1
|
Son YL, Meddle SL, Tobari Y. Metabolic Regulation by the Hypothalamic Neuropeptide, Gonadotropin-Inhibitory Hormone at Both the Central and Peripheral Levels. Cells 2025; 14:267. [PMID: 39996740 PMCID: PMC11853802 DOI: 10.3390/cells14040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is well-established as a negative regulator of reproductive physiology and behavior across vertebrates, acting on the hypothalamic-pituitary-gonadal (HPG) axis; however, recent data have also demonstrated its involvement in the control of metabolic processes. GnIH neurons and fibers have been identified in hypothalamic regions associated with feeding behavior and energy homeostasis, with GnIH receptors being expressed throughout the hypothalamus. GnIH does not act alone in the hypothalamus, but rather interacts with the melanocortin system, as well as with other neuropeptides. GnIH and its receptors are also expressed in peripheral tissues involved in important metabolic functions. Therefore, the local action of GnIH in peripheral organs, including the pancreas, gastrointestinal tract, gonad, and adipose tissue, is also suggested. This review aims to provide a comprehensive summary of the emerging role of GnIH in metabolic regulation at both the central and peripheral levels.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Simone L. Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;
| | - Yasuko Tobari
- Center for Human and Animal Symbiosis Science, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara 252-5201, Japan;
| |
Collapse
|
2
|
You Y, Huo K, He L, Wang T, Zhao L, Li R, Cheng X, Ma X, Yue Z, Siwko S, Wang N, Liao L, Liu M, Luo J. GnIH secreted by green light exposure, regulates bone mass through the activation of Gpr147. Bone Res 2025; 13:13. [PMID: 39837853 PMCID: PMC11751147 DOI: 10.1038/s41413-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025] Open
Abstract
Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro. Mechanistically, GnIH/Gpr147 inhibits osteoclastogenesis by the PI3K/AKT, MAPK, NF-κB and Nfatc1 signaling pathways. Furthermore, GnIH treatment was able to alleviate bone loss in aging, ovariectomy (OVX) or LPS-induced mice. Moreover, the therapy using green light promotes the release of GnIH and rescues OVX-induced bone loss. In humans, serum GnIH increases and bone resorption markers decrease after green light exposure. Therefore, our study elucidates that GnIH plays an important role in maintaining bone homeostasis via modulating osteoclast differentiation and demonstrates the potential of GnIH therapy or green light therapy in preventing osteoporosis.
Collapse
Affiliation(s)
- Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Tongyue Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoqing Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xuebin Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China
| | - Zhiying Yue
- Precision Research Center for Refractory Diseases, Shanghai General Hospital,Shanghai Jiaotong University, School of Medicine, Shanghai, PR China
| | - Stefan Siwko
- Department of Translational Medical Sciences, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Ning Wang
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Hazlerigg DG, Simonneaux V, Dardente H. Melatonin and Seasonal Synchrony in Mammals. J Pineal Res 2024; 76:e12996. [PMID: 39129720 DOI: 10.1111/jpi.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.
Collapse
Affiliation(s)
- David G Hazlerigg
- Department of Arctic and Marine Biology, Arctic Chronobiology and Physiology Research Group, Arctic Seasonal Timekeeping Initiative (ASTI), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Valérie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
4
|
Xu C, Han D, Song X, Zhang X, Liu C, Zhang J, Shen B, Li Z, Ma R, Li Y, Xin Y, Ji W, Zhang L, Wang X, Hu C, Li X. The possibly role of GnIH in stress and gut dysfunction in chicken. Poult Sci 2024; 103:103757. [PMID: 38697006 PMCID: PMC11070904 DOI: 10.1016/j.psj.2024.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 05/04/2024] Open
Abstract
Stress is known to disrupt the intestinal barrier and induce intestinal dysfunction. A critical role for gonadotropin inhibitory hormone (GnIH) in stress has emerged. However, whether GnIH mediates stress-induced intestinal dysfunction remains unknown. The present study explored this question through in vivo and in vitro experiments in hens. Our in vivo experiments showed that continuous intraperitoneal injection of GnIH not only significantly increased the concentration of stress hormones in serum, but also significantly elevated the mRNA expression of glucocorticoid receptor (GR) in the duodenum and jejunum. Moreover, morphological and molecular analyses revealed that GnIH disrupted the physical and chemical barriers of the intestine and dramatically increased inflammatory factor levels in the intestine and serum of hens. Interestingly, the microbiomics results showed that GnIH altered the structure and composition of the gut flora in the cecum, revealing an increased abundance of harmful intestinal bacteria such as Desulfovibrionaceae. Similar results were found in in vitro studies in which the GnIH-induced intestinal mucosal barrier was disrupted, and inflammation increased in jejunal explants, although no significant difference was found in the expression of GR between the control and GnIH groups. Our results demonstrated that GnIH not only directly damaged intestinal barriers and elevated intestinal inflammation but also mediated stress and microflora imbalance-induced intestinal function disorder, suggesting that GnIH is a potential therapeutic target for gut dysfunction, stress-induced intestinal function disorder, and inflammatory bowel disease in animals and humans.
Collapse
Affiliation(s)
- Changlin Xu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Jiani Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Bingqian Shen
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Runwen Ma
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Yuanyuan Xin
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Wantong Ji
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Lingyuan Zhang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, RP 530004, China.
| |
Collapse
|
5
|
Song X, Xu W, Li Z, Zhang X, Liu C, Han K, Chen L, Shi Y, Xu C, Han D, Luo R, Cao Y, Li Q, Yang H, Lu Q, Qin J, Wang X, Hu C, Li X. Peripheral 5-HT Mediates Gonadotropin-Inhibitory Hormone-Induced Feeding Behavior and Energy Metabolism Disorder in Chickens via the 5-HT2C Receptor. Neuroendocrinology 2024; 114:749-774. [PMID: 38718758 DOI: 10.1159/000539238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/11/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.
Collapse
Affiliation(s)
- Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Changlin Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qingwen Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Huihua Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qiucheng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Jin Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| |
Collapse
|
6
|
Lin YT, Wu KH, Jhang JJ, Jhang JL, Yu Z, Tsai SC, Chen JC, Hsu PH, Li HY. Hypothalamic NPFFR2 attenuates central insulin signaling and its knockout diminishes metabolic dysfunction in mouse models of diabetes mellitus. Clin Nutr 2024; 43:603-619. [PMID: 38301284 DOI: 10.1016/j.clnu.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The hypothalamus is a crucial brain region that mediates the effects of insulin and leptin signals on peripheral metabolic functions. Previous research has shown that insulin signals in the hypothalamus act via multiple neuronal circuits and anabolic/catabolic pathways that converge on the vagus nerve and sympathetic fibers to coordinate energy metabolism in peripheral organs. Additionally, neuropeptide FF (NPFF) has been identified as a regulator of feeding behaviors and energy homeostasis in the hypothalamus, but the mechanisms underlying its involvement in metabolic control remain unclear. This study aims to explore the underlying mechanisms of NPFF in modulating metabolic disorders. METHODS In this study, we investigated the physiological role of NPFF in insulin-related energy homeostasis and metabolic health. First, we evaluated the effects of NPFF and its receptors on central insulin signaling using mouse hypothalamic cell lines and Npffr2-overexpressing mice. To further explore the effects of NPFFR2 on insulin-related metabolic disorders, such as diabetes mellitus, we used Npffr2-deleted mice in combination with the streptozotocin (STZ)-induced type 1 diabetes and high-fat diet/STZ-induced type 2 diabetic mouse models. The impacts of central NPFFR2 were demonstrated specifically through Npffr2 overexpression in the hypothalamic arcuate nucleus, which subsequently induced type 2 diabetes. RESULTS We found that stimulating NPFFR2 in the hypothalamus blocked hypothalamic insulin activity. Npffr2 deletion improved central and peripheral metabolic symptoms in both mouse models of diabetes mellitus, exerting effects on central and systemic insulin resistance, feeding behaviors, glucose and insulin intolerance, lipid metabolism, liver steatosis, and inflammation of white adipose tissues. The overexpression of ARC Npffr2 augmented the metabolic dysregulation in the mouse model of type 2 diabetes. CONCLUSIONS Our findings demonstrate that hypothalamic NPFFR2 negatively regulates insulin signaling in the central nervous system and plays an important role in maintaining systemic metabolic health, thereby providing valuable insights for potential clinical interventions targeting these health challenges.
Collapse
Affiliation(s)
- Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition & TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, Taipei 110301, Taiwan.
| | - Kuan-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Jie-Jhu Jhang
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Jie-Lan Jhang
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Zachary Yu
- Department of Medicine, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan
| | - Sze-Chi Tsai
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition & TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110301, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology & Healthy Aging Research Center, Chang Gung University, 259 Wen-Hua 1st Road, Taoyuan 33302, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, 5 Fuxing Street, Taoyuan 33305, Taiwan
| | - Po-Hung Hsu
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Hui-Yun Li
- Department of Natural Sciences, Oregon Institute of Technology, 3201 Campus Drive, Klamath Falls, OR 97601, USA
| |
Collapse
|
7
|
Xiong X, Hu Y, Pan B, Zhu Y, Fei X, Yang Q, Xie Y, Xiong Y, Lan D, Fu W, Li J. RFRP-3 Influences Apoptosis and Steroidogenesis of Yak Cumulus Cells and Compromises Oocyte Meiotic Maturation and Subsequent Developmental Competence. Int J Mol Sci 2023; 24:ijms24087000. [PMID: 37108163 PMCID: PMC10138887 DOI: 10.3390/ijms24087000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
RF amide-related peptide 3 (RFRP-3), a mammalian ortholog of gonadotropin-inhibitory hormone (GnIH), is identified to be a novel inhibitory endogenous neurohormonal peptide that regulates mammalian reproduction by binding with specific G protein-coupled receptors (GPRs) in various species. Herein, our objectives were to explore the biological functions of exogenous RFRP-3 on the apoptosis and steroidogenesis of yak cumulus cells (CCs) and the developmental potential of yak oocytes. The spatiotemporal expression pattern and localization of GnIH/RFRP-3 and its receptor GPR147 were determined in follicles and CCs. The effects of RFRP-3 on the proliferation and apoptosis of yak CCs were initially estimated by EdU assay and TUNEL staining. We confirmed that high-dose (10-6 mol/L) RFRP-3 suppressed viability and increased the apoptotic rates, implying that RFRP-3 could repress proliferation and induce apoptosis. Subsequently, the concentrations of E2 and P4 were significantly lower with 10-6 mol/L RFRP-3 treatment than that of the control counterparts, which indicated that the steroidogenesis of CCs was impaired after RFRP-3 treatment. Compared with the control group, 10-6 mol/L RFRP-3 treatment decreased the maturation of yak oocytes efficiently and subsequent developmental potential. We sought to explore the potential mechanism of RFRP-3-induced apoptosis and steroidogenesis, so we observed the levels of apoptotic regulatory factors and hormone synthesis-related factors in yak CCs after RFRP-3 treatment. Our results indicated that RFRP-3 dose-dependently elevated the expression of apoptosis markers (Caspase and Bax), whereas the expression levels of steroidogenesis-related factors (LHR, StAR, 3β-HSD) were downregulated in a dose-dependent manner. However, all these effects were moderated by cotreatment with inhibitory RF9 of GPR147. These results demonstrated that RFRP-3 adjusted the expression of apoptotic and steroidogenic regulatory factors to induce apoptosis of CCs, probably through binding with its receptor GPR147, as well as compromised oocyte maturation and developmental potential. This research revealed the expression profiles of GnIH/RFRP-3 and GPR147 in yak CCs and supported a conserved inhibitory action on oocyte developmental competence.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yumian Xie
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
8
|
Chen L, Zhang X, Song X, Han D, Han K, Xu W, Luo R, Cao Y, Shi Y, Liu C, Xu C, Li Z, Li Y, Li X. Peripheral Gonadotropin-Inhibitory Hormone (GnIH) Acting as a Novel Modulator Involved in Hyperphagia-Induced Obesity and Associated Disorders of Metabolism in an In Vivo Female Piglet Model. Int J Mol Sci 2022; 23:ijms232213956. [PMID: 36430435 PMCID: PMC9692342 DOI: 10.3390/ijms232213956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Apart from the well-established role of the gonadotropin-inhibitory hormone (GnIH) in the regulation of the reproductive functions, much less is known about the peripheral role of the GnIH and its receptor in the metabolic processes. On account of pig being an excellent model for studies of food intake and obesity in humans, we investigated the peripheral effects of the GnIH on food intake and energy homeostasis and revealed the underlying mechanism(s) in female piglets in vivo. Compared to the vehicle-treated group, intraperitoneally injected GnIH significantly increased the food intake and altered the meal microstructure both in the fasting and ad libitum female piglet. GnIH-triggered hyperphagia induced female piglet obesity and altered islet hormone secretion in the pancreas, accompanied with dyslipidemia and hyperglycemia. Interestingly, GnIH decreased the glucose transport capacity and glycogen synthesis, whereas it increased the gluconeogenesis in the liver, while it also induced an insulin resistance in white adipose tissue (WAT) via inhibiting the activity of AKT-GSK3-β signaling. In terms of the lipid metabolism, GnIH reduced the oxidation of fatty acids, whereas the elevated fat synthesis ability in the liver and WAT was developed though the inhibited AMPK phosphorylation. Our findings demonstrate that peripheral GnIH could trigger hyperphagia-induced obesity and an associated glycolipid metabolism disorder in female piglets, suggesting that GnIH may act as a potential therapeutic agent for metabolic syndrome, obesity and diabetes.
Collapse
Affiliation(s)
- Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Changlin Xu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: ; Tel.: +86-(07)-7132-35635
| |
Collapse
|
9
|
Luo R, Chen L, Song X, Zhang X, Xu W, Han D, Zuo J, Hu W, Shi Y, Cao Y, Ma R, Liu C, Xu C, Li Z, Li X. Possible Role of GnIH as a Novel Link between Hyperphagia-Induced Obesity-Related Metabolic Derangements and Hypogonadism in Male Mice. Int J Mol Sci 2022; 23:ijms23158066. [PMID: 35897643 PMCID: PMC9332143 DOI: 10.3390/ijms23158066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xun Li
- Correspondence: ; Tel.: +86-0771-3235635
| |
Collapse
|
10
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
11
|
Advancing reproductive neuroendocrinology through research on the regulation of GnIH and on its diverse actions on reproductive physiology and behavior. Front Neuroendocrinol 2022; 64:100955. [PMID: 34767778 DOI: 10.1016/j.yfrne.2021.100955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
The discovery of gonadotropin-inhibitory hormone (GnIH) in 2000 has led to a new research era of reproductive neuroendocrinology because, for a long time, researchers believed that only gonadotropin-releasing hormone (GnRH) regulated reproduction as a neurohormone. Later studies on GnIH demonstrated that it acts as a new key neurohormone inhibiting reproduction in vertebrates. GnIH reduces gonadotropin release andsynthesis via the GnIH receptor GPR147 on gonadotropes and GnRH neurons. Furthermore, GnIH inhibits reproductive behavior, in addition to reproductive neuroendocrine function. The modification of the synthesis of GnIH and its release by the neuroendocrine integration of environmental and internal factors has also been demonstrated. Thus, the discovery of GnIH has facilitated advances in reproductive neuroendocrinology. Here, we describe the advances in reproductive neuroendocrinology driven by the discovery of GnIH, research on the effects of GnIH on reproductive physiology and behavior, and the regulatory mechanisms underlying GnIH synthesis and release.
Collapse
|
12
|
Koller J, Herzog H, Zhang L. The distribution of Neuropeptide FF and Neuropeptide VF in central and peripheral tissues and their role in energy homeostasis control. Neuropeptides 2021; 90:102198. [PMID: 34534716 DOI: 10.1016/j.npep.2021.102198] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
Neuropeptide FF (NPFF) and Neuropeptide VF (NPVF) are part of the extended RFamide peptide family characterized by their common arginine (R) and amidated phenylalanine (F)-motif at the carboxyl terminus. Both peptides signal through their respective high affinity G-protein coupled receptors, NPFFR2 and NPFFR1, but also show binding affinity for the other receptor due to their sequence similarity. NPFF and NPVF are highly conserved throughout evolution and can be found across the whole animal kingdom. Both have been implicated in a variety of biological mechanisms, including nociception, locomotion, reproduction, and response to pain and stress. However, more recently a new major functional role in the control of energy homeostasis has been discovered. In this article we will summarise the current knowledge on the distribution of NPFF, NPVF, and their receptors in central and peripheral tissues, as well as how this relates to the regulation of food intake and energy balance, which will help to better understand their role in these processes and thus might help finding treatments for impaired energy homeostasis disorders, such as obesity or anorexia.
Collapse
Affiliation(s)
- Julia Koller
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Herbert Herzog
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; School of Medical Sciences, UNSW Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lei Zhang
- Healthy Aging, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
13
|
Faykoo-Martinez M, Kalinowski LM, Holmes MM. Neuroendocrine regulation of pubertal suppression in the naked mole-rat: What we know and what comes next. Mol Cell Endocrinol 2021; 534:111360. [PMID: 34116130 DOI: 10.1016/j.mce.2021.111360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023]
Abstract
Puberty is a key developmental milestone that marks an individual's maturation in several ways including, but not limited to, reproductive maturation, changes in behaviors and neural organization. The timing at which puberty occurs is variable both within individuals of the same species and between species. These variations can be aligned with ecological cues that delay or suppress puberty. Naked mole-rats are colony-living rodents where reproduction is restricted to a few animals; all other animals are pubertally-suppressed. Animals removed from suppressive colony cues can reproductively mature, presenting the unique opportunity to study adult-onset puberty. Recently, we found that RFRP-3 administration sustains pubertal delay in naked mole-rats removed from colony. In this review, we explore what is known about regulators that control puberty onset, the role of stress/social status in pubertal timing, the status of knowledge of pubertal suppression in naked mole-rats and what comes next.
Collapse
Affiliation(s)
| | | | - Melissa M Holmes
- Department of Cell and Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| |
Collapse
|
14
|
Cázarez‐Márquez F, Eliveld J, Ritsema WIGR, Foppen E, Bossenbroek Y, Pelizzari S, Simonneaux V, Kalsbeek A. Role of central kisspeptin and RFRP-3 in energy metabolism in the male Wistar rat. J Neuroendocrinol 2021; 33:e12973. [PMID: 33960524 PMCID: PMC8365661 DOI: 10.1111/jne.12973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Abstract
Kisspeptin (Kp) and (Arg)(Phe) related peptide 3 (RFRP-3) are two RF-amides acting in the hypothalamus to control reproduction. In the past 10 years, it has become clear that, apart from their role in reproductive physiology, both neuropeptides are also involved in the control of food intake, as well as glucose and energy metabolism. To investigate further the neural mechanisms responsible for these metabolic actions, we assessed the effect of acute i.c.v. administration of Kp or RFRP-3 in ad lib. fed male Wistar rats on feeding behaviour, glucose and energy metabolism, circulating hormones (luteinising hormone, testosterone, insulin and corticosterone) and hypothalamic neuronal activity. Kp increased plasma testosterone levels, had an anorexigenic effect and increased lipid catabolism, as attested by a decreased respiratory exchange ratio (RER). RFRP-3 also increased plasma testosterone levels but did not modify food intake or energy metabolism. Both RF-amides increased endogenous glucose production, yet with no change in plasma glucose levels, suggesting that these peptides provoke not only a release of hepatic glucose, but also a change in glucose utilisation. Finally, plasma insulin and corticosterone levels did not change after the RF-amide treatment. The Kp effects were associated with an increased c-Fos expression in the median preoptic area and a reduction in pro-opiomelanocortin immunostaining in the arcuate nucleus. No effects on neuronal activation were found for RFRP-3. Our results provide further evidence that Kp is not only a very potent hypothalamic activator of reproduction, but also part of the hypothalamic circuit controlling energy metabolism.
Collapse
Affiliation(s)
- Fernando Cázarez‐Márquez
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jitske Eliveld
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Wayne I. G. R. Ritsema
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ewout Foppen
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Yvonne Bossenbroek
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Simone Pelizzari
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences (INCI)StrasbourgFrance
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam UMCAmsterdam Gastroenterology & MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
17
|
Moriwaki S, Narimatsu Y, Fukumura K, Iwakoshi-Ukena E, Furumitsu M, Ukena K. Effects of Chronic Intracerebroventricular Infusion of RFamide-Related Peptide-3 on Energy Metabolism in Male Mice. Int J Mol Sci 2020; 21:ijms21228606. [PMID: 33203104 PMCID: PMC7698077 DOI: 10.3390/ijms21228606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.
Collapse
|