1
|
Watts LM, Sparkes PC, Dewhurst HF, Guilfoyle SE, Pollard AS, Komla-Ebri D, Butterfield NC, Williams GR, Bassett JHD. The GWAS candidate far upstream element binding protein 3 (FUBP3) is required for normal skeletal growth, and adult bone mass and strength in mice. Bone 2025; 195:117472. [PMID: 40139337 DOI: 10.1016/j.bone.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Bone mineral density (BMD) and height are highly heritable traits for which hundreds of genetic loci have been linked through genome wide association studies (GWAS). FUBP3 is a DNA and RNA binding protein best characterised as a transcriptional regulator of c-Myc, but little is known about its role in vivo. Single nucleotide polymorphisms in FUBP3 at the 9q34.11 locus have been associated with BMD, fracture and height in multiple GWAS, but FUBP3 has no previously established role in the skeleton. We analysed Fubp3-deficient mice to determine the consequence of FUBP3 deficiency in vivo. Mice lacking Fubp3 had reduced survival to adulthood and impaired skeletal growth. Bone mass was decreased, most strikingly in the vertebrae, with altered trabecular micro-architecture. Fubp3 deficient bones were also weak. These data provide the first functional demonstration that Fubp3 is required for normal skeletal growth and development and maintenance of adult bone structure and strength, indicating that FUBP3 contributes to the GWAS association of 9q34.11 with variation in height, BMD and fracture.
Collapse
Affiliation(s)
- Laura M Watts
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
3
|
Daniel-Carlier N, Castille J, Passet B, Vilotte M, Le Danvic C, Jaffrezic F, Beauvallet C, Péchoux C, Capitan A, Vilotte JL. Targeted mutation and inactivation of the kinesin light chain 3 protein-encoding gene have no impact on mouse fertility†. Biol Reprod 2024; 110:78-89. [PMID: 37776549 DOI: 10.1093/biolre/ioad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023] Open
Abstract
The kinesin light chain 3 protein (KLC3) is the only member of the kinesin light chain protein family that was identified in post-meiotic mouse male germ cells. It plays a role in the formation of the sperm midpiece through its association with both spermatid mitochondria and outer dense fibers (ODF). Previous studies showed a significant correlation between its expression level and sperm motility and quantitative semen parameters in humans, while the overexpression of a KLC3-mutant protein unable to bind ODF also affected the same traits in mice. To further assess the role of KLC3 in fertility, we used CRISPR/Cas9 genome editing in mice and investigated the phenotypes induced by the invalidation of the gene or of a functional domain of the protein. Both approaches gave similar results, i.e. no detectable change in male or female fertility. Testis histology, litter size and sperm count were not altered. Apart from the line-dependent alterations of Klc3 mRNA levels, testicular transcriptome analysis did not reveal any other changes in the genes tested. Western analysis supported the absence of KLC3 in the gonads of males homozygous for the inactivating mutation and a strong decrease in expression in males homozygous for the allele lacking one out of the five tetratricopeptide repeats. Overall, these observations raise questions about the supposedly critical role of this kinesin in reproduction, at least in mice where its gene mutation or inactivation did not translate into fertility impairment.
Collapse
Affiliation(s)
- Nathalie Daniel-Carlier
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Christelle Le Danvic
- UVSQ, INRAE, BREED, Université Paris-Saclay, Eliance, 78350 Jouy-en-Josas, France
| | - Florence Jaffrezic
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Christian Beauvallet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Christine Péchoux
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
4
|
Bogue MA, Ball RL, Walton DO, Dunn MH, Kolishovski G, Berger A, Lamoureux A, Grubb SC, Gerring M, Kim M, Liang H, Emerson J, Stearns T, He H, Mukherjee G, Bluis J, Davis S, Desai S, Sundberg B, Kadakkuzha B, Kunde-Ramamoorthy G, Philip VM, Chesler EJ. Mouse phenome database: curated data repository with interactive multi-population and multi-trait analyses. Mamm Genome 2023; 34:509-519. [PMID: 37581698 PMCID: PMC10627943 DOI: 10.1007/s00335-023-10014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users' persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan.
Collapse
Affiliation(s)
- Molly A Bogue
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA.
| | - Robyn L Ball
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - David O Walton
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Matthew H Dunn
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | | | - Anna Lamoureux
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Stephen C Grubb
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Matthew Gerring
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Matthew Kim
- University of British Columbia, Vancouver, BC, Canada
| | - Hongping Liang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Jake Emerson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Timothy Stearns
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Hao He
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | - John Bluis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Sara Davis
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Sejal Desai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Beth Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | | | - Vivek M Philip
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | |
Collapse
|
5
|
Ben-Zvi I, Karasik D, Ackert-Bicknell CL. Zebrafish as a Model for Osteoporosis: Functional Validations of Genome-Wide Association Studies. Curr Osteoporos Rep 2023; 21:650-659. [PMID: 37971665 DOI: 10.1007/s11914-023-00831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW GWAS, as a largely correlational analysis, requires in vitro or in vivo validation. Zebrafish (Danio rerio) have many advantages for studying the genetics of human diseases. Since gene editing in zebrafish has been highly valuable for studying embryonic skeletal developmental processes that are prenatally or perinatally lethal in mammalian models, we are reviewing pros and cons of this model. RECENT FINDINGS The true power for the use of zebrafish is the ease by which the genome can be edited, especially using the CRISPR/Cas9 system. Gene editing, followed by phenotyping, for complex traits such as BMD, is beneficial, but the major physiological differences between the fish and mammals must be considered. Like mammals, zebrafish do have main bone cells; thus, both in vivo stem cell analyses and in vivo imaging are doable. Yet, the "long" bones of fish are peculiar, and their bone cavities do not contain bone marrow. Partial duplication of the zebrafish genome should be taken into account. Overall, small fish toolkit can provide unmatched opportunities for genetic modifications and morphological investigation as a follow-up to human-first discovery.
Collapse
Affiliation(s)
- Inbar Ben-Zvi
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | | |
Collapse
|
6
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
7
|
Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farell E, Ahmad M, Ignatius A, Grover L, Geris L, Tuckermann J. Why Animal Experiments Are Still Indispensable in Bone Research: A Statement by the European Calcified Tissue Society. J Bone Miner Res 2023; 38:1045-1061. [PMID: 37314012 PMCID: PMC10962000 DOI: 10.1002/jbmr.4868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Major achievements in bone research have always relied on animal models and in vitro systems derived from patient and animal material. However, the use of animals in research has drawn intense ethical debate and the complete abolition of animal experimentation is demanded by fractions of the population. This phenomenon is enhanced by the reproducibility crisis in science and the advance of in vitro and in silico techniques. 3D culture, organ-on-a-chip, and computer models have improved enormously over the last few years. Nevertheless, the overall complexity of bone tissue cross-talk and the systemic and local regulation of bone physiology can often only be addressed in entire vertebrates. Powerful genetic methods such as conditional mutagenesis, lineage tracing, and modeling of the diseases enhanced the understanding of the entire skeletal system. In this review endorsed by the European Calcified Tissue Society (ECTS), a working group of investigators from Europe and the US provides an overview of the strengths and limitations of experimental animal models, including rodents, fish, and large animals, as well the potential and shortcomings of in vitro and in silico technologies in skeletal research. We propose that the proper combination of the right animal model for a specific hypothesis and state-of-the-art in vitro and/or in silico technology is essential to solving remaining important questions in bone research. This is crucial for executing most efficiently the 3R principles to reduce, refine, and replace animal experimentation, for enhancing our knowledge of skeletal biology, and for the treatment of bone diseases that affect a large part of society. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Imke A.K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, USA and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Eric Farell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Liam Grover
- Healthcare Technologies Institute, Institute of Translational MedicineHeritage Building Edgbaston, Birmingham
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Liège, Belgium
- Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Janssen JN, Kalev-Altman R, Shalit T, Sela-Donenfeld D, Monsonego-Ornan E. Differential gene expression in the calvarial and cortical bone of juvenile female mice. Front Endocrinol (Lausanne) 2023; 14:1127536. [PMID: 37378024 PMCID: PMC10291685 DOI: 10.3389/fendo.2023.1127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/21/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Both the calvarial and the cortical bones develop through intramembranous ossification, yet they have very different structures and functions. The calvaria enables the rapid while protected growth of the brain, whereas the cortical bone takes part in locomotion. Both types of bones undergo extensive modeling during embryonic and post-natal growth, while bone remodeling is the most dominant process in adults. Their shared formation mechanism and their highly distinct functions raise the fundamental question of how similar or diverse the molecular pathways that act in each bone type are. Methods To answer this question, we aimed to compare the transcriptomes of calvaria and cortices from 21-day old mice by bulk RNA-Seq analysis. Results The results revealed clear differences in expression levels of genes related to bone pathologies, craniosynostosis, mechanical loading and bone-relevant signaling pathways like WNT and IHH, emphasizing the functional differences between these bones. We further discussed the less expected candidate genes and gene sets in the context of bone. Finally, we compared differences between juvenile and mature bone, highlighting commonalities and dissimilarities of gene expression between calvaria and cortices during post-natal bone growth and adult bone remodeling. Discussion Altogether, this study revealed significant differences between the transcriptome of calvaria and cortical bones in juvenile female mice, highlighting the most important pathway mediators for the development and function of two different bone types that originate both through intramembranous ossification.
Collapse
Affiliation(s)
- Jerome Nicolas Janssen
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Kalev-Altman
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Shalit
- The Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- The Koret School of Veterinary Medicine, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry, Food Science and Nutrition, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
9
|
Cacheiro P, Spielmann N, Mashhadi HH, Fuchs H, Gailus-Durner V, Smedley D, de Angelis MH. Knockout mice are an important tool for human monogenic heart disease studies. Dis Model Mech 2023; 16:dmm049770. [PMID: 36825469 PMCID: PMC10073007 DOI: 10.1242/dmm.049770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Mouse models are relevant to studying the functionality of genes involved in human diseases; however, translation of phenotypes can be challenging. Here, we investigated genes related to monogenic forms of cardiovascular disease based on the Genomics England PanelApp and aligned them to International Mouse Phenotyping Consortium (IMPC) data. We found 153 genes associated with cardiomyopathy, cardiac arrhythmias or congenital heart disease in humans, of which 151 have one-to-one mouse orthologues. For 37.7% (57/151), viability and heart data captured by electrocardiography, transthoracic echocardiography, morphology and pathology from embryos and young adult mice are available. In knockout mice, 75.4% (43/57) of these genes showed non-viable phenotypes, whereas records of prenatal, neonatal or infant death in humans were found for 35.1% (20/57). Multisystem phenotypes are common, with 58.8% (20/34) of heterozygous (homozygous lethal) and 78.6% (11/14) of homozygous (viable) mice showing cardiovascular, metabolic/homeostasis, musculoskeletal, hematopoietic, nervous system and/or growth abnormalities mimicking the clinical manifestations observed in patients. These IMPC data are critical beyond cardiac diagnostics given their multisystemic nature, allowing detection of abnormalities across physiological systems and providing a valuable resource to understand pleiotropic effects.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, UK
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, Munich 85764, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising 85354, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| |
Collapse
|
10
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
11
|
Cheng KC, Burdine RD, Dickinson ME, Ekker SC, Lin AY, Lloyd KCK, Lutz CM, MacRae CA, Morrison JH, O'Connor DH, Postlethwait JH, Rogers CD, Sanchez S, Simpson JH, Talbot WS, Wallace DC, Weimer JM, Bellen HJ. Promoting validation and cross-phylogenetic integration in model organism research. Dis Model Mech 2022; 15:dmm049600. [PMID: 36125045 PMCID: PMC9531892 DOI: 10.1242/dmm.049600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.
Collapse
Affiliation(s)
- Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77007, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77007, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55906, USA
| | - Alex Y. Lin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Medicinel, University of California Davis, Davis, CA 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA 95618, USA
| | - Cathleen M. Lutz
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609, USA
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John H. Morrison
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Neurology, University of California Davis, Davis, CA 95616, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University ofWisconsin-Madison, Madison, WI 53711, USA
| | | | - Crystal D. Rogers
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Julie H. Simpson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Douglas C. Wallace
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute (TCH), Baylor College of Medicine, Houston, TX 77007, USA
| |
Collapse
|
12
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
13
|
Matula J, Polakova V, Salplachta J, Tesarova M, Zikmund T, Kaucka M, Adameyko I, Kaiser J. Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images. Sci Rep 2022; 12:8728. [PMID: 35610276 PMCID: PMC9130254 DOI: 10.1038/s41598-022-12329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting relevant tissues in all three dimensions; however, most 3D models are still created by manual segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional neural network (CNN) to automatically segment the most complex cartilaginous system represented by the developing nasal capsule. The main challenges of this task stem from the large size of the image data (over a thousand pixels in each dimension) and a relatively small training database, including genetically modified mouse embryos, where the phenotype of the analysed structures differs from the norm. We propose a CNN-based segmentation model optimised for the large image size that we trained using a unique manually annotated database. The segmentation model was able to segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time necessary for segmentation of new samples shortened from approximately 8 h needed for manual segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of cartilaginous skeletal elements in animal models of developmental diseases.
Collapse
Affiliation(s)
- Jan Matula
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Veronika Polakova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Jakub Salplachta
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str.2, 24306, Ploen, Germany
| | - Igor Adameyko
- Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic.
| |
Collapse
|
14
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
15
|
Garibaldi N, Contento BM, Babini G, Morini J, Siciliani S, Biggiogera M, Raspanti M, Marini JC, Rossi A, Forlino A, Besio R. Targeting cellular stress in vitro improves osteoblast homeostasis, matrix collagen content and mineralization in two murine models of osteogenesis imperfecta. Matrix Biol 2021; 98:1-20. [PMID: 33798677 PMCID: PMC11162743 DOI: 10.1016/j.matbio.2021.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Most cases of dominantly inherited osteogenesis imperfecta (OI) are caused by glycine substitutions in the triple helical domain of type I collagen α chains, which delay collagen folding, and cause the synthesis of collagen triple helical molecules with abnormal structure and post-translational modification. A variable extent of mutant collagen ER retention and other secondary mutation effects perturb osteoblast homeostasis and impair bone matrix quality. Amelioration of OI osteoblast homeostasis could be beneficial both to osteoblast anabolic activity and to the content of the extracellular matrix they deposit. Therefore, the effect of the chemical chaperone 4-phenylbutyrate (4-PBA) on cell homeostasis, collagen trafficking, matrix production and mineralization was investigated in primary osteoblasts from two murine models of moderate OI, Col1a1+/G349C and Col1a2+/G610C. At the cellular level, 4-PBA prevented intracellular accumulation of collagen and increased protein secretion, reducing aggregates within the mutant cells and normalizing ER morphology. At the extracellular level, increased collagen incorporation into matrix, associated with more mature collagen fibrils, was observed in osteoblasts from both models. 4-PBA also promoted OI osteoblast mineral deposition by increasing alkaline phosphatase expression and activity. Targeting osteoblast stress with 4-PBA improved both cellular and matrix abnormalities in culture, supporting further in vivo studies of its effect on bone tissue composition, strength and mineralization as a potential treatment for classical OI.
Collapse
Affiliation(s)
- Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy; Istituto Universitario di Studi Superiori - IUSS, Pavia, Italy.
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | | | - Jacopo Morini
- Department of Physics, University of Pavia, Pavia, Italy.
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA.
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| | - Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|