1
|
Esmaeili A, Yazdanpanah N, Rezaei N. LncRNAs Orchestrating Neuroinflammation: A Comprehensive Review. Cell Mol Neurobiol 2025; 45:21. [PMID: 40056236 DOI: 10.1007/s10571-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
CNS diseases account for a major part of the comorbidity and mortality of the human population; moreover, neuroinflammation has become an indication for different CNS diseases, for instance, Parkinson's and Alzheimer's disease. Microglia and astrocytes are the two main glial cells that can be found in the CNS. Each of these plays an important role in mediating immune responses like inflammation. There are many studies suggesting the role of LncRNAs in mediating neuroinflammation. Indeed, LncRNAs orchestrate neuroinflammation through various mechanisms, namely miRNA sponge, and transcriptional activation/inhibition. In addition, LncRNAs regulate different downstream pathways like NF-κB, and PI3K/AKT. In this study, we gathered the existing studies regarding the mechanisms of action of LncRNAs in the pathogenesis of different CNS diseases like neurodegenerative diseases and traumatic injuries through regulating neuroinflammation. We aim to elaborate on the regulatory roles of LncRNAs in neuroinflammation and bring a more profound understanding of the etiology of CNS diseases in terms of neuroinflammation.
Collapse
Affiliation(s)
- Arash Esmaeili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Jia X, Xu J, Zhang Y, Kong S, Cheng X, Wu N, Han S, Yin J, Liu W, He X, Fan Y, Liu Y, Chen T, Peng B. Elevated Astrocytic NFAT5 of the hippocampus increases epilepsy susceptibility in hypoxic-ischemic mice. Epilepsia 2025; 66:817-832. [PMID: 39724278 DOI: 10.1111/epi.18235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy. Experimental research has demonstrated that NFAT5 has ambivalent effects on neuroprotection and neurologic damage. However, the mechanistic role of NFAT5 in HIBD remains unclear. This investigation aims to further clarify the role of NFAT5 in epilepsy following HIBD insult. METHODS We created a neonatal HIBD mouse model through left common carotid artery occlusion. By specifically knocking down astrocytic NFAT5 and its downstream molecule, Nedd4-2, using hippocampal delivery of adeno-associated virus 5-driven targeted shRNA, we investigated the role of astrocytic NFAT5 in epilepsy susceptibility in HIBD mice. This was assessed through electroencephalographic recordings, behavioral observations in vivo, and whole-cell recordings of hippocampal neuronal activity. In vitro, we evaluated the effects of astrocytic NFAT5 alteration on Kir4.1 expression and IKir4.1 in both brain slices from HIBD mice and cultured astrocytes treated with oxygen-glucose deprivation/reoxygenation. RESULTS Hypoxia-ischemia-induced upregulation of hippocampal NFAT5 occurs in astrocytes rather than in neurons. This upregulation leads to increased expression of the ubiquitin ligase Nedd4-2, resulting in excessive degradation of Kir4.1 in astrocytes. Consequently, astrocytic function in buffering extracellular K+ is impaired, causing depolarization of the resting potential and enhanced neuronal discharge. This disruption ultimately affects local neural network balance and increases susceptibility to epilepsy. In contrast, inhibiting or knocking down astrocytic NFAT5 almost completely reverses these effects. SIGNIFICANCE Our findings suggest that manipulating the NFAT5-Nedd4-2-Kir4.1 axis in astrocytes could provide a potential therapeutic strategy for the epileptic complications of HIBD.
Collapse
Affiliation(s)
- Xianglei Jia
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jian Xu
- Clinical Laboratory, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yan Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuo Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xuelei Cheng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ningyang Wu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Taoxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
4
|
Wen F, Tan Z, Huang D, Xiang J. Molecular mechanism analyses of post-traumatic epilepsy and hereditary epilepsy based on 10× single-cell transcriptome sequencing technology. CNS Neurosci Ther 2024; 30:e14702. [PMID: 38572804 PMCID: PMC10993349 DOI: 10.1111/cns.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing analysis has been usually conducted on post-traumatic epilepsy (PET) and hereditary epilepsy (HE) patients; however, the transcriptome of patients with traumatic temporal lobe epilepsy has rarely been studied. MATERIALS AND METHODS Hippocampus tissues isolated from one patient with PTE and one patient with HE were used in the present study. Single cell isolates were prepared and captured using a 10× Genomics Chromium Single-Cell 3' kit (V3) according to the manufacturer's instructions. The libraries were sequenced on an Illumina NovaSeq 6000 sequencing system. Raw data were processed, and the cells were filtered and classified using the Seurat R package. Uniform Manifold Approximation and Projection was used for visualization. Differentially expressed genes (DEGs) were identified based on a p-value ≤0.01 and log fold change (FC) ≥0.25. Gene Ontology (GO, http://geneontology.org/) and KEGG (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg) analyses were performed on the DEGs for enrichment analysis. RESULTS The reads obtained from the 10× genomic platform for PTE and HE were 39.56 M and 30.08 M, respectively. The Q30 score of the RNA reads was >91.6%. After filtering, 7479 PTE cells and 9357 HE cells remained for further study. More than 96.4% of the reads were mapped to GRCh38/GRCm38. The cells were differentially distributed in two groups, with higher numbers of oligodendrocytes (6522 vs. 2532) and astrocytes (133 vs. 52), and lower numbers of microglial cells (2242 vs. 3811), and neurons (3 vs. 203) present in the HE group than in the PTE group. The DEGs in four cell clusters were identified, with 25 being in oligodendrocytes (13 upregulated and 12 downregulated), 87 in microglia cells (42 upregulated and 45 downregulated), 222 in astrocytes (115 upregulated and 107 downregulated), and 393 in neurons (305 upregulated and 88 downregulated). The genes MTND1P23 (downregulated), XIST (downregulated), and RPS4Y1 (upregulated) were commonly expressed in all four cell clusters. The DEGs in microglial cells and astrocytes were enriched in the IL-17 signaling pathway. CONCLUSION Our study explored differences in cells found in a patient with PE compared to a patient with HE, and the transcriptome in the different cells was analyzed for the first time. Studying inflammatory and immune functions might be the best approach for investigating traumatic temporal lobe epilepsy in neurons.
Collapse
Affiliation(s)
- Fang Wen
- Department of NeurologyThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Zhigang Tan
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Dezhi Huang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| | - Jun Xiang
- Department of NeurosurgeryThe Second Xiang‐Ya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
5
|
He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q, Huang C. Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302916. [PMID: 38195869 PMCID: PMC10953562 DOI: 10.1002/advs.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.
Collapse
Affiliation(s)
- Liqiong He
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shengyun Ma
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Zijin Ding
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhifeng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Caiyun Xi
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kailu Zou
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Qingwei Deng
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Qulian Guo
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Changsheng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
6
|
Zhang Y, Tang L, Wang Y, Zhu X, Liu L. In-depth analyses of lncRNA and circRNA expression in the hippocampus of LPS-induced AD mice by Byu d Mar 25. Neuroreport 2024; 35:49-60. [PMID: 38051653 PMCID: PMC10702698 DOI: 10.1097/wnr.0000000000001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Byu d Mar 25 (BM25) has been verified to have neuroprotective effects in Alzheimer's disease (AD) mice. However, the molecular mechanism remains unclear. We aimed to investigate the expression profiling of lncRNAs and circRNAs by microarray analysis. Six hippocampus from LPS-mediated AD mice model treated with (normal saline (NS) (n = 3) and AD mice model treated with BM25 (n = 3) were selected. Microarray analysis was performed to detect the expression profiles of lncRNAs and circRNAs in hippocampus. Differentially expressed (DE) lncRNAs, mRNAs and circRNAs were identified through scatter plot and volcano plot filtering with a threshold of fold-change ≥2 and P ≤ 0.05. Co-expression network is analyzed by Circos software. Cis - and Trans - regulation were analyzed using RIsearch-2.0 and FEELNC softwares. LncRNA-transcription factors (TFs) and LncRNA-Target-TFs network were analyzed by Clusterprofiler software. The prediction of miRNAs bind to circRNAs were performed with miRNAbase. A total of 113 DElncRNAs, 117 DEmRNAs, and 4 DEcircRNAs were detected. The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in apoptosis, inflammatory mediator regulation of TRP channels, NF-kappa B and PI3K-Akt signaling pathway. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by Ncoa1, Phf5a, Klf6, Lmx1b, and Pax3. Additionally, lncRNA-target-TFs network analysis indicated the GATA6, Junb, Smad1, Twist1, and Mafb mostly regulate the same lncRNAs: XR_001783430.1 and NR_051982.1. Furthermore, 480 miRNAs were predicted binding to 4 identified circRNAs. The BM25 may affect AD by regulating the expression of lncRNAs and circRNAs, which could regulate the expressions of mRNAs or miRNAs by LncRNA-Target-TFs network.
Collapse
Affiliation(s)
| | - Liang Tang
- Department of Basic Medicine, Changsha Medical University
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, People's Republic of China
| | - Yan Wang
- Department of Basic Medicine, Changsha Medical University
| | - Xiaoyan Zhu
- Medical College, Tibet University, Lhasa, Tibet
| | - Lan Liu
- Medical College, Tibet University, Lhasa, Tibet
| |
Collapse
|
7
|
Pehlivanoglu B, Aysal A, Agalar C, Egeli T, Ozbilgin M, Unek T, Unek IT, Oztop I, Aktas S, Sagol O. lncRNA XIST Interacts with Regulatory T Cells within the Tumor Microenvironment in Chronic Hepatitis B-Associated Hepatocellular Carcinoma. Turk Patoloji Derg 2024; 40:101-108. [PMID: 38265097 PMCID: PMC11131571 DOI: 10.5146/tjpath.2023.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Alterations in the expression of several long non-coding RNAs (lncRNAs) have been shown in chronic hepatitis B-associated hepatocellular carcinoma (CHB-HCC). Here, we aimed to investigate the association between the expression of inflammation-associated lncRNA X-inactive specific transcript (XIST) and the type of inflammatory cells within the tumor microenvironment. MATERIAL AND METHODS Twenty-one consecutive cirrhotic patients with CHB-HCC were included. XIST expression levels were investigated on formalin-fixed paraffin-embedded (FFPE) tumoral and peritumoral tissue samples by real-time polymerase chain reaction (RT-PCR). Immunohistochemical staining for CD3, CD4, CD8, CD25, CD163, CTLA4, and PD-1 were performed. The findings were statistically analyzed. RESULTS Of the 21 cases, 11 (52.4%) had tumoral and 10 (47.6%) had peritumoral XIST expression. No significant association was found between the degree of inflammation and XIST expression. The number of intratumoral CD3, CD4, CD8 and CD20 positive cells was higher in XIST-expressing tumors, albeit without statistical significance. Tumoral and peritumoral XIST expression tended to be more common in patients with tumoral and peritumoral CD4high inflammation. The number of intratumoral CD25 positive cells was significantly higher in XIST-expressing tumors (p=0.01). Tumoral XIST expression was significantly more common in intratumoral CD25high cases (p=0.04). Peritumoral XIST expression was also more common among patients with CD25high peritumoral inflammation, albeit without statistical significance (p=0.19). CONCLUSION lncRNA XIST is expressed in CHB-HCC and its expression is significantly associated with the inflammatory tumor microenvironment, particularly with the presence and number of CD25 (+) regulatory T cells. In vitro studies are needed to explore the detailed mechanism.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cihan Agalar
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tufan Egeli
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Mucahit Ozbilgin
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Tarkan Unek
- Department of General Surgery, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilkay Tugba Unek
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Ilhan Oztop
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Safiye Aktas
- Department of Medical Oncology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Basic Oncology, Dokuz Eylul University, Institute of Oncology, Izmir, Turkey
| | - Ozgul Sagol
- Department of Molecular Pathology, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Pathology, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
8
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
9
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|
10
|
Li RF, Gui F, Yu C, Luo YM, Guo L. Protective role of muscones on astrocytes under a mechanical-chemical damage model. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:927. [PMID: 36172099 PMCID: PMC9511184 DOI: 10.21037/atm-22-3848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Background Traumatic spinal cord injury (SCI) is a major clinical concern and a life-changing neurological condition with substantial socioeconomic implications. The initial mechanical force applied to the spinal cord at the time of injury is known as the primary injury. After the primary injury, ischemia and hypoxia induce cell death and autolysis, which are associated with the release of a group of inflammatory factors and biologically active substances, such as superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and tumor necrosis factor-α (TNF-α). These processes are called the secondary injury, and may lead to an excess of extracellular glutamate (Glu), which in turn promotes the neuronal injuries. Muscone has been shown to have anti-inflammatory effects in the treatment of brain diseases and other diseases. However, to date, no study has examined the effects of muscone in the treatment of SCI. Methods Astrocytes were separated and purified by the method of short-term exposure combining with differential sticking wall. Astrocyte was identified by glial fibers acidic protein (GFAP) selecting cell immunochemical staining. A mechanical-chemical damage (MCD) model was established via the primary spinal astrocytes of rats, and treatment was administered with different concentrations of muscone. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was detected at 6, 12, 24, 48 and 72 h. SOD, MDA, LDH, TNF-alpha and intracellular calcium was detected at 3, 6 and 12 h. Glu in supernatant was detected respectively at 3, 6 and 12 h by enzyme-linked immunosorbent assay (ELISA) method. Intracellular calcium was detected respectively at 3, 6 and 12 h by flow cytometry method. MRNA expression of excitatory amino acid transporters (EAATs) and GFAP were detected by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method and protein expression of those by western blot at 6 h. Results Muscone reduced the levels of LDH, TNF-α, and MDA after injury, and upregulated the level of SOD. Muscone also reduced the density of extracellular Glu and suppressed the intracellular calcium level. Additionally, it decreased the expression levels of EAATs and GFAPs. Conclusions Muscone has a protective effect on astrocytes in a MCD and inhibits astrocytes’ proliferation.
Collapse
Affiliation(s)
- Rui-Fu Li
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Gui
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Meng Luo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Guo
- Department of Orthopedics, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Gong L, Han Y, Chen R, Yang P, Zhang C. LncRNA ZNF883-Mediated NLRP3 Inflammasome Activation and Epilepsy Development Involve USP47 Upregulation. Mol Neurobiol 2022; 59:5207-5221. [PMID: 35678979 DOI: 10.1007/s12035-022-02902-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
The goal of this study was to characterize the mechanisms of long noncoding RNA (lncRNA) ZNF883 regulating NOD-like receptor 3 (NLRP3) inflammasome activation in epilepsy (EP). Rat and cellular EP models were established using pilocarpine and magnesium-free extracellular fluid, respectively, to detect the differential expression of ZNF883, microRNA (miR)-138-5p, ubiquitin-specific peptidase 47 (USP47), and NLRP3. The pathology of the hippocampal neurons was examined by whole-cell patch clamping. The expression of ZNF883, miR-138-5p, and USP47 was modified in epileptic neurons, and the EP rats were injected with sh-ZNF883. Then, alterations in ZNF883, miR-138-5p, and USP47 levels were measured. The histopathology of the hippocampus was detected, along with the detection of IL-6, IL-1β, TNF-α, and NLRP3. Neuronal apoptosis in the rat and cellular EP models was determined. The relationship among ZNF883, miR-138-5p, and USP47 as well as the regulation of NLRP3 ubiquitination by USP47 was determined. ZNF883, USP47, and NLRP3 were increasingly expressed and miR-138-5p was downregulated in epileptic neurons and rats, concurrent with aggravated inflammation and apoptosis. ZNF883 overexpression in epileptic neurons elevated USP47 expression. ZNF883 targeted miR-138-5p and miR-138-5p negatively regulated USP47. In epileptic neurons, inhibiting miR-138-5p or overexpressing USP47 partially reversed the ZNF883 silencing-induced inhibition on NLRP3 inflammasome activation, neuronal apoptosis, and epileptiform activity. ZNF883 silencing in EP rats decreased USP47 and NLRP3, increased miR-138-5p, and inhibited inflammation and apoptosis. USP47 reversed the ubiquitination of NLRP3. ZNF883 inhibits NLRP3 ubiquitination and promotes EP through upregulating USP47 by sponging miR-138-5p.
Collapse
Affiliation(s)
- Lina Gong
- Department of Neurology, the Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Yaru Han
- Department of Neurology, the Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Ru Chen
- Department of Neurology, the Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Pu Yang
- Department of Neurology, the Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China
| | - Chen Zhang
- Department of Neurology, the Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
12
|
Lee SL, Hsu JY, Chen TC, Huang CC, Wu TY, Chin TY. Erinacine A Prevents Lipopolysaccharide-Mediated Glial Cell Activation to Protect Dopaminergic Neurons against Inflammatory Factor-Induced Cell Death In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23020810. [PMID: 35054997 PMCID: PMC8776144 DOI: 10.3390/ijms23020810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hericium erinaceus (HE) is a common edible mushroom consumed in several Asian countries and considered to be a medicinal mushroom with neuroprotective effects. Erinacine A (EA) is a bioactive compound in Hericium erinaceus mycelium (HEM) that has been shown to have a neuroprotective effect against neurodegenerative diseases, e.g., Parkinson’s disease (PD). Although the etiology of PD is still unclear, neuroinflammation may play an important role in causing dopaminergic neuron loss, which is a pathological hallmark of PD. However, glial cell activation has a close relationship with neuroinflammation. Thus, this study aimed to investigate the anti-neuroinflammatory and neuroprotective effects of EA on lipopolysaccharide (LPS)-induced glial cell activation and neural damage in vitro and in vivo. For the in vitro experiments, glial cells, BV-2 microglial cells and CTX TNA2 astrocytes were pretreated with EA and then stimulated with LPS and/or IFN-γ. The expression of proinflammatory factors in the cells and culture medium was analyzed. In addition, differentiated neuro-2a (N2a) cells were pretreated with EA or HEM and then stimulated with LPS-treated BV-2 conditioned medium (CM). The cell viability and the amount of tyrosine hydroxylase (TH) and mitogen-activated protein kinases (MAPKs) were analyzed. In vivo, rats were given EA or HEM by oral gavage prior to injection of LPS into the substantia nigra (SN). Motor coordination of the rats and the expression of proinflammatory mediators in the midbrain were analyzed. EA pretreatment prevented LPS-induced iNOS expression and NO production in BV-2 cells and TNF-α expression in CTX TNA2 cells. In addition, both EA and HEM pretreatment significantly increased cell viability and TH expression and suppressed the phosphorylation of JNK and NF- κB in differentiated N2a cells treated with CM. In vivo, both EA and HEM significantly improved motor dysfunction in the rotarod test and the amphetamine-induced rotation test and reduced the expression of TNF-α, IL-1β and iNOS in the midbrain of rats intranigrally injected with LPS. The results demonstrate that EA ameliorates LPS-induced neuroinflammation and has neuroprotective properties.
Collapse
Affiliation(s)
- Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
- Correspondence: (S.-L.L.); (T.-Y.W.); (T.-Y.C.)
| | - Jing-Ya Hsu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; (J.-Y.H.); (T.-C.C.)
| | - Ting-Chun Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; (J.-Y.H.); (T.-C.C.)
| | | | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; (J.-Y.H.); (T.-C.C.)
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Center for Nano Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Correspondence: (S.-L.L.); (T.-Y.W.); (T.-Y.C.)
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; (J.-Y.H.); (T.-C.C.)
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Center for Nano Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Correspondence: (S.-L.L.); (T.-Y.W.); (T.-Y.C.)
| |
Collapse
|
13
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
14
|
Kuo MC, Liu SCH, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021; 28:78. [PMID: 34794432 PMCID: PMC8603508 DOI: 10.1186/s12929-021-00775-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
The discovery of various noncoding RNAs (ncRNAs) and their biological implications is a growing area in cell biology. Increasing evidence has revealed canonical and noncanonical functions of long and small ncRNAs, including microRNAs, long ncRNAs (lncRNAs), circular RNAs, PIWI-interacting RNAs, and tRNA-derived fragments. These ncRNAs have the ability to regulate gene expression and modify metabolic pathways. Thus, they may have important roles as diagnostic biomarkers or therapeutic targets in various diseases, including neurodegenerative disorders, especially Parkinson's disease. Recently, through diverse sequencing technologies and a wide variety of bioinformatic analytical tools, such as reverse transcriptase quantitative PCR, microarrays, next-generation sequencing and long-read sequencing, numerous ncRNAs have been shown to be associated with neurodegenerative disorders, including Parkinson's disease. In this review article, we will first introduce the biogenesis of different ncRNAs, including microRNAs, PIWI-interacting RNAs, circular RNAs, long noncoding RNAs, and tRNA-derived fragments. The pros and cons of the detection platforms of ncRNAs and the reproducibility of bioinformatic analytical tools will be discussed in the second part. Finally, the recent discovery of numerous PD-associated ncRNAs and their association with the diagnosis and pathophysiology of PD are reviewed, and microRNAs and long ncRNAs that are transported by exosomes in biofluids are particularly emphasized.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Medicine, Section of Neurology, Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sam Chi-Hao Liu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fang Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Bohosova J, Vajcner J, Jabandziev P, Oslejskova H, Slaby O, Aulicka S. MicroRNAs in the development of resistance to antiseizure drugs and their potential as biomarkers in pharmacoresistant epilepsy. Epilepsia 2021; 62:2573-2588. [PMID: 34486106 DOI: 10.1111/epi.17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023]
Abstract
Although many new antiseizure drugs have been developed in the past decade, approximately 30%-40% of patients remain pharmacoresistant. There are no clinical tools or guidelines for predicting therapeutic response in individual patients, leaving them no choice other than to try all antiseizure drugs available as they suffer debilitating seizures with no relief. The discovery of predictive biomarkers and early identification of pharmacoresistant patients is of the highest priority in this group. MicroRNAs (miRNAs), a class of short noncoding RNAs negatively regulating gene expression, have emerged in recent years in epilepsy, following a broader trend of their exploitation as biomarkers of various complex human diseases. We performed a systematic search of the PubMed database for original research articles focused on miRNA expression level profiling in patients with drug-resistant epilepsy or drug-resistant precilinical models and cell cultures. In this review, we summarize 17 publications concerning miRNAs as potential new biomarkers of resistance to antiseizure drugs and their potential role in the development of drug resistance or epilepsy. Although numerous knowledge gaps need to be filled and reviewed, and articles share some study design pitfalls, several miRNAs dysregulated in brain tissue and blood serum were identified independently by more than one paper. These results suggest a unique opportunity for disease monitoring and personalized therapeutic management in the future.
Collapse
Affiliation(s)
- Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Vajcner
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Jabandziev
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Oslejskova
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Chen Z, Wu H, Zhang M. Long non-coding RNA: An underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021; 148:105101. [PMID: 34139298 DOI: 10.1016/j.neuint.2021.105101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) diseases are responsible for a large proportion of morbidity and mortality worldwide. CNS diseases caused by intrinsic and extrinsic stimuli stimulate the resident immune cells including microglia and astrocyte, resulting in neuroinflammation that exacerbates the progression of diseases. Recent evidence reveals the aberrant expression patterns of long non-coding RNAs (lncRNAs) in the damaged tissues following CNS diseases. It was also proposed that lncRNAs possessed immune-modulatory activities by directly or indirectly affecting various effector proteins including transcriptional factor, acetylase, protein kinase, phosphatase, etc. In addition, lncRNAs can form a sophisticated network by interacting with other molecules to regulate the expression or activation of downstream immune response pathways. However, the major roles of lncRNAs in CNS pathophysiologies are still elusive, especially in neuroinflammation. Herein, we tend to review some potential roles of lncRNAs in modulating neuroinflammation based on current evidence in various CNS diseases, in order to provide novel explanations for the initiation and progression of CNS diseases and help to establish therapeutic strategies targeting neuroinflammation.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|