1
|
Hernández-Arciga U, Stamenkovic C, Yadav S, Nicoletti C, Albalawy WN, Al hammood F, Gonzalez TF, Naikwadi MU, Graham A, Smarz C, Little GJ, Williams SPG, McMahon B, Sipula IJ, Vandevender AM, Chuan B, Cooke D, Pinto AFM, Flores LC, Hartman HL, Diedrich JK, Brooke RT, Alder JK, Frahm KA, Pascal LE, Stolt E, Troensegaard H, Øvrebø B, Elshorbagy A, Molina E, Vinknes KJ, Tan RJ, Weisz OA, Bueno M, Eickelberg O, Steinhauser ML, Finkel T, Ables GP, Ikeno Y, Olsen T, Sacco A, Jurczak MJ, Sukoff Rizzo SJ, Parkhitko AA. Dietary methionine restriction started late in life promotes healthy aging in a sex-specific manner. SCIENCE ADVANCES 2025; 11:eads1532. [PMID: 40238871 PMCID: PMC12002124 DOI: 10.1126/sciadv.ads1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Aging is associated with dysregulated methionine metabolism and increased levels of enzymes in the tyrosine degradation pathway (TDP). To investigate the efficacy of targeting either methionine metabolism or the TDP for healthspan improvement in advanced age, we initiated dietary MetR or TDP inhibition in 18-month-old C57BL/6J mice. MetR significantly improved neuromuscular function, metabolic health, lung function, and frailty. In addition, we confirmed improved neuromuscular function from dietary MetR in 5XFAD mice, whose weight was not affected by MetR. We did not observe benefits with TDP inhibition. Single-nucleus RNA and ATAC sequencing of muscle revealed cell type-specific responses to MetR, although MetR did not significantly affect mouse aging epigenetic clock markers. Similarly, an 8-week MetR intervention in a human trial (NCT04701346) showed no significant impact on epigenetic clocks. The observed benefits from late-life MetR provide translational rationale to develop MetR mimetics as an antiaging intervention.
Collapse
Affiliation(s)
| | - Ceda Stamenkovic
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shweta Yadav
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara Nicoletti
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wafaa N. Albalawy
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, PA, USA
| | - Farazdaq Al hammood
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Aidan Graham
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Christian Smarz
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriela J. Little
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Brenda McMahon
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, PA, USA
| | - Ian J. Sipula
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amber M. Vandevender
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Byron Chuan
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science Inc., Cold Spring, NY, USA
| | - Antonio F. M. Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa C. Flores
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Hannah L. Hartman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jolene K. Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Jonathan K. Alder
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krystle A. Frahm
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura E. Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elsa Molina
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Roderick J. Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marta Bueno
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oliver Eickelberg
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L. Steinhauser
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
- Center for Human Integrative Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toren Finkel
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Gene P. Ables
- Orentreich Foundation for the Advancement of Science Inc., Cold Spring, NY, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research and Education Center, Audie L. Murphy VA Hospital South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Alessandra Sacco
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael J. Jurczak
- Center for Metabolism and Mitochondrial Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrey A. Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Pinheiro F, Lail H, Neves JS, Negrão R, Wanders D. Sulfur Amino Acid Restriction Mitigates High-Fat Diet-Induced Molecular Alterations in Cardiac Remodeling Primarily via FGF21-Independent Mechanisms. Nutrients 2024; 16:4347. [PMID: 39770968 PMCID: PMC11677450 DOI: 10.3390/nu16244347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21. Methods: Male C57BL/6J wild-type and FGF21 knockout mice were randomized into four dietary regimens, including normal fat and high-fat diets (HFDs) with and without SAAR, over five weeks. Results: SAAR significantly reduced body weight and visceral adiposity while increasing serum FGF21 levels. In the heart, SAAR-induced molecular metabolic alterations are indicative of enhanced lipid utilization, glucose uptake, and mitochondrial biogenesis. SAAR also elicited opposing effects on the cardiac gene expression of FGF21 and adiponectin. Regarding cellular stress responses, SAAR mitigated the HFD-induced increase in the cardiac expression of genes involved in oxidative stress, inflammation, and apoptosis, while upregulating antioxidative genes. Structurally, SAAR did not induce alterations indicative of cardiac hypertrophy and it counteracted HFD-induced fibrotic gene expression. Overall, most alterations induced by SAAR were FGF21-independent, except for those related to lipid utilization and glucose uptake. Conclusions: Altogether, SAAR promotes cardiac alterations indicative of physiological rather than pathological remodeling, primarily through FGF21-independent mechanisms.
Collapse
Affiliation(s)
- Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - João Sérgio Neves
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal;
- Unit of Cardiovascular Research and Development—Unic@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rita Negrão
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (F.P.); (H.L.)
| |
Collapse
|
3
|
Münzberg H, Heymsfield SB, Berthoud HR, Morrison CD. History and future of leptin: Discovery, regulation and signaling. Metabolism 2024; 161:156026. [PMID: 39245434 PMCID: PMC11570342 DOI: 10.1016/j.metabol.2024.156026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The cloning of leptin 30 years ago in 1994 was an important milestone in obesity research. Prior to the discovery of leptin, obesity was stigmatized as a condition caused by lack of character and self-control. Mutations in either leptin or its receptor were the first single gene mutations found to cause severe obesity, and it is now recognized that obesity is caused mostly by a dysregulation of central neuronal circuits. Since the discovery of the leptin-deficient obese mouse (ob/ob) the cloning of leptin (ob aka lep) and leptin receptor (db aka lepr) genes, we have learned much about leptin and its action in the central nervous system. The first hope that leptin would cure obesity was quickly dampened because humans with obesity have increased leptin levels and develop leptin resistance. Nevertheless, leptin target sites in the brain represent an excellent blueprint to understand how neuronal circuits control energy homeostasis. Our expanding understanding of leptin function, interconnection of leptin signaling with other systems and impact on distinct physiological functions continues to guide and improve the development of safe and effective interventions to treat metabolic illnesses. This review highlights past concepts and current emerging concepts of the hormone leptin, leptin receptor signaling pathways and central targets to mediate distinct physiological functions.
Collapse
Affiliation(s)
- Heike Münzberg
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America.
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| | - Christopher D Morrison
- Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, United States of America
| |
Collapse
|
4
|
Abrosimov R, Baeken MW, Hauf S, Wittig I, Hajieva P, Perrone CE, Moosmann B. Mitochondrial complex I inhibition triggers NAD +-independent glucose oxidation via successive NADPH formation, "futile" fatty acid cycling, and FADH 2 oxidation. GeroScience 2024; 46:3635-3658. [PMID: 38267672 PMCID: PMC11226580 DOI: 10.1007/s11357-023-01059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Inhibition of mitochondrial complex I (NADH dehydrogenase) is the primary mechanism of the antidiabetic drug metformin and various unrelated natural toxins. Complex I inhibition can also be induced by antidiabetic PPAR agonists, and it is elicited by methionine restriction, a nutritional intervention causing resistance to diabetes and obesity. Still, a comprehensible explanation to why complex I inhibition exerts antidiabetic properties and engenders metabolic inefficiency is missing. To evaluate this issue, we have systematically reanalyzed published transcriptomic datasets from MPP-treated neurons, metformin-treated hepatocytes, and methionine-restricted rats. We found that pathways leading to NADPH formation were widely induced, together with anabolic fatty acid biosynthesis, the latter appearing highly paradoxical in a state of mitochondrial impairment. However, concomitant induction of catabolic fatty acid oxidation indicated that complex I inhibition created a "futile" cycle of fatty acid synthesis and degradation, which was anatomically distributed between adipose tissue and liver in vivo. Cofactor balance analysis unveiled that such cycling would indeed be energetically futile (-3 ATP per acetyl-CoA), though it would not be redox-futile, as it would convert NADPH into respirable FADH2 without any net production of NADH. We conclude that inhibition of NADH dehydrogenase leads to a metabolic shift from glycolysis and the citric acid cycle (both generating NADH) towards the pentose phosphate pathway, whose product NADPH is translated 1:1 into FADH2 by fatty acid cycling. The diabetes-resistant phenotype following hepatic and intestinal complex I inhibition is attributed to FGF21- and GDF15-dependent fat hunger signaling, which remodels adipose tissue into a glucose-metabolizing organ.
Collapse
Affiliation(s)
- Roman Abrosimov
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Samuel Hauf
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ilka Wittig
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Parvana Hajieva
- Institute for Translational Medicine, MSH Medical School, Hamburg, Germany
| | - Carmen E Perrone
- Orentreich Foundation for the Advancement of Science, Cold Spring-On-Hudson, NY, USA
| | - Bernd Moosmann
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
5
|
Nagarajan A, Lasher AT, Morrow CD, Sun LY. Long term methionine restriction: Influence on gut microbiome and metabolic characteristics. Aging Cell 2024; 23:e14051. [PMID: 38279509 PMCID: PMC10928566 DOI: 10.1111/acel.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/13/2023] [Indexed: 01/28/2024] Open
Abstract
The Methionine restriction (MR) diet has been shown to delay aging and extend lifespan in various model organisms. However, the long-term effects of MR diet on the gut microbiome composition remain unclear. To study this, male mice were started on MR and control diet regimens at 6 months and continued until 22 months of age. MR mice have reduced body weight, fat mass percentage, and bone mineral density while having increased lean mass percentage. MR mice also have increased insulin sensitivity along with increasing indirect calorimetry markers such as energy expenditure, oxygen consumption, carbon dioxide production, and glucose oxidation. Fecal samples were collected at 1 week, 18 weeks, and 57 weeks after the diet onset for 16S rRNA amplicon sequencing to study the gut microbiome composition. Alpha and beta diversity metrics detected changes occurring due to the timepoint variable, but no changes were detected due to the diet variable. The results from LEfSe analysis surprisingly showed that more bacterial taxa changes were linked to age rather than diet. Interestingly, we found that the long-term MR diet feeding induced smaller changes compared to short-term feeding. Specific taxa changes due to the diet were observed at the 1 or 18-week time points, including Ileibacterium, Odoribacter, Lachnoclostridium, Marinifilaceae, and Lactobacillaceae. Furthermore, there were consistent aging-associated changes across both groups, with an increase in Ileibacterium and Erysipelotrichaceae with age, while Eubacterium_coprostanoligenes_group, Ruminococcaceae, Peptococcaceae, and Peptococcus decreased with age.
Collapse
Affiliation(s)
- Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Casey D. Morrow
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
6
|
Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee-Ødegård S, Troensegaard H, Johannessen H, Doeland B, Vo AAD, Dahl AF, Svendsen K, Thoresen M, Refsum H, Rising R, Barvíková K, van Greevenbroek M, Kožich V, Retterstøl K, Vinknes KJ. Dietary sulfur amino acid restriction in humans with overweight and obesity: a translational randomized controlled trial. J Transl Med 2024; 22:40. [PMID: 38195568 PMCID: PMC10775517 DOI: 10.1186/s12967-023-04833-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS SAAR led to a ~ 20% greater weight loss compared to controls (β 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS gov/study/NCT04701346.
Collapse
Affiliation(s)
- Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bente Øvrebø
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elena C Tore
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sindre Lee-Ødegård
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannibal Troensegaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hanna Johannessen
- Department of Paedriatic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Beate Doeland
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anna A D Vo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Anja F Dahl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Karianne Svendsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Greevenbroek
- Department of Internal Medicine and CARIM School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Vinknes KJ, Olsen T, Zaré HK, Bastani NE, Stolt E, Dahl AF, Cox RD, Refsum H, Retterstøl K, Åsberg A, Elshorbagy A. Cysteine-lowering treatment with mesna against obesity: Proof of concept and results from a human phase I, dose-finding study. Diabetes Obes Metab 2023; 25:3161-3170. [PMID: 37435697 PMCID: PMC11497255 DOI: 10.1111/dom.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
AIM To investigate whether mesna-sodium-2-mercaptoethane sulfonate) can reduce diet-induced fat gain in mice, and to assess the safety of single ascending mesna doses in humans to find the dose associated with lowering of plasma tCys by at least 30%. METHODS C3H/HeH mice were shifted to a high-fat diet ± mesna in drinking water; body composition was measured at weeks 0, 2 and 4. In an open, phase I, single ascending dose study, oral mesna (400, 800, 1200, 1600 mg) was administered to 17 men with overweight or obesity. Mesna and tCys concentrations were measured repeatedly for a duration of 48 hours postdosing in plasma, as well as in 24-hour urine. RESULTS Compared with controls, mesna-treated mice had lower tCys and lower estimated mean fat mass gain from baseline (week 2: 4.54 ± 0.40 vs. 6.52 ± 0.36 g; week 4: 6.95 ± 0.35 vs. 8.19 ± 0.34 g; Poverall = .002), but similar lean mass gain. In men with overweight, mesna doses of 400-1600 mg showed dose linearity and were well tolerated. Mesna doses of 800 mg or higher decreased plasma tCys by 30% or more at nadir (4h post-dosing). With increasing mesna dose, tCys AUC0-12h decreased (Ptrend < .001), and urine tCys excretion increased (Ptrend = .004). CONCLUSIONS Mesna reduces diet-induced fat gain in mice. In men with overweight, single oral doses of mesna (800-1600 mg) were well tolerated and lowered plasma tCys efficiently. The effect of sustained tCys-lowering by repeated mesna administration on weight loss in humans deserves investigation.
Collapse
Affiliation(s)
- Kathrine J. Vinknes
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | | | - Nasser E. Bastani
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Emma Stolt
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Anja F. Dahl
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Roger D. Cox
- MRC Harwell InstituteMammalian Genetics UnitHarwell CampusOxfordUK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive MedicineOslo University HospitalOsloNorway
| | - Anders Åsberg
- Department of Transplantation MedicineOslo University HospitalOsloNorway
- Department of PharmacyUniversity of OsloOsloNorway
| | - Amany Elshorbagy
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Physiology, Faculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| |
Collapse
|
9
|
Lee LMY, Lin ZQ, Zheng LX, Tu YF, So YH, Zheng XH, Feng TJ, Wang XY, Wong WT, Leung YC. Lysine Deprivation Suppresses Adipogenesis in 3T3-L1 Cells: A Transcriptome Analysis. Int J Mol Sci 2023; 24:ijms24119402. [PMID: 37298352 DOI: 10.3390/ijms24119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.
Collapse
Affiliation(s)
- Leo Man-Yuen Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Zhi-Qiang Lin
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Lu-Xi Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Yi-Fan Tu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, New Territory, Hong Kong, China
| | - Yik-Hing So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiu-Hua Zheng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Tie-Jun Feng
- School of Biomedical Science, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China
| | - Xi-Yue Wang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
11
|
Liu SM, Ifebi B, Johnson F, Xu A, Ho J, Yang Y, Schwartz G, Jo YH, Chua S. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J Clin Invest 2023; 133:e164185. [PMID: 36787185 PMCID: PMC10065075 DOI: 10.1172/jci164185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Glucose homeostasis can be improved after bariatric surgery, which alters bile flow and stimulates gut hormone secretion, particularly FGF15/19. FGFR1 expression in AGRP-expressing cells is required for bile acids' ability to improve glucose control. We show that the mouse Agrp gene has 3 promoter/enhancer regions that direct transcription of each of their own AGRP transcripts. One of these Agrp promoters/enhancers, Agrp-B, is regulated by bile acids. We generated an Agrp-B knockin FLP/knockout allele. AGRP-B-expressing cells are found in endocrine cells of the pars tuberalis and coexpress diacylglycerol lipase B - an endocannabinoid biosynthetic enzyme - distinct from pars tuberalis thyrotropes. AGRP-B expression is also found in the folliculostellate cells of the pituitary's anterior lobe. Mice without AGRP-B were protected from glucose intolerance induced by high-fat feeding but not from excess weight gain. Chemogenetic inhibition of AGRP-B cells improved glucose tolerance by enhancing glucose-stimulated insulin secretion. Inhibition of the AGRP-B cells also caused weight loss. The improved glucose tolerance and reduced body weight persisted up to 6 weeks after cessation of the DREADD-mediated inhibition, suggesting the presence of a biological switch for glucose homeostasis that is regulated by long-term stability of food availability.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunlei Yang
- Department of Medicine
- Department of Neuroscience, and
| | - Gary Schwartz
- Department of Medicine
- Department of Neuroscience, and
| | - Young Hwan Jo
- Department of Medicine
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | | |
Collapse
|
12
|
Lysine or Threonine Deficiency Decreases Body Weight Gain in Growing Rats despite an Increase in Food Intake without Increasing Energy Expenditure in Response to FGF21. Nutrients 2022; 15:nu15010197. [PMID: 36615854 PMCID: PMC9824894 DOI: 10.3390/nu15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to evaluate the effects of a strictly essential amino acid (lysine or threonine; EAA) deficiency on energy metabolism in growing rats. Rats were fed for three weeks severely (15% and 25% of recommendation), moderately (40% and 60%), and adequate (75% and 100%) lysine or threonine-deficient diets. Food intake and body weight were measured daily and indirect calorimetry was performed the week three. At the end of the experimentation, body composition, gene expression, and biochemical analysis were performed. Lysine and threonine deficiency induced a lower body weight gain and an increase in relative food intake. Lysine or threonine deficiency induced liver FGF21 synthesis and plasma release. However, no changes in energy expenditure were observed for lysine deficiency, unlike threonine deficiency, which leads to a decrease in total and resting energy expenditure. Interestingly, threonine severe deficiency, but not lysine deficiency, increase orexigenic and decreases anorexigenic hypothalamic neuropeptides expression, which could explain the higher food intake. Our results show that the deficiency in one EAA, induces a decrease in body weight gain, despite an increased relative food intake, without any increase in energy expenditure despite an induction of FGF21.
Collapse
|
13
|
Zhang X, Zhao Y, Liang X, Zhang L, Li K, Sun Z, Zhao YF. α-Lipoic acid upregulates gene expression but reduces protein levels of fibroblast growth factor 21 in HepG2 Cells. Basic Clin Pharmacol Toxicol 2022; 131:270-281. [PMID: 35838000 DOI: 10.1111/bcpt.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolism-regulating hepatokine, and its expression is finely controlled by the nutrients and cellular stressors. α-Lipoic acid (ALA) regulates fuel metabolism as a nutrient, but it also arouses mitochondrial and endoplasmic reticulum (ER) stress as well as oxidative stress in hepatocytes. However, the role of cellular stress in ALA-regulated FGF21 expression has not been demonstrated as yet. The present study found that ALA upregulated FGF21 gene expression while it reduced FGF21 protein levels in HepG2 cells, which was accompanied by mitochondrial damage that was shown by ATP reduction and ROS elevation. ALA led to mitochondrial stress and ER stress as shown by the increased expression of HSP60, ATF6 and ATF4. Inhibition of ER stress by 4-PBA significantly attenuated ALA-stimulated FGF21 gene expression while it did not influence the reduction of FGF21 protein levels. H2 O2 -induced oxidative stress reduced FGF21 protein levels in HepG2 cells, and anti-oxidation by Tempol blocked ALA-induced reduction of FGF21 proteins. In conclusion, ALA upregulates FGF21 gene expression through the stimulation of mitochondrial and ER stress while it reduces FGF21 protein levels through the induction of oxidative stress in HepG2 cells. Further studies are needed to demonstrate the in vivo effect of ALA on hepatic FGF21 expression.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| |
Collapse
|