology. The single-nucleotide polymorphisms (SNPs) FSHR G-278A and IGF-1 C-512T correlate with cows' fertility traits. This study aimed to identify these SNPs and their potential associations with fertility parameters in Jabres cows. Materials and Methods Samples were collected from 45 heads of multiparous Jabres cows aged 3-10 years with body condition scores of 2.5-5.0 on a 5-point scale in Brebes Regency, Java, Indonesia. These cows were assigned to fertile (n = 16) and infertile groups (n = 29). Polymerase chain reaction (PCR) was carried out for DNA amplification of FSHR G-278A and IGF-1 C-512T fragments. Restriction fragment length polymorphism-PCR with the restriction enzymes FaqI for the product of FSHR G-278A and SnaBI for the product of IGF-1 C-512T was used to identify SNPs. Results The FaqI enzyme cut the 211 bp DNA fragment of FSHR G-278A in all samples into two bands of 128 bp and 83 bp (GG genotype). Meanwhile, the genotyping of amplicon products of IGF-1 C-512T generated a single 249 bp fragment (CC genotype) in both groups. Conclusion The results showed that the FSHR G-278A/FaqI and IGF-1 C-512T/SnaBI loci were monomorphic in Jabres cows. Thus, neither FSHR G-278A/FaqI nor IGF-1 C-512T/SnaBI is a possible genetic marker for fertility in Jabres cows.
Collapse
Affiliation(s)
- Slamet Hartanto
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
- National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Agung Budiyanto
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rini Widayanti
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erif Maha Nugraha Setyawan
- Department of Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Imawan Daru Prasetya
- Directorate General of Livestock and Animal Health, Ministry of Agriculture, Jakarta, Indonesia
| |
Collapse
|
39
|
Alfradique VAP, Alves SVP, Netto DLS, Machado AF, Penitente-Filho JM, da Silva W, Brandão FZ, Lopes MS, Guimarães SEF. The effect of age and FSH stimulation on the ovarian follicular response, nuclear maturation, and gene expression of cumulus-oocyte complexes in prepubertal gilts. Theriogenology 2023; 199:57-68. [PMID: 36696770 DOI: 10.1016/j.theriogenology.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of age and FSH treatment on the ovarian response, follicular fluid (FF) biochemical composition, nuclear maturation, and molecular profile of cumulus-oocytes complexes (COCs) recovered from prepubertal gilts. Thirty-five prepubertal gilts were separated according to age [140 (n = 20) or 160 (n = 15) days], and within each age, the gilts were allotted to receive either 100 mg of FSH [treated; G140+FSH (n = 10) and G160+FSH (n = 7)] or saline solution [control; G140+control (n = 10) and G160+control (n = 8)]. Thus, four experimental groups were included in this study. In the FSH-treated gilts, the percentage of medium follicles increased (P < 0.0001) in the same proportion with which the percentage of small follicles decreased (P < 0.0001). In addition, the glucose concentration in the FF obtained from medium follicles increased (P < 0.05), while that of triglycerides decreased (P < 0.05) in the FSH-treated gilts. The FSH stimulation also improved (P < 0.05) the number of grade I COCs obtained from medium follicles and the meiotic maturation and BCB + rates. FSH treatment only upregulated (P < 0.05) HMGCR expression in immature COCs from prepubertal gilts. The metaphase II and BCB + rates, FF glucose and plasma IGF-1 levels were greater (P < 0.05) in prepubertal gilts at 160 than at 140 days of age. Age had no effect (P > 0.05) on the transcript abundance of the target genes in immature COCs. Hence, oocytes obtained from 140-day-old prepubertal gilts appeared less meiotically competent than those of 160-day-old prepubertal gilts. Our study suggests a possible strategy of using FSH treatment to improve oocyte quantity, quality, and nuclear maturation in 140 and 160-day-old prepubertal gilts.
Collapse
Affiliation(s)
- Vivian Angélico Pereira Alfradique
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| | - Saullo Vinícius Pereira Alves
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Domingos Lollobrigida Souza Netto
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Andréia Ferreira Machado
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Jurandy Mauro Penitente-Filho
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Walmir da Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Felipe Zandonadi Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24230-340, Niterói, RJ, Brazil
| | - Marcos Soares Lopes
- Topigs Norsvin Brasil, Rua Visconde do Rio Branco, 1310, CEP 80420-210, Curitiba, PR, Brazil
| | - Simone Eliza Facioni Guimarães
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
40
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
41
|
Rigutto-Farebrother J. Optimizing Growth: The Case for Iodine. Nutrients 2023; 15:814. [PMID: 36839172 PMCID: PMC9959690 DOI: 10.3390/nu15040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Iodine is an essential micronutrient and component of thyroid hormone. An adequate dietary iodine intake is critical to maintain and promote normal growth and development, especially during vulnerable life stages such as pregnancy and early infancy. The role of iodine in cognitive development is supported by numerous interventional and observational studies, and when iodine intake is too low, somatic growth is also impaired. This can be clearly seen in cases of untreated congenital hypothyroidism related to severe iodine deficiency, which is characterized, in part, by a short stature. Nevertheless, the impact of a less severe iodine deficiency on growth, whether in utero or postnatal, is unclear. Robust studies examining the relationship between iodine and growth are rarely feasible, including the aspect of examining the effect of a single micronutrient on a process that is reliant on multiple nutrients for optimal success. Conversely, excessive iodine intake can affect thyroid function and the secretion of optimal thyroid hormone levels; however, whether this affects growth has not been examined. This narrative review outlines the mechanisms by which iodine contributes to the growth process from conception onwards, supported by evidence from human studies. It emphasizes the need for adequate iodine public health policies and their robust monitoring and surveillance, to ensure coverage for all population groups, particularly those at life stages vulnerable for growth. Finally, it summarizes the other micronutrients important to consider alongside iodine when seeking to assess the impact of iodine on somatic growth.
Collapse
Affiliation(s)
- Jessica Rigutto-Farebrother
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zürich, LFV E 14.1, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland;
- Global Center for the Development of the Whole Child, University of Notre Dame, 200 Visitation Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
42
|
The Expression Pattern of Insulin-Like Growth Factor Subtype 3 (igf3) in the Orange-Spotted Grouper Epinephelus coioides and Its Function on Ovary Maturation. Int J Mol Sci 2023; 24:ijms24032868. [PMID: 36769198 PMCID: PMC9918221 DOI: 10.3390/ijms24032868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
A new insulin-like growth factor (Igf) subtype 3 (igf3) has recently been found in the bony fish orange-spotted grouper (Epinephelus coioides). However, the role of igf3 in the maturation of the ovary and sex differentiation in E. coioides is currently unknown. We examined the ovarian localization and receptor binding of the novel ortholog Igf3 using qRT-PCR, and Western blotting, combined with in situ hybridization and immunohistochemistry methods. Results demonstrated the presence of igf3 mRNA and protein in mature oocytes. Furthermore, Igf3 protein expression was not detected in testis, brain, kidney and liver homogenates. The calculated molecular weight of Igf3 was 22 kDa, which was consistent with the deduced amino acid sequence from the full-length open reading frame. The immunoreactivity showed that Igf3 was strongly present in the follicle staining fully-grown stage. The igf3 mRNA expression level was significantly positively correlated with ovarian follicular maturation. Meanwhile, Igf3 increased germinal-vesicle breakdown in a time- and dose-dependent manner. In vitro, treatment of primary ovarian cells with Igf3 up-regulated significantly the mRNA expression level of genes related to sex determination and reproduction such as forkhead boxl2 (foxl2), dosage-sensitive sex reversal adrenal hypoplasia critical region on chromosome x gene 1 (dax1), cytochrome P450 family 19 subfamily member 1 a (cyp19a1a), cytochrome P450 family 11 subfamily a member 1 a (cyp11a1a) and luteinizing hormone receptor 1 (lhr1). Overall, our results demonstrated that igf3 promotes the maturation of the ovary and plays an important role in sex differentiation in E. coioides.
Collapse
|
43
|
The Potential Mechanism of Zishen Yutai Pills against Threatened Abortion: An Approach Involving Network Pharmacology and Experimental Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023. [DOI: 10.1155/2023/5797767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Threatened abortion (TA) is the most common complication in early pregnancy and is caused by anxiety and depressive symptoms. The Zishen Yutai Pill (ZYP) is a traditional herbal formula that is commonly used to treat TA. However, the pharmacological mechanisms underlying the effect of ZYP have yet to be elucidated. To disclose the mechanism of ZYP in the treatment of TA, first, we identified the chemical constituents of ZYP from multiple databases and then predicted the potential targets of TA by applying the GeneCards database. A protein-protein interaction (PPI) network was then constructed to allow the screening of hub targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) enrichment analyses were also performed and the Database for Annotation Visualization and Integrated Discovery server was used to identify critical biological processes and signaling pathways. Cytoscape software was used to construct a Compound-Target-Pathway. Furthermore, we analyzed ZYP by UPLC-Q-TOF/MS, then the RU486-induced TA rat model was established, and the reliability of the network pharmacology prediction results was verified. Finally, the mechanisms responsible for the action of ZYP on TA were revealed by qRT-PCR and molecular docking. Database screening identified a total of 161 active compounds in ZYP and 324 TA-related targets. And, we identified 42 compounds from ZYP by UPLC-Q-TOF/MS. Inflammation and apoptosis were identified as the main biological processes. GO and KEGG analyses identified that the MAPK and PI3K/Akt pathways were the key functional pathways that respond to ZYP. The results showed that ZYP treatment significantly increased maternal weight, significantly increased the levels of estradiol and progesterone, and attenuated histopathological changes in a rat model of TA. Data indicated that ZYP treatment improved pregnancy outcomes in the rat model of TA. QRT-PCR data showed that ZYP reduced inflammation and apoptosis by regulating the MAPK and PI3K/Akt pathways. In addition, molecule docking results identified a range of key compounds, including Pik3a, Mapk14, Mapk1, Mapk3, Mapk8 Tnf, Il6, and Cas8. In summary, we performed network pharmacological analysis and experimental validation and identified that ZYP exerts an effect on TA by regulating the MAPK and PI3K/Akt pathways and by inhibiting the expression levels of proinflammatory cytokines and genes related to apoptosis.
Collapse
|
44
|
Tsai MC, Lee YL, Chen YC. Association of the consumption of common drinks with early puberty in both sexes. Front Public Health 2022; 10:854477. [PMID: 36536777 PMCID: PMC9758723 DOI: 10.3389/fpubh.2022.854477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background We examined the effect of sugar-sweetened beverages (SSB) and common drink intake on pubertal development in both sexes. Methods Data were retrieved from Taiwan Children Health Study, which involved detailed pubertal stage assessments of 2,819 schoolchildren aged 11 years in 2011-2012. Drawings of secondary sexual characteristics and self-reported age at menarche or voice breaking were used to assess pubertal stages. Dietary intake was assessed using a detailed semi-quantitative food frequency questionnaire. Generalized estimating equation modeling was applied to obtain odds ratios (ORs) and 95% confidence intervals (CIs) to represent the effects of each drink on early pubertal development outcomes. Results In boys, an one cup/day increment of a SSB was associated with earlier voice breaking (β = -0.12; 95% CI = -0.20, -0.04), whereas consuming yogurt (≥2 cups/day) was a protective factor against early puberty (OR = 0.78; 95% CI = 0.73, 0.83). In girls, SSB consumption was associated with increased risk of early puberty in a dose-response manner, and a similar protective effect of yogurt consumption and fermented probiotic drink (≥2 cups/day) against early puberty was observed (OR = 0.96; 95% CI = 0.94, 0.99). Furthermore, the intake of both total sugar and added sugar within SSBs increased risk of early puberty in girls but not in boys. Conclusions Sugar-sweetened beverages were associated with early puberty, and probiotic drinks appeared to mitigate this link. These findings indicate that the gut-brain axis could play a crucial role in sexual maturation.
Collapse
Affiliation(s)
- Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan,College of Public Health, China Medical University, Taichung, Taiwan,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan,Yungling Leo Lee
| | - Yang Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan,Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan,*Correspondence: Yang Ching Chen
| |
Collapse
|
45
|
Yao C, Sun Y, Zhang Z, Jia X, Zou P, Wang Y. Integration of RNAi and RNA-seq uncovers the regulation mechanism of DDX20 on vitellogenin expression in Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101028. [PMID: 36244220 DOI: 10.1016/j.cbd.2022.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Vitellogenesis in crustaceans is controlled by several steroid hormones. In humans, the expression of SF-1, a gene that regulates gonadal development and the synthesis of steroid hormones, is affected by DDX20. However, how the homologous gene FTZ-F1 is regulated by DDX20 and its association with vitellogenesis remains unknown in the mud crab Scylla paramamosain. In this study, SpDDX20 and SpFTZ-F1 were identified in the transcriptome of mature ovarian tissue from the mud crab. qRT-PCR results revealed that the expression levels of SpFTZ-F1 and SpVTG in the ovaries of crab in the experimental group injected with dsDDX20 (EO) were significantly higher (P < 0.05) than those in the negative control group injected with dsEGFP (NO) and the blank control group injected with SPSS (BO). The differentially expressed genes (DEGs) identified by comparative transcriptome analysis of the EO group and NO group were enriched into five pathways related to ovarian steroidogenesis. The expression of CYP17, CYP3A4, CYP1A1 and 3β-HSD were up-regulated in pathways related to steroid hormone production and biosynthesis. The expression of the INSR, IRS and PI3K genes in the insulin signaling pathway were significantly increased (P < 0.05). The expression level of the TGF-β gene was up-regulated (P < 0.05) in the transforming growth factor pathway, whereas the expression level of the Smad2 gene was down-regulated (P < 0.05). The expression of GnRHR, GS, AC and PKA genes in the gonadotropin-releasing hormone signaling pathway were up-regulated. Our data provide a foundation for investigating the relationship between DDX20 and FTZ-F1 in the regulation of vitellogenin expression in S. paramamosain.
Collapse
Affiliation(s)
- Chengjie Yao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yulong Sun
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
46
|
Bavan B, Gardner RM, Zhang WY, Aghajanova L. The Effect of Human Growth Hormone on Endometrial Growth in Controlled Ovarian Hyperstimulation Cycles. J Pers Med 2022; 12:jpm12121991. [PMID: 36556212 PMCID: PMC9788117 DOI: 10.3390/jpm12121991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
This study aims to compare endometrial growth before and after the addition of human growth hormone (hGH) in controlled ovarian hyperstimulation (COH) cycles. A 5-year retrospective cohort study of patients treated with hGH to improve oocyte development during COH cycles was conducted. Each patient’s cycle without hGH immediately preceding cycle(s) with hGH was used for patients to serve as their own controls. Primary outcome was absolute growth in endometrial thickness from pre-stimulation start to day of hCG trigger. Mixed-model regression analysis controlled for patient correlation over repeat cycles and potential confounders. 80 patients were included. Mean age was 39.7 years; mean BMI was 23.8 kg/m2. Majority of patients were nulliparous, non-smoking, and White or Asian. Most common diagnosis was diminished ovarian reserve. Endometrial growth was compared between 159 COH cycles with hGH and 80 COH control cycles; mean increase was 4.5 mm and 3.9 mm, respectively-an unadjusted difference of 0.6 mm (95% CI: 0.2−1.1, p = 0.01). After adjusting for demographic/clinical factors, hGH was associated with 0.9 mm greater endometrial growth (0.4−1.4, p < 0.01). Absolute increase in endometrial thickness was higher in COH cycles that included hGH. Further prospective studies in embryo transfer cycles are needed.
Collapse
Affiliation(s)
- Brindha Bavan
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, Stanford University, Sunnyvale, CA 94087, USA
- Correspondence:
| | - Rebecca M. Gardner
- Quantitative Sciences Unit, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wendy Y. Zhang
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, Stanford University, Sunnyvale, CA 94087, USA
| | - Lusine Aghajanova
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, Stanford University, Sunnyvale, CA 94087, USA
| |
Collapse
|
47
|
Guo S, Zheng J, Li G. Effects of growth hormone on lipid metabolism and sexual development in pubertal obese male rats. Open Life Sci 2022; 17:1531-1540. [PMID: 36474704 PMCID: PMC9691983 DOI: 10.1515/biol-2022-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/25/2022] [Accepted: 09/21/2022] [Indexed: 09/10/2024] Open
Abstract
To investigate the effects of growth hormone (GH) on pubertal obese male rats, a rat model of high-fat diet-induced obesity was established in juvenile male rats. The model rats were divided into the treatment group (GH) and the non-treatment group (physiological saline). After 4 weeks, we measured the levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), estrogen (E2), testosterone (T), and insulin-like growth factor (IGF-1). The morphological changes of the liver and testis were assessed, and the expression of aromatase was detected. The levels of ALT, AST, TC, TG, LDL-C, E2, and IGF-1 in the treatment group were significantly lower than in the non-treated model rats (P < 0.001). The levels of HDL-C and T of GH-treated rats were significantly higher than those of the non-treatment group (P < 0.001). Compared with non-treated model rats, GH-treated model rats showed reduced liver steatosis, improved morphological structure of the testicular seminiferous tubules, and an increased number of spermatogenic cells. The treatment group also showed lower expression of aromatase in the liver and testis compared with the non-treatment group. GH partially protected pubertal male rats from obesity-induced lipid metabolic disorder and sexual retardation.
Collapse
Affiliation(s)
- Shujuan Guo
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Pediatrics, Liaocheng People’s Hospital, Liaocheng, Shandong, 252000, China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| |
Collapse
|
48
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
49
|
Walters KA, Moreno-Asso A, Stepto NK, Pankhurst MW, Rodriguez Paris V, Rodgers RJ. Key signalling pathways underlying the aetiology of polycystic ovary syndrome. J Endocrinol 2022; 255:R1-R26. [PMID: 35980384 DOI: 10.1530/joe-22-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine condition characterised by a range of reproductive, endocrine, metabolic and psychological abnormalities. Reports estimate that around 10% of women of reproductive age are affected by PCOS, representing a significant prevalence worldwide, which poses a high economic health burden. As the origin of PCOS remains largely unknown, there is neither a cure nor mechanism-based treatments leaving patient management suboptimal and focused solely on symptomatic treatment. However, if the underlying mechanisms underpinning the development of PCOS were uncovered then this would pave the way for the development of new interventions for PCOS. Recently, there have been significant advances in our understanding of the underlying pathways likely involved in PCOS pathogenesis. Key insights include the potential involvement of androgens, insulin, anti-Müllerian hormone and transforming growth factor beta in the development of PCOS. This review will summarise the significant scientific discoveries on these factors that have enhanced our knowledge of the mechanisms involved in the development of PCOS and discuss the impact these insights may have in shaping the future development of effective strategies for women with PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
- Monash Centre for Health Research and Implementation, Monash University and Monash Health, Clayton, Victoria, Australia
- Medicine at Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valentina Rodriguez Paris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Raymond J Rodgers
- The Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Afradiasbagharani P, Hosseini E, Allahveisi A, Bazrafkan M. The insulin-like growth factor and its players: their functions, significance, and consequences in all aspects of ovarian physiology. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Insulin-like growth factor (IGF) has unique and well-known functions in female fertility, according to documents reporting improved yield of oocytes, reinforced quality of the embryo, and enhanced live births with simultaneous reduction of miscarriage. However, there is no detailed information on the bio-mechanisms linking such clinical differences.
Main body
IGF and its receptors are expressed in a variety of tissues in the reproductive system such as granulosa cells, oocytes, and theca cells. Hence, the development of female gametes may be directly regulated by IGF, thereby affecting gamete quality and so its competence for implantation. IGF is a central player in changing the fate of cells during survival and proliferation through the modulation of leading signaling pathways, including Jak/STAT, MAP kinase/ERK, and PI3K/Akt, and subsequent impacts on steroidogenesis and cell division.
Conclusion
The current review aims to scrutinize the performance of IGF to regulate the normal ovarian, and its impacts on cell signaling pathways and resulting alterations in steroidogenesis and cell proliferation. The function of IGF and its receptor has been reviewed in female fertility at both molecular and biochemical levels.
Collapse
|